
Reformulation of a locally optimal heuristic for

modularity maximization

Alberto Costa1, Sonia Cafieri2, Pierre Hansen1,3

1 LIX, École Polytechnique, F-91128 Palaiseau, France
costa@lix.polytechnique.fr

2 École Nationale de l’Aviation Civile, F-31055 Toulouse, France
sonia.cafieri@enac.fr

3 GERAD, HEC, 3000 chemin de la Côte-S.te-Catherine, H3T 2A7 Montréal, Canada
pierre.hansen@gerad.ca

Keywords : binary decomposition, clustering, modularity maximization, reformulation.

1 Introduction

A network, or graph, G = (V, E) consists of a set of vertices V = {1, . . . , n} and a set of
edges E = {1, . . . , m} connecting vertices. One of the most studied problems in the field of
complex systems is to find communities, or clusters, in networks. A community consists of
a subset S of the vertices of V where inner edges connecting pairs of vertices of S are more
dense than cut edges connecting vertices of S to vertices of V \S. Many criteria have been
proposed to evaluate partitions of V into communities. The best known of them appears to
be the modularity, defined as follows by Newman and Girvan [9]:

Q =
∑

c

Qc =
∑

c

(

mc

m
−

Dc
2

4m2

)

, (1)

where Qc is the modularity of the cluster c, mc is the number of edges with both end vertices
within the cluster c, Dc is the sum of the degrees of the vertices in the cluster c, and m is the
number of edges of the whole network. The modularity is the difference between the fraction
of edges within communities and the expected fraction of such edges in a random graph having
the same distribution of degrees than the graph under study. In order to find a good partition
into communities for a given network, according to Newman and Girvan one should maximize
its modularity. This is a strongly NP-hard problem [3].

A few exact algorithms [1, 6, 10] and many heuristics have been proposed for network
modularity maximization. They consist in divisive and agglomerative hierarchical clustering
approaches [5, 8], as well as exact or approximate partitioning ones. In this paper, we focus
on a recent locally optimal heuristic based on a hierarchical divisive approach [4]. We propose
several ways to reformulate the model of [4] in order to accelerate the resolution by reducing
efficiently the number of variables and constraints. Computation results are reported for a series
of real-world problems from the literature in which the different reformulations are compared.
It appears that computing times are very substantially reduced.

2 Initial model

The model used in the framework of the hierarchical divisive heuristic proposed in [4] to split
a cluster (Vc, Ec) into two clusters maximizing the modularity, and based on the one proposed
in [10], is the following:

max
1

m

(

m1 + m2 −
1

2m

(

D1
2 +

Dc
2

2
− D1Dc

))

(2)

s.t. Xi,j,1 ≤ Yi ∀(vi, vj) ∈ Ec (3)

Xi,j,1 ≤ Yj ∀(vi, vj) ∈ Ec (4)

Xi,j,2 ≤ 1 − Yi ∀(vi, vj) ∈ Ec (5)

Xi,j,2 ≤ 1 − Yj ∀(vi, vj) ∈ Ec (6)

ms =
∑

(vi,vj)∈Ec

Xi,j,s ∀s ∈ {1, 2} (7)

D1 =
∑

vi∈Vc

kiYi,1 (8)

Yi ∈ {0, 1} ∀vi ∈ Vc (9)

Xi,j,s ≥ 0 ∀(vi, vj) ∈ Ec, ∀s ∈ {1, 2}, (10)

where the variable Xi,j,s is equal to 1 if the edge (vi, vj) is inside the community s (i.e., both
vertices vi and vj are inside the community s) and 0 otherwise, Yi is equal to 1 if the vertex vi

is inside the community 1, and 0 otherwise, and ki is the degree of the vertex vi; note that Dc

is a parameter, and it is known before solving the problem.

3 Reformulations

3.1 Power of two reformulation

The heuristic proposed in [4] works by recursively splitting a cluster into two clusters in an
optimal way (in the sense that the computed bipartition corresponds to the best possible
modularity). The model is a quadratic integer programming one, with a convex relaxation. The
only non-linear term is D1

2. The usual Branch-and-Bound approach implemented in CPLEX
[7] is to relax the integrality constraints, solve the continuous quadratic program obtained and
then branch. Alternately, one may linearize D1

2 by replacing it with its expansion in power of
two, as proposed for mixed-integer quadratic programming in [2]:

D1 =
t
∑

i=0

2iai, ai ∈ {0, 1}. (11)

Therefore, the term D1
2 in (2) can be written as:

D1
2 =

t
∑

l=0

2lal ·
t
∑

h=0

2hah =
t
∑

l=0

t
∑

h=0

2l+halah =
t
∑

l=0

t
∑

h=0

2l+hRlh =
t
∑

l=0

22lal +
t
∑

l=0

∑

h<l

2l+h+1Rlh,

(12)
where Rlh is the linearization variable for alah; hence, we have to adjoin the following con-
straints to our model:

Rlh ≥ al + ah − 1, ∀l ∈ {0, . . . , t}, ∀h ∈ {0, . . . , l − 1}

Rlh ≥ 0, ∀l ∈ {0, . . . , t}, ∀h ∈ {0, . . . , l − 1}.

To estimate t, recall that the maximum value which can be assumed by D1 is the sum of the
degrees of all the vertices in the current cluster, that is Dc. Moreover, from (11) the maximum
possible value for D1 is 2t+1 − 1. Hence, t can be computed as:

2t+1 − 1 ≥ Dc ⇒ t = ⌈log2(Dc + 1) − 1⌉. (13)

3.2 Change of variables

The model of [4] uses variables assigning edges or vertices to a specific community. When
bipartitioning, as there are only two communities to be determined at each iteration, one can
use other variables Si,j , associated with the fact that the two end vertices vi and vj of an edge
belong to the same cluster or not (i.e., Si,j = 1 if Yi = Yj , and 0 otherwise). This leads to the
following reformulation:

max
1

m





∑

(vi,vj)∈Ec

(2Si,j − Yi − Yj) + |Ec| −
1

2m

(

D1
2 +

Dc
2

2
− D1Dc

)



 (14)

s.t. Si,j ≤ Yi ∀(vi, vj) ∈ Ec (15)

Si,j ≤ Yj ∀(vi, vj) ∈ Ec (16)

D1 =
∑

vi∈Vc

kiYi (17)

Yi ∈ {0, 1} ∀vi ∈ Vc. (18)

3.3 Symmetry breaking

To avoid considering twice equivalent solutions, one fixes a vertex to belong to the first (or
second) community. It appears that the vertex with largest degree is a good choice.

4 Compact model

Applying all the reformulations presented in the previous sections leads to the following com-
pact model:

max
1

m





∑

(vi,vj)∈Ec

(2Si,j − Yi − Yj) + |Ec| −
1

2m

(

t
∑

l=0

22lal +
t
∑

l=0

∑

h<l

2l+h+1Rl,h +
Dc

2

2
− D1Dc

)





(19)

s.t. Si,j ≤ Yi ∀(vi, vj) ∈ Ec (20)

Si,j ≤ Yj ∀(vi, vj) ∈ Ec (21)

Rl,h ≥ al + ah − 1 ∀l ≤ t, ∀h < l (22)

Rl,h ≥ 0 ∀l ≤ t, ∀h < l (23)

D1 =
t
∑

l=0

2lal (24)

D1 =
∑

vi∈Vc

kiYv (25)

Yg = 0, g = arg max{ki, ∀vi ∈ Vc} (26)

Yi ∈ {0, 1} ∀vi ∈ Vc (27)

al ∈ {0, 1} ∀l ≤ t. (28)

This model has |Vc|+t+1 binary variables, |Ec|+
t2+t

2 +1 continuous variables and 2|Ec|+t2+t+3
constraints, while the initial model has |Vc| binary variables, 2|Ec|+3 continuous variables and
6|Ec| + 3 constraints.

5 Results

Table 1 presents the comparison of computing times for the initial model and the final one.
Results have been obtained on a 2.4GHz Intel Xeon CPU of a computer with 24 GB RAM

running Linux and CPLEX 12.2 [7]. M denotes the number of clusters, and Q the modularity;
computing times are in seconds. Note that slight discrepancies may arise in the values of M

and Q; they are due to the fact that optimal bipartitions are not necessarily unique. It appears
that the computing time is reduced by a factor of 2 to over 265.

Network Initial model Compact model
n m M Q time M Q time

Karate 34 78 4 0.4188 0.32 4 0.4188 0.16

Dolphins 62 159 4 0.5265 1.45 4 0.5265 0.65

Les misérables 77 254 8 0.5468 4.47 8 0.5468 0.67

A00 main 83 135 7 0.5281 0.71 7 0.5281 0.37

P53 protein 104 226 7 0.5284 16.82 7 0.5284 1.55

Political books 105 441 4 0.5263 16.74 5 0.5244 2.66

Football 115 613 10 0.6009 238.47 10 0.6009 82.21

A01 main 249 635 15 0.6288 563.41 15 0.6288 38.12

USAir97 332 2126 8 0.3596 113545.00 8 0.3596 428.40

Netscience main 379 914 20 0.8470 11.83 20 0.8470 5.24

S838 512 819 15 0.8166 24.48 15 0.8166 6.40

Power 4941 6594 40 0.9394 3952.72 41 0.9396 567.07

TAB. 1: Results obtained with the hierarchical divisive heuristic using respectively the original for-
mulation and the compact reformulation.

References

[1] D. Aloise, S. Cafieri, G. Caporossi, P. Hansen, S. Perron and L. Liberti. Column generation
algorithms for exact modularity maximization in networks. Physical Review E, 82(4),
046112, American Physical Society, 2010.

[2] A. Billionnet, S. Elloumi and A. Lambert. Extending the QCR method to general
mixed-integer programs. Mathematical Programming A, doi:10.1007/s10107-010-0381-7,
Springer, 2010.

[3] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski, and D. Wag-
ner. On Modularity Clustering. IEEE Transactions on Knowledge and Data Engineering,
20(2):172-188, IEEE, 2008.

[4] S. Cafieri, P. Hansen, L. Liberti. Locally optimal heuristic for modularity maximization
of networks. Physical Review E, 83(5):056105, American Physical Society, 2011.

[5] A. Clauset, M. E. J. Newman and C. Moore. Finding and evaluating community structure
in very large networks. Physical Review E, 70(6), 066111, American Physical Society, 2004.

[6] M. Grötschel and Y. Wakabayashi. A cutting plane algorithm for a clustering problem.
Mathematical Programming, 45(1), 59-96, Springer, 1989.

[7] IBM. ILOG CPLEX 12.2 User’s Manual, IBM, 2010.

[8] M. E. J. Newman. Modularity and community structure in networks. Proceedings of the

National Academy of Sciences of the U.S.A., 103(23), 8577-8582, 2006.

[9] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in net-
works. Physical Review E, 69(2):026113, American Physical Society, 2004.

[10] G. Xu, S. Tsoka and L. G. Papageorgiou. Finding community structures in complex net-
works using mixed integer optimisation. The European Physical Journal B - Condensed

Matter and Complex Systems, 60(2), 231-239, European Physical Society, 2007.

