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ABSTRACT
In the Recommender Systems field ensemble techniques gain
growing interest. This approach is based on the idea of mix-
ing many recommenders and to get an average prediction
from all of them. Even if it is useful this process may be
very expensive from a computational point of view. We
propose the use of Operations Research techniques in order
to optimize the balance of different predictors and to accel-
erate it. We show that this problem can be generalized, thus
we provide a mathematical framework which helps to find
further improvements.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
filtering; H.3.4 [Systems and Software]: Performance eval-
uation.; G.1.6 [Optimization]: Nonlinear programming

General Terms
Algorithms, Measurement, Experimentation.

Keywords
Recommender Systems, Collaborative Filtering, Optimiza-
tion.

1. INTRODUCTION
Recommender Systems represent already a successful tech-

nology and have a strong foundation [6, 12, 11]. By the way,
many research groups are proposing possible extensions in
order to overcome some limitations [1]. Recent trends sug-
gest the use of ensemble techniques in order to improve the
quality of recommendations. This approach is based on the
idea of mixing many recommenders and to get an average
prediction from all of them. Instead of using only one pre-
dictor, many are used together and they cooperate to pro-
duce the ultimate recommendation which is some kind of
combination (blend) of the ones proposed by each of them.
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Bigchaos team (one of winners of the Netflix Prize) remarks
this interesting ideas [2]: “Blending techniques were used to
combine the independently trained predictors. . . . An ideal
solution would be to train all models in parallel and treat the
ensemble as one big model. The big problem is that training
100+ models in parallel and tuning all parameters simultane-
ously is computationally not feasible.” The blending requires
to look for an optimal balance between the recommenders
(since the ultimate outcome is produce by the cooperation
of all of them) but it is computationally difficult.

Most of the related works propose step by step methods to
improve the blending but rarely settle this problem as a real
optimization one. We think that Operations Research (OR)
techniques could be conveniently exploited to formalize and
solve it. In very general term, we propose to consider the
predictors as a vector of functions which have to be combined
by means of a proper operator in order to minimize a conve-
nient error function which measures the performance of the
system. This combination depends on some design variables
which play the role of decision variables of an optimization
problem. Our work aim to furnish a theoretical framework
to better understand the optimal way to mix different rec-
ommenders and to suggest possible stategies to manage the
computational complexity of this process.

2. THE BLENDING PROBLEM
In order to formally define our problem in OR style we

have to identify these key elements:

• objective function;

• decision variables;

• constraints.

Typically, the objective function has to be minimized and
represents the task, decision variables have to be chosen in a
feasible region and represent choices and constraints deter-
mine the feasible area and represent limits.
We begin by introducing a very general formalization (basi-
cally a schema) and refine it step by step.

2.1 Problem Schema
Let M be a set of predictors, Prm an element of this set,

β(M) a blending operator which mixes different predictors,
λ a vector of design variables, Pn(λ) constraints that λ must
respect and E an error function which measures the quality
of recommendations.
Thus, the schema of the Blending Problem is:



min
λ

E(β(M,λ))

s.t. Pn(λ)

}
(1)

2.2 Error Function
First of all we have to define the error function E which

expresses the error done by the system. Many different mea-
sures are used in order to evaluate the performance of fil-
tering algorithms employed by Recommender Systems and
some metrics fit better for top-N recommendation, and oth-
ers for prediction. The clamour of the Netflix competition
has made one metric notorius: accuracy computed as the
square root of the averaged squared difference between each
prediction and the actual rating (the root mean squared er-
ror or “RMSE”). We believe also that it represents a good
choice (see [9] for a discussion on this topic).

Let the rui denote the actual rating provided by a certain
user u for an item i, with i = 1, 2, ..., nu (nu ≤ n, where n
is the number of all available items) and let pui denote the
prediction generated by a certain algorithm for the same user
and the same item. RMSE, relating to user u, is defined by:

RMSEu =

√∑nu
i=1 (rui − pui)2

nu
(2)

The total RMSE can be obtained as an average of the RMSE
of all users:

RMSE =

√∑
u

∑nu
i=1 (rui − pui)2∑

u nu
(3)

2.3 Blending Function
In order to mix different predictors we may simply calcu-

late their linear combination. Thus, we adopt the weighted
average as a specialization of the blending operator β. Let
pmui be prediction generated by predictor Prm for the user
u and the item i. The RMSE for a user becomes:

RMSEu =

√√√√∑nu
i=1 (rui −

∑M
m=1 wmupmui∑M

m=1 wmu
)
2

nu
(4)

We look for the vector of weights [w1u, . . . , wMu] which
would have minimized the error. An important remark is
that the weights are the decision variables and (4) is the
objective function; thus ratings and predictions are known
parameters. Moreover, we underline that we need a different
vector of weights for each user. Basically, we have to solve
as many specific optimization problems as the total number
of users; in the reminder we call it personalized blending.

On the other hand, a different approach is the global blend-
ing. We look for a single vector of weights, that is indepen-
dent from the users. In this case, the RMSE is:

RMSE =

√√√√∑u

∑nu
i=1 (rui −

∑M
m=1 wmpmui∑M

m=1 wm
)
2

∑
u nu

(5)

The evaluation of RMSE is typically performed using the
“leave-n-out” approach [4], where a part of the dataset is
hidden and the the rest is used as a training set for the
recommender, which tries to predict properly the withheld
ratings.

2.4 Reformulations
The objective (4) is a non linear form which is not easy

to optimize, so we look for another way to formulate the
problem. A first observation is that we can simplify the
equations of RMSE ignoring the square root (because we
consider only positive values). Secondly, we can introduce
a constraint on the sum of weights, so for the personalized
blending we get only one optimization problem:

min
w

∑nu
i=1 (rui−

∑M
m=1 wmupmui)

2

nu

s.t.
∑M
m=1 wmu = 1

}
(6)

We recall that we should solve one optimization problem
like (6) for each user. On the other hand, for the global
blending we get:

min
w

∑nu
i=1 (rui−

∑M
m=1 wmpmui)

2

nu

s.t.
∑M
m=1 wm = 1

}
(7)

We plan to use these formulations to perform initial com-
putational tests. Anyway, if we want be general we may
relax the constraint, and recognise that we got a sum of
squares linear fractional problem whose general mathemat-
ical programming problem (SSLFP) can be formulated as
follows:

min

n∑
i=1

(∑n
j=1 aijxj + b

dT + e
− pi

)2

(8)

xi ≥ 0 ∀i ≤ n
Where x ∈ Rn, a, d ∈ Rn are real coefficients, b, e ∈ R, p ∈
Rn. This formulation is a general, hence very useful in or-
der to look for good reformulations. “It is well known that
several different formulations may share the same numerical
properties (feasible region, optima) though some of them are
easier to solve than others with respect to the most efficient
available algorithms. . . . When a problem with a given for-
mulation P is cast into a different formulation Q, we say
that Q is a reformulation of P.” [8].

2.5 Conclusion and future work
We plan to move towards two different objectives. Firstly

we will perform computational tests based on (6) and (7).
This activity is planned as follows:

• identification of the set of predictors, including well-
known ones as KNN [5] and Slope-One [7];

• choice of the dataset, for example the ones provided
by GroupLens (http://www.grouplens.org);

• selection of the solvers for the problems (6) and (7);
since they are non-linear problems, we can use well-
known non-linear solvers like Couenne [3] or BARON
[10];

• comparison of the results obtained with (6) and (7);
in our opinion, (6) allows to obtain a better level of
accuracy with respect to (7), while the time complexity
of (6) is greater than the complexity of (7) by a factor
that is the total number of user.

Secondly, we want to investigate the best way to reformu-
late the problem starting from (8).



3. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next

generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE
Transactions on Knowledge and Data Engineering,
17(6):734–749, 2005.
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