
Recommender Systems by means of Information Retrieval

Alberto Costa
LIX, École Polytechnique
91128 Palaiseau, France

costa@lix.polytechnique.fr

Fabio Roda
LIX, École Polytechnique
91128 Palaiseau, France

roda@lix.polytechnique.fr

ABSTRACT
In this paper we present a method for reformulating the
Recommender Systems problem in an Information Retrieval
one. In our tests we have a dataset of users who give ratings
for some movies; we hide some values from the dataset, and
we try to predict them again using its remaining portion
(the so-called “leave-n-out approach”).

In order to use an Information Retrieval algorithm, we
reformulate this Recommender Systems problem in this way:
a user corresponds to a document, a movie corresponds to a
term, the active user (whose rating we want to predict) plays
the role of the query, and the ratings are used as weigths, in
place of the weighting schema of the original IR algorithm.

The output is the ranking list of the documents (“ users”)
relevant for the query (“active user”). We use the ratings
of these users, weighted according to the rank, to predict
the rating of the active user. We carry out the comparison
by means of a typical metric, namely the accuracy of the
predictions returned by the algorithm, and we compare this
to the real ratings from users. In our first tests, we use two
different Information Retrieval algorithms: LSPR, a recently
proposed model based on Discrete Fourier Transform, and a
simple vector space model.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
filtering, Retrieval models; H.3.4 [Systems and Software]:
Performance evaluation.

General Terms
Algorithms, Measurement, Experimentation.

Keywords
Recommender Systems, Information Retrieval, Reformula-
tion.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WIMS ’11, May 25-27, 2011 Sogndal, Norway
Copyright 2011 ACM 978-1-4503-0148-0/11/05 ...$10.00.

1. INTRODUCTION
Recommender Systems (RS) have received a considerable

interest from the scientific community in the last decade
and they represent by this time a stable field of research.
A number of interesting approaches have been proposed by
many authors and in particular, Collaborative Filtering [19,
17, 20, 11] gained a great popularity and it is nowadays a
well known method. It was remarked [1] that Collaborative
Filtering shares fundamental aspects with Information Re-
trieval (IR) and there is somehow a continuity between these
two fields of research. This work belongs to this stream. In
fact we are developing a RS which makes use of concepts
and tools used elsewhere in an IR context and, believing
that the underlying structure could also provide an interest-
ing framework for RS algorithms, we looked for experimental
evidence of this intuition.

In our approach first we move from the Recommender
Systems domain to the Information Retrieval one. To do
this, we consider each user as a document and each movie
as a term (even if we can use this approach not only for
the movies): in this way, as in IR a document is a set of
terms, in the RS field a user is characterized by a set of
movies (for which the user has given a rating). Using this
representation, the ratings of the users are the baseline for
computing the weights of the terms, as explained in section
3.

Moreover, the active user becomes the query in this phase;
the meaning of this is that in Information Retrieval we want
the documents more similar to the query, and for the RS
problem we want the users more similar to the active user.

At this point we can use one of the several existing IR al-
gorithms to obtain the ranking list, that represents the set of
users more similar to the active user, ordered by decreasing
similarity.

Finally, as explained at the end of section 3, we use the
ranking list to get the predicition for the active user; this last
step brings us again in the Recommender Systems domain.

The evaluation of most works in this field is carried out
using “artificial” datasets provided by well-known research
groups, such as GroupLens [7, 18], or by Netflix (http:
//www.netflixprize.com) [3, 2]. This approach ensures
somehow a standard method to evaluate results. Hence, we
have implemented our in-house algorithm using both Least
Spectral Power Ranking (LSPR) model, presented in [6],
and an algorithm based on vector space model, as conceived
in the 1960s by Salton [15, 16]; we tested it by means of
a standard dataset provided by GroupLens. Basically, we
have compared it with the “community” which constitutes

the benchmark to overcome, in order to show the feasibility
of the approach.

This paper is organised as follows. In section 2 we intro-
duce the problem in a more formal way, and in section 3
we describe the algorithm itself. After that, in section 4 we
report the experimental results obtained when running this
algorithm. Finally, in section 5 we discuss the results.

2. DESCRIPTION OF THE PROBLEM
We can formulate our problem as follows. We have:

• a set U of users, |U | = n;

• a set I of items (movies, songs, restaurants...), |I| = m;

• a gain function G which expresses the utility of an item
for a user

Utility is expressed by a numeric value representing a rating
(the higher the better) varying on a chosen interval V, more
formally the function G is defined as:

G: UxI → V

We want to maximize the users’ utility by recommending
good items and advising against bad ones. The problem is
that we do not know “a priori” all the values of G, hence
we have to predict users’ ratings. This ability is normally
tested in an almost empirical way showing that the system
is able to predict a set of known ratings.

In this paper we use a dataset provided by GroupLens.
Basically there are 100 000 ratings (from 1 to 5) given by
n = 943 users on m = 1682 movies and each user rated at
least 20 movies. We represent this dataset with a matrix
Dmxn, where Dij is the rating given by the user j for the
movie i (0 value is used if no rating is available). Our aim is
to predict the rating of a user (called “active user”) for each
movie (using the informations of the matrix D), minimizing
the differences between the predicted ratings and the real
ones.

3. MODEL
This section describes the core concepts of our framework,

where we use both the LSPR model and the vector space
model as IR algorithms.

Basically in the LSPR model the query is viewed as a spec-
trum and each document as a set of filters, with one filter for
each document term, whereas the vector space model views
terms as basis vectors, documents and queries as vectors of
the same space.

Usually in Information Retrieval some weighting schemes
are used for the terms of the documents and for the terms in
the query; the basic choice is to use the TF-IDF weighting
schema for the former, and the IDF weighting schema for
the latter. In order to use the IR algorithms for the Recom-
mender Systems, it is necessary to modify these weighting
functions. Since each user becomes a document, and each
movie becomes a term, there is a similarity between the ma-
trix D and the well-known term-document matrix. At this
point, consider an active user k ∈ U , for which we want to
predict the rating for the movie h ∈ I. Starting from D, we
compute a new matrix WU (that plays the role of the nor-
malized TF-IDF weights matrix in Information Retrieval)

as follows:

WUij =

{
0 if Dij ·Dik = 0

1− |Dij−Dik|
4

otherwise.
(1)

This means that the more the rating of a user for a movie is
similar to the rating of the active user, the more its weight
(from 0 to 1).

The column k in this matrix is not considered, because it
is 0 for the movies not rated by the active user, 1 otherwise.

After that, we compute the weights for the active user (i.e.
the IDF weights for the query); we save these informations in
the column k of the matrix WU , using the following formula:

WUik =

{
0 if ni = 0 OR Dik = 0

log2

(
n
ni

)
otherwise,

(2)

where ni is the number of users that have rated the movie
i ∈ I, and n is the total number of users.

Now we are ready to use the Information Retrieval algo-
rithm: the query is represented by the column k of WU ,
while the documents of the collection are the columns j 6= k
of the same matrix with WUhj 6= 0. The output of the
model is the ranking list of the documents, ordered by in-
creasing relevance. This means that the collection is the set
of users that have rated the movie h, and the output is the
same set of users ordered from the more to the less “similar”
to the active user.

The last operation is to predict the rating. To do this, we
use the ratings of the users in the ranking list, weighted by
their rank, so that the smaller the rank of the user is, the
more his rating is considered. Suppose the ranking is given
by the list of users R, where |R| is the number of retrieved
users, the rank of each user is from 0 (first) to |R|−1 (last),
and Dh,j(r) is the rating for the movie h of the user with
rank r. The predicted rating is computed as:

phk =

|R|−1∑
r=0

(
1− r

|R|

)
·Dh,j(r)

λ
, (3)

where λ is the normalization term, computed as

λ =

|R|−1∑
r=0

(
1− r

|R|

)
=
|R|+ 1

2
. (4)

Figure 1 summarizes the algorithm. Basically, the rows
from 1 to 14 represent the operation described by equation
(1), while the rows from 15 to 23 implement the equation
(2). Finally there is the call to the Information Retrieval
algorithm, and the prediction of the rating, according to
equations (3) and (4).

4. EVALUATION OF THE ALGORITHM
We can find in literature different approaches to evalu-

ate the performance provided by a Recommender System.
However a full examination of all these methods is out of the
scope of this work [8]. We adopt a simple and well-known
metric which helps us to understand the outcome of our
algorithm. We used the accuracy computed as the square
root of the averaged squared difference between each predic-
tion and the actual rating (the root mean squared error or
“RMSE”).

Algoritm: RecSys-to-IR
Input: data set D, active user k, movie h, IR algorithm
Output: prediction phk

1 for each i ∈ I
2 do
3 ni ← 0
4 for each j ∈ U |j 6= k
5 do
6 if (Dij ·Dik = 0)
7 then
8 WUij ← 0
9 else

10 WUij ← 1− |Dij−Dik|
4

11 ni ← ni + 1
12 end if
13 end for
14 end for
15 for each i ∈ I
16 do
17 if (ni = 0)
18 then
19 WUik ← 0
20 else
21 WUik ← log(n

ni
)

22 end if
23 end for
24 Call the IR algorithm, and get the ranking list R

25 phk ← Round

(
2 ·

∑|R|−1
r=0

(
1− r
|R|

)
·Dh,j(r)

|R|+1

)
26 return phk

Figure 1: The prediction algorithm.

Let Ū be the set of active users, Īk be the set of movies
rated by an active user k ∈ Ū ; let pik denote the predictions
generated by a certain algorithm for the movie i and the ac-
tive user k, while rik is the correspondig real rating. RMSE
is defined by

RMSE =

√√√√∑k∈Ū
∑

i∈Īk
(rik − pik)2∑

k∈Ū
∑

i∈Īk
1

. (5)

In our tests, we round the pik values to the closest integer
number, because the real ratings are integers. As mentioned
above, the evaluation of RMSE is typically performed using
the “leave-n-out” approach [4], where a part of the dataset is
hidden and the rest is used as a training set for the Recom-
mender Systems, which tries to predict properly the with-
held ratings.

We calculate the predictions with LSPR and the basic
vector space algorithms using data from the training set and
we compare the prediction against the real rating in the test
set.

Moreover, we employ the community average for a cer-
tain item (that is the average of the ratings given by all the
users who vote the item) as a benchmark, with the aim of
measuring how much our algorithm can improve the sim-
ple community recommendation. Thus, we also compute the
RMSE of the community recommendation with respect to
the actual ratings provided by the users.

In order to explain the concepts of RMSE and commu-
nity average, consider the following example: we have in our
dataset 5 items, and 5 users who rate some of these items
(from 1 to 5, 0 means no rating); table 1 shows these ratings.

item\user 1 2 3 4 5
1 0 3 0 0 2
2 0 5 4 0 2
3 2 1 0 3 3
4 1 3 3 2 0
5 0 2 2 4 3

Table 1: Ratings

Furthermore, there are 2 active users for whom we want
to predict some ratings, as shown in table 2.

item\active users a b
1 0 1
2 5 3
3 0 0
4 2 0
5 0 3

Table 2: Active users

The aim of a Recommender Systems algorithm is to pre-
dict the ratings of the active users; in our example, the rat-
ings of the user a for the items 2 and 4, and the ratings of
the user b for the items 1, 2 and 5, trying to find values
closer to the real ones reported in table 2.

According to the notation used in equation (5), we have
Ū = {a, b}, Īa = {2, 4}, Īb = {1, 2, 5}. Moreover, ra2 = 5,
ra4 = 2, rb1 = 1, rb2 = 3, rb5 = 3.

To show what is the community average, consider pa2: it
is the average of the ratings of the users which vote the
item 2 (rounded to the closest integer, since the ratings are
integer). This means that

pa2 = Round

(
5 + 4 + 2

3

)
= 4.

In a similar way, we obtain pa4 = 2, pb1 = 3, pb2 = 4,
pb5 = 3. Now we have all the elements to compute the
RMSE, and we obtain the following result

RMSE =

√
6

5
= 1.095.

The results reported in table 3 refer to the analysis we per-
formed using the dataset from GroupLens1 described above.
We used five couples (training set, test set) which share the
same composition (80%/20% spilts of the orginal data into
training and test data) as suggested by the guidelines of
GroupLens itself.

In table 4 we express this result in relative terms by pro-
viding the rate of improvement with respect to the average
of the ratings by the community: LSPR overcomes the com-
munity by 8.4% on average, while the vector space model
decreases the RMSE by 7.6%.

5. DISCUSSION AND CONCLUSIONS
1The dataset can be found on http://www.grouplens.org.

set LSPR vector space community
1 0.985 0.989 1.073
2 0.974 0.984 1.067
3 0.971 0.980 1.060
4 0.967 0.979 1.056
5 0.975 0.984 1.065

Table 3: RMSE

set Improvement LSPR Improvement vector space
1 8.2 % 7.8 %
2 8.7 % 7.8 %
3 8.4 % 7.5 %
4 8.4 % 7.3 %
5 8.5 % 7.6 %

mean 8.4 % 7.6 %

Table 4: Improvement over community average.

We can report that the algorithm already outperforms the
community even if the gap is not prodigious. As a matter
of fact, other algorithms recently proposed by different au-
thors, like [9, 14], show RMSE values in the range 0.88 - 0.95
for the same dataset. However, the aim of this paper is to
show that our new approach could be a basis for a more so-
phisticated algorithm, rather than presenting an algorithm
already comparable with the state-of-the-art.

So, first of all, we plan to work on fine-tuning our algo-
rithm, to extend this empirical evaluation and to compare it
with some well known algorithms such as KNN or Slope-one
[10].

We also plan to perform further experiments with a larger
number of datasets and with a finer grain analysis of sensi-
tivity of the algorithm with respect to the size of the data
set. In parallel, we are also working on LSPR to improve
its scalability and to include a number of optimization tech-
niques.

Moreover, we plan to use other weighting schemes, as the
well-known Okapi BM25, and other IR algorithms, for ex-
ample probabilistic models like Terrier [13, 12]. The final
aim of this work is to merge the results to obtain better
performances, as already done in Information Retrieval [5].

Basically, we are still trying to better understand if our
approach can provide a nice outcome in the Recommender
Systems field and we consider the present work as a first an-
swer, so our contribution is an experimental investigation of
some possible relations between Information Retrieval and
Recommender Systems. In this sense it seems very interest-
ing that the results obtained with LSPR are better than the
ones obtained with the vector space model, reflecting the
behaviour of these models in the IR field, as reported in [6].

6. REFERENCES
[1] N. J. Belkin and W. B. Croft. Information filtering

and information retrieval: Two sides of the same coin?
CACM, 35:29–38, 1992.

[2] R. Bell and Y. Koren. Lessons from the Netflix Prize
challenge. SIGKDD Explorations Newsletter,
9(2):75–79, 2007.

[3] R. M. Bell, J. Bennett, Y. Koren, and C. Volinsky.
The million dollar programming prize. IEEE Spectr.,
46(5):28–33, 2009.

[4] J. Breese, D. Heckerman, and C. Kadie. Empirical
analysis of predictive algorithms for collaborative
filtering. Technical Report MSR-TR-98-12, Microsoft
Research, 1998.

[5] H. Chen and D. R. Karger. Less is more: probabilistic
models for retrieving fewer relevant documents. In
E. N. Efthimiadis, S. T. Dumais, D. Hawking, and
K. Järvelin, editors, SIGIR, pages 429–436. ACM,
2006.

[6] A. Costa and M. Melucci. An information retrieval
model based on Discrete Fourier Transform. In
H. Cunningham, A. Hanbury, and S. Rüger, editors,
Proceedings of the 1st Information Retrieval Facility
Conference, volume 6107 of Lecture Notes in
Computer Science, pages 84–99, Vienna, 2010.
Springer, Heidelberg.

[7] J. L. Herlocker, J. A. Konstan, A. Borchers, and
J. Riedl. An algorithmic framework for performing
collaborative filtering. In Proceedings of the 22nd
annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 230–237, New York, NY, USA, 1999.

[8] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and
J. T. Riedl. Evaluating collaborative filtering
recommender systems. ACM Trans. Inf. Syst.,
22(1):5–53, 2004.

[9] L. Kozma, E. Ilin, and T. Raiko. Binary principal
component analysis in the netflix collaborative
filtering task. In U. Adali, J. Chanussot, C. Jutten,
and J. Larsen, editors, proceedings of the IEEE
International Workshop on Machine Learning for
Signal Processing, Grenoble, France, 2009.

[10] D. Lemire and A. Maclachlan. Slope one predictors for
online rating-based collaborative filtering. In
Proceedings of SIAM Data Mining (SDM’05), 2005.

[11] G. Linden, B. Smith, and J. York. Amazon.com
recommendations: Item-to-item collaborative filtering.
IEEE Internet Computing, 7(1):76–80, 2003.

[12] I. Ounis, G. Amati, V. Plachouras, B. He,
C. Macdonald, and C. Lioma. Terrier: A high
performance and scalable information retrieval
platform. In Proceedings of ACM SIGIR’06 Workshop
on Open Source Information Retrieval (OSIR 2006),
2006.

[13] I. Ounis, C. Lioma, C. Macdonald, and V. Plachouras.
Research directions in terrier. Novatica/UPGRADE
Special Issue on Web Information Access, Ricardo
Baeza-Yates et al. (Eds), Invited Paper, 2007.

[14] L. G. D. A. Rivera. Sampling pca, enhancing
recovered missing values in large scale matrices.
Technical Report 80555S, Helsinki University of
Technology, 2009.

[15] G. Salton. Automatic information organization and
retrieval. Mc Graw Hill, New York, NY, 1968.

[16] G. Salton. Mathematics and information retrieval.
Journal of Documentation, 35(1):1–29, 1979.

[17] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl.
Item-based collaborative filtering recommendation
algorithms. In Proceedings of the 10th international
conference on World Wide Web, pages 285–295, New
York, NY, USA, 2001.

[18] J. Schafer, J. Konstan, and J. Riedl. Recommender

systems in e-commerce. In In Proceedings of the ACM
Conference on Electronic Commerce. ACM, 1999.

[19] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen.
Collaborative filtering recommender systems. In The
Adaptive Web: Methods and Strategies of Web
Personalization, chapter 9, pages 291–324. Springer,
2007.

[20] E. Vozalis and K. Margaritis. Analysis of
recommender systems algorithms. In E. Lipitakis,
editor, The 6th Hellenic European Conference on
Computer Mathematics & its Applications, pages
732–745, Athens, 2003.

