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Abstract Given a set of entities, cluster analysis aims at finding subsets, also
called clusters or communities or modules, entities of which are homogeneous
and well separated. In the last ten years clustering on networks, or graphs,
has been a subject of intense study. Edges between pairs of vertices within the
same cluster should be relatively dense, while edges between pairs of vertices
in different clusters should be relatively sparse. This led Newman to define the
modularity of a cluster as the difference between the number of internal edges
and the expected number of such edges in a random graph with the same degree
distribution. The modularity of a partition of the vertices is the sum of the
modularities of its clusters. Modularity has been extended recently to the case
of bipartite graphs. In this paper we propose a hierarchical divisive heuristic for
approximate modularity maximization in bipartite graphs. The subproblem of
bipartitioning a cluster is solved exactly; hence the heuristic is locally optimal.
Several formulations of this subproblem are presented and compared. Some are
much better than others, and this illustrates the importance of reformulations.
Computational experiences on a series of ten test problems from the literature
are reported.
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LIX, École Polytechnique, F-91128 Palaiseau, France
E-mail: costa@lix.polytechnique.fr

P. Hansen
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1 Introduction

Modularity is a famous criterion employed for graph clustering problems. It
represents the fraction of edges within clusters minus the expected fraction of
such edges in a random graph with the same degree distribution [19,27]. More
formally, modularity is expressed as:

Q =

Nc
∑

c=1

(

mc

m
−

Dc
2

4m2

)

, (1)

where Nc is the number of clusters,m is the number of edges,mc is the number
of edges within cluster c and Dc is the sum of the degrees of the vertices which
are inside this cluster. Looking more in detail equation (1), it appears that
modularity is additive, i.e., it is the sum of the modularity of each cluster.
Given a cluster c, its modularity can be expressed as the difference between

two terms: mc

m
, that is the fraction of edges in cluster c, and

D2

c

4m2 , that is the
expected number of edges in cluster c in a random graph whose vertices have
the same expected degrees. In order to obtain a good quality partition of a
graph into clusters, one should maximize modularity. Although modularity
maximization is a very popular criterion, it presents some defects, the main
ones being resolution limit and degeneracy. The former refers to the fact that in
some cases small clusters may not be detected, and they remain hidden within
another cluster, as reported in [18,20]. The latter is related to the possible
presence of several high modularity partitions which makes it hard to find the
global optimum [20]. Some methods to attenuate these issues are presented in
[2,22,29,30]. For a more detailed discussion of the strengths and weaknesses
of modularity, see [10,17,18].

With regard to complexity, modularity maximization is a NP-hard prob-
lem, as shown by Brandes et al. [8]. Many heuristics and a few exact algorithms
[1,33] were proposed in the literature to maximize (1). For an in-depth survey
with over 450 references, see [17].

Heuristics are usually hierarchical methods, which yield a nested set of
partitions (or in other words 2n− 1 clusters of the n given entities which are
pairwise disjoint or included one into another). Hierarchical algorithms can
be divided into agglomerative ones, which proceed from an initial partition in
which each cluster contains exactly one entity by successive mergings of two
clusters at a time, and divisive heuristics which proceed from an initial parti-
tion with a single cluster containing all the n entities, by successive bipartitions
of a chosen cluster until this is no more profitable.

The most difficult step is the bipartition, which may be NP-hard in it-
self. Again, this was shown to be the case by Brandes et al. for modularity
maximization [8]. For moderate size instances the bipartition problem can be
solved exactly using tools from combinatorial optimization in a locally optimal
heuristic [9,11,13].

In this paper we do the same for bipartite graphs instead of general unipar-
tite graphs. Indeed, bipartite graphs (i.e., graphs with two disjoint sets of red
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and blue vertices such that every edge joins a red and a blue vertex) appear
in many applications (e.g., recommender systems among users and products,
actors and films, scientific papers and authors, members of parliament and
committees).

For bipartite graphs equation (1) has been modified, leading to the defini-
tion of the bipartite modularity [3]:

Qb =

Nc
∑

c=1

(

mc

m
−

RcBc

m2

)

, (2)

where Rc represents the sum of the degrees of the red vertices in the cluster c,
and Bc is the same for the blue vertices. Comparing the bipartite modularity

(2) to the general modularity of equation (1), it appears that the term
D2

c

4m2

has been replaced by RcBc

m2 to take into account the fact that in bipartite
graphs each edge joins a red vertex to a blue vertex, unlike the general case
where an edge can join any pair of vertices. As in the previous case one wants to
maximize bipartite modularity. Some authors stated that bipartite modularity
maximization is NP-hard [34]. Unfortunately, the proof was not correct, as
shown in [14]. Thus, to the best of our knowledge, the complexity of bipartite
modularity maximization is still an open problem. The rest of the paper is
organized as follows: in Section 2 we propose a heuristic obtained by adapting
to the bipartite case an existing locally optimal heuristic originally proposed
for general graphs [11]. In Section 3 we present three reformulations of the
model for the bipartition problem. In Section 4 we compare these models and
discuss the results obtained, and Section 5 reports the conclusions.

2 Hierarchical divisive heuristic

The hierarchical divisive heuristic proposed in [11] starts from an initial par-
titions with one cluster containing all the vertices, and then each cluster is
recursively divided into two clusters in an optimal way (i.e., the two new clus-
ters provide the largest possible increase of modularity). The division stops
when it does not improve the modularity anymore. A template for hierarchi-
cal divisive heuristics is given in Figure 1.

It turns out that, in order to find the optimal bipartition of a cluster c into
two clusters c1 and c2, an optimization problem has to be solved at each step.
In [11] this problem has been modeled basing on the quadratic mixed-integer
program formulation proposed in [33], with the number of clusters set to 2,
and solved using CPLEX [21]. However, some reformulations of this model,
obtained by means of techniques similar to these presented in [7,15] have been
recently proposed in [9,13], and the best one of them with respect to the
computational time needed to obtain the optimal solution is the following:
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Algorithm: Hierarchical divisive heuristic
Input: graph G = (V,E), where |V | = n and |E| = m

Output: a partition P of V

1 P ← C1 = {{v1, v2, . . . , vn}}
2 k ← 1
3 while k ≤ |P | and ∃Ci ∈ P not visited
4 do

5 select Ci ∈ P (not visited) with the smallest possible index i

6 partition Ci into C2i and C2i+1 maximizing the modularity
7 if Q(C2i) +Q(C2i+1) ≥ Q(Ci)
8 then

9 P ← (P ∪ {C2i} ∪ {C2i+1}) \{Ci}
10 k ← k + 1
11 end if

12 end while

Fig. 1 The hierarchical divisive heuristic.

max
1

m





∑

{vi,vj}∈Ec

(2Si,j − Yi − Yj + 1)−
1

2m

(

D1
2 +

Dc
2

2
−D1Dc

)





(3)

s.t. ∀{vi, vj} ∈ Ec Si,j ≤ Yi (4)

∀{vi, vj} ∈ Ec Si,j ≤ Yj (5)

D1 =
∑

vi∈Vc

kiYi (6)

Yg = 0, g = min{j | kj = max{ki, ∀vi ∈ Vc}} (7)

∀{vi, vj} ∈ Ec Si,j ∈ R (8)

D1 ∈ R (9)

∀vi ∈ Vc Yi ∈ {0, 1}, (10)

where Ec and Vc are respectively the set of edges and the set of vertices
belonging to the cluster c, Yi is a binary variable equals to 1 if vertex i belongs
to the cluster c1, and 0 otherwise, D1 is the sum of degrees of the vertices
inside c1, Si,j is the variable representing the linearization of YiYj , the term
2Si,j −Yi−Yj +1 is equal to 1 if the edge {vi, vj} has both end vertices either
in c1 or in c2 (so the sum extended to all edges {vi, vj} ∈ Ec corresponds to
m1+m2 in definition (2)), m is the number of edges of the graph and ki is the
degree of the vertex i. The constraint (7) is a symmetry breaking constraint
which fixes the vertex having larger degree (in case of ties that one having
smallest index is selected) to belong to cluster c2, and it is used to avoid the
symmetric solution consisting on swapping cluster c1 with cluster c2. More
details about how to obtain this formulation can be found in [9,13].
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Starting from the model (3)-(10), we adapt it to the bipartite case obtaining
a formulation called BOB (Bipartite Optimal Bipartition), from which we
will derive some reformulations in Section 3. As notation, VRc

and VBc
are

respectively the set of red vertices and blue vertices belonging to the cluster c,
R1 and B1 are respectively the sum of degrees of red and blue vertices in c1,
while Rc and Bc are two parameters, known before the splitting, corresponding
to the sum of degrees of red and blue vertices in the cluster c. More formally,
the new variables and parameters of the model BOB are presented in the
following.

Since the first p vertices are red, and the other n− p vertices are blue, we
can define the two sets of blue and red vertices as:

VRc
= {v1, . . . , vp}

VBc
= {vp+1, . . . , vn}.

We should also define these two parameters:

Rc =
∑

vi∈VRc

ki (11)

Bc =
∑

vj∈VBc

kj . (12)

Moreover, we shall define the following variables:

R1 =
∑

vi∈VRc

kiYi (13)

B1 =
∑

vj∈VBc

kjYj . (14)

Furthermore, the following relationships hold:

Rc = R1 +R2

Bc = B1 +B2,

where the variables R2 and B2 represent, respectively, the sum of degrees of
red and blue vertices in the clusters 2 obtained by splitting the cluster c.

These new parameters and variables are related to the corresponding ones
of the model (3)-(10) by means of these relationships:

Vc = VRc
∪ VBc

(15)

Dc = Rc +Bc (16)

D1 = R1 +B1. (17)

Thus, the BOB model is the following:
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max
1

m





∑

{vi,vj}∈Ec

(2Si,j − Yi − Yj + 1)

−
1

m
(2R1B1 −BcR1 −RcB1 +RcBc)

)

(18)

s.t. ∀{vi, vj} ∈ Ec Si,j ≤ Yi (19)

∀{vi, vj} ∈ Ec Si,j ≤ Yj (20)

R1 =
∑

vi∈VRc

kiYi (21)

B1 =
∑

vj∈VBc

kjYj (22)

Yg = 1, g = min{j | kj = max{ki, ∀vi ∈ Vc}} (23)

R1 ∈ R (24)

B1 ∈ R (25)

∀{vi, vj} ∈ Ec Si,j ∈ R (26)

∀vi ∈ Vc Yi ∈ {0, 1}. (27)

The objective function corresponds to (2), when Nc = 2. Note that the vari-
ables R2 and B2 do not appear, since they can be expressed respectively as
Rc−R1 and Bc−B1. Note that Yg is fixed to 1 in the constraint (23), whereas
it was fixed to 0 in the constraint (7) of the unipartite model, since computa-
tional experiments show this choice is better.

3 Reformulations of the optimal bipartition model

The formulation (3)-(10) presented in [9,13], from which we derive the BOB

model, can be solved efficiently by CPLEX as it is a convex Mixed Quadratic
Programming (cMIQP) problem. Unfortunately, the BOB model does not be-
long to this class, as it is a Mixed Integer Nonlinear Programming (MINLP)
problem, thus to solve it directly general MINLP solvers should be used,
but this would be too much time demanding. Hence, we can reformulate the
BOB model, in order to obtain Mixed Integer Linear Programming (MILP)
or cMIQP models which can be solved more efficiently by CPLEX.

3.1 Fortet reformulation

Since the nonlinearity of the BOB formulation comes from the term R1B1

in the objective function (18), which involves products of binary variables
(due to definitions of R1 and B1 provided by constraints (21)-(22)), one can
employ the Fortet inequalities [16] to obtain an exact reformulation (i.e., a
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reformulation which preserves all local and global optima [23]) of the model
BOB, called BOB1a:

max
1

m





∑

{vi,vj}∈Ec

(2Si,j − Yi − Yj + 1)−
1

m



RcBc

−BcR1 −RcB1 +
∑

vi∈VRc

∑

vj∈VBc

2kikjWi,j









(28)

s.t. ∀{vi, vj} ∈ Ec Si,j ≤ Yi (29)

∀{vi, vj} ∈ Ec Si,j ≤ Yj (30)

R1 =
∑

vi∈VRc

kiYi (31)

B1 =
∑

vj∈VBc

kjYj (32)

∀vi ∈ VRc
, ∀vj ∈ VBc

Wi,j ≥ Yi + Yj − 1 (33)

Yg = 1, g = min{j | kj = max{ki, ∀vi ∈ Vc}} (34)

R1 ∈ R (35)

B1 ∈ R (36)

∀{vi, vj} ∈ Ec Si,j ∈ R (37)

∀vi ∈ VRc
, ∀vj ∈ VBc

Wi,j ∈ R
+

0 (38)

∀vi ∈ Vc Yi ∈ {0, 1}. (39)

Each term YiYj which would appear in the objective function inside the
term R1B1 has been replaced by a new variable Wi,j . Equation (33) and the
nonnegativity of variables Wi,j expressed in (38) are the Fortet inequalities
needed to define Wi,j . Note that only two constraints have been adjoined,
even if the Fortet inequalities are four: since the variables Wi,j are minimized
in the objective function, two inequalities can be discarded.

3.2 Compact Fortet reformulation

We can actually obtain a more compact model. First, using equations (11)-(14)
the objective function (28) can be rewritten as:

1

m





∑

{vi,vj}∈Ec

(2Si,j − Yi − Yj + 1)−
∑

vi∈VRc

∑

vj∈VBc

kikj

m
(2Wi,j − Yi − Yj + 1)



 .

(40)

At this point, let ai,j be the generic term of G’s adjacency matrix, which is
equal to 1 if there exists the edge (i, j), and 0 otherwise, and let Hi,j be the
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parameter defined as:

∀vi ∈ VRc
, ∀vj ∈ VBc

Hi,j = ai,j −
kikj

m
.

It is not difficult but tedious to show that these considerations permit to
rewrite the model BOB1a in a more compact way, obtaining the following
BOB1b model:

max
1

m

∑

vi∈VRc

∑

vj∈VBc

Hi,j (2Wi,j − Yi − Yj + 1) (41)

s.t. ∀vi ∈ VRc
, ∀vj ∈ VBc

: Hi,j < 0 Wi,j ≥ 0 (42)

∀vi ∈ VRc
, ∀vj ∈ VBc

: Hi,j < 0 Wi,j ≥ Yi + Yj − 1 (43)

∀vi ∈ VRc
, ∀vj ∈ VBc

: Hi,j > 0 Wi,j ≤ Yi (44)

∀vi ∈ VRc
, ∀vj ∈ VBc

: Hi,j > 0 Wi,j ≤ Yj (45)

Yg = 1, g = min{j | kj = max{ki, ∀vi ∈ Vc}} (46)

∀vi ∈ VRc
, ∀vj ∈ VBc

Wi,j ∈ R (47)

∀vi ∈ Vc Yi ∈ {0, 1}. (48)

3.3 Square reformulation

It is possible to reformulate the BOB model to have only squares as nonlin-
earities in the objective function, and thus obtaining a cMIQP which can be
solved by CPLEX as done for the unipartite case. Consider this part of the
objective function (18):

2R1B1 −BcR1 −RcB1. (49)

First at all, we can write the last two terms as:

BcR1 = (Bc +Rc)R1 −RcR1

RcB1 = (Bc +Rc)B1 −BcB1,

therefore we can rewrite (49) as:

2R1B1 − (Bc +Rc)(R1 +B1) +BcB1 +RcR1.

If we are able to introduce the terms B1
2 and R1

2, we can replace them and
2R1B1 with (R1 + B1)

2. To do that, consider first the term RcR1. Using
definitions (11) and (13), we can write it this way:

RcR1 =
∑

vi∈VRc

ki
∑

vj∈VRc

kjYj =
∑

vi∈VRc

ki
2Yi +

∑

vi∈VRc

∑

vj∈VRc :j<i

kikj (Yi + Yj).

(50)
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As stated earlier, we are interested in adding the term R1
2. We can express it

as:

R1
2 =

∑

vi∈VRc

kiYi

∑

vj∈VRc

kjYj =
∑

vi∈VRc

ki
2Yi +

∑

vi∈VRc

∑

vj∈VRc :j<i

2kikjYiYj ,

(51)
where we use the fact that Yi = Yi

2, since these are binary variables. Compar-
ing (50) and (51), it appears that we can write RcR1 in terms of R1

2 in this
way:

R1Rc = R1
2 −

∑

vi∈VRc

∑

vj∈VRc :j<i

2kikjYiYj +
∑

vi∈VRc

∑

vj∈VRc :j<i

kikj (Yi + Yj)

= R1
2 +

∑

vi∈VRc

∑

vj∈VRc :j<i

kikj (Yi + Yj − 2YiYj) = R1
2

+
∑

vi∈VRc

∑

vj∈VRc :j<i

kikj (Yi − Yj)
2
.

We can obtain a similar result for the term B1Bc. More precisely, we can write:

B1Bc = B1
2 +

∑

vi∈VBc

∑

vj∈VBc :j<i

kikj (Yi − Yj)
2
.

Finally, equation (49) can be reformulated as:

2R1B1 − (Bc +Rc)(R1 +B1) +BcB1 +RcR1 = 2R1B1 − (Bc +Rc)(R1 +B1)

+R1
2 +B1

2 +
∑

vi∈VRc

∑

vj∈VRc :j<i

kikj (Yi − Yj)
2
+

∑

vi∈VBc

∑

vj∈VBc :j<i

kikj (Yi − Yj)
2

= (R1 +B1)
2
− (Bc +Rc)(R1 +B1) +

∑

vi∈VRc

∑

vj∈VRc :j<i

kikj (Yi − Yj)
2

+
∑

vi∈VBc

∑

vj∈VBc :j<i

kikj (Yi − Yj)
2
.



10 Alberto Costa, Pierre Hansen

Using relationships (15)-(17), we can now write the model BOB2:

max
1

m





∑

{vi,vj}∈Ec

(2Si,j − Yi − Yj) + |Ec| −
1

m



D1
2 −D1Dc

+
∑

vi∈VRc

∑

vj∈VRc :j<i

kikj (Yi − Yj)
2
+

∑

vi∈VBc

∑

vj∈VBc :j<i

kikj (Yi − Yj)
2
+RcBc









(52)

s.t. ∀{vi, vj} ∈ Ec Si,j ≤ Yj (53)

∀{vi, vj} ∈ Ec Si,j ≤ Yi (54)

D1 =
∑

vi∈Vc

kiYi (55)

Yg = 1, g = min{j | kj = max{ki, ∀vi ∈ Vc}} (56)

∀{vi, vj} ∈ Ec Si,j ∈ R (57)

D1 ∈ R (58)

∀vi ∈ Vc Yi ∈ {0, 1}. (59)

In this model the objective function is similar to the objective function of
the unipartite model (3)-(10), and the set of constraints is the same, thus
underlying the strong relationship between these problems.

3.4 Binary decomposition

Another way to reformulate the BOB model to obtain a MILP is to employ
the binary decomposition technique, which has been also employed for general
graph partitioning problems in [7]. The first step is to define the variables R1

and B1 as:

R1 =
∑

vi∈VRc

kiYi =

tR
∑

h=0

2hah (60)

B1 =
∑

vj∈VBc

kjYj =

tB
∑

l=0

2lbl, (61)

where ah and bl are binary variables. The maximum value which can be taken
by R1 (B1) is equal to Rc (Bc). Furthermore, the maximum possible value for
R1 (B1) is 2tR+1 − 1 (2tB+1 − 1). Thus, parameters tR and tB are defined
respectively as:

2tR+1 − 1 ≥ Rc ⇒ tR = ⌈log2(Rc + 1)− 1⌉ (62)

2tB+1 − 1 ≥ Bc ⇒ tB = ⌈log2(Bc + 1)− 1⌉. (63)
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The product R1B1 can then be expressed as:

R1B1 =

tR
∑

h=0

2hah

tB
∑

l=0

2lbl =

tR
∑

h=0

tB
∑

l=0

2l+hahbl. (64)

Finally, to linearize the products ahbl, we introduce the variables Rl,h, and
the corresponding Fortet inequalities:

∀l ∈ {0, . . . , tB}, ∀h ∈ {0, . . . , tR} Rl,h ≥ 0 (65)

∀l ∈ {0, . . . , tB}, ∀h ∈ {0, . . . , tR} Rl,h ≥ ah + bl − 1. (66)

This leads to the model BOB3:

max
1

m





∑

{vi,vj}∈Ec

(2Si,j − Yi − Yj) + |Ec| −
1

m



RcBc

−BcR1 −RcB1 + 2

tR
∑

h=0

tB
∑

l=0

Rl,h

))

(67)

s.t. ∀{vi, vj} ∈ Ec Si,j ≤ Yi (68)

∀{vi, vj} ∈ Ec Si,j ≤ Yj (69)

R1 =
∑

vi∈VRc

kiYi (70)

B1 =
∑

vj∈VBc

kjYj (71)

R1 =

tR
∑

h=0

2hah (72)

B1 =

tB
∑

l=0

2lbl (73)

∀l ∈ {0, . . . , tB}, ∀h ∈ {0, . . . , tR} Rl,h ≥ ah + bl − 1 (74)

Yg = 1, g = min{j | kj = max{ki, ∀vi ∈ Vc}} (75)

R1 ∈ R (76)

B1 ∈ R (77)

∀{vi, vj} ∈ Ec Si,j ∈ R (78)

∀l ∈ {0, . . . , tB}, ∀h ∈ {0, . . . , tR} Rl,h ∈ R
+

0 (79)

∀vi ∈ Vc Yi ∈ {0, 1} (80)

∀h ∈ {0, . . . , tR} ah ∈ {0, 1} (81)

∀l ∈ {0, . . . , tB} bl ∈ {0, 1}. (82)
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4 Computational results

We present the comparison of the numerical results obtained by the proposed
reformulations on a 2.4GHz Intel Xeon CPU of a computer with 24 GB RAM
running Linux and CPLEX 12.2 [21], with the best configuration we found,
that is MIP cutting plane generation disabled and branching based on pseudo
reduced costs. Table 1 presents the details about the bipartite graphs used in
our tests: p represents the number of red vertices, n is the total number of
vertices (that is, red and blue vertices), while m refers to the number of edges.
Note that the instance graph product contains some unconnected components,
since m < n− 1. The datasets can be found on Pajek [5].

Table 1 Informations about the graphs used in tests.

ID Graph p n m

1 Southern women 18 32 89
2 Supreme Court voting (yes) 26 35 147
3 Supreme Court voting (not) 26 35 86
4 Social work 18 36 99
5 Wafa - CEO 26 41 98
6 Divorces 50 59 225
7 Hollywood movies 62 102 192
8 Scotland interlocks 108 244 358
9 Graph product 314 674 613

10 Network science 960 2549 2580

Table 2 reports the details on the size and type of the various formula-
tions presented in this paper, namely the number of binary and continuous
variables, the number of constraints and the kind of formulation. The orig-
inal formulation BOB is a MINLP (due to the term R1B1 in the objective
function), hence it is difficult to solve. The MILP formulations BOB1a and
BOB1b are those based on Fortet inequalities; the latter is more compact than
the former, both in terms of number of variables and constraints, and this has
an impact on the computational results. The formulation BOB2 is the most
compact. Nevertheless, it is the one which provides the worst results in terms
of computational time, as reported in Table 3, due to the complexity of its
objective function. Finally, the formulation BOB3 is based on the binary de-
composition. The terms tR and tB introduced respectively by equations (62)
and (63) are related to the binary variables needed to define the binary de-
composition. Nonnegativity of a variable is considered as a constraint in Table
2.

In Table 3 we compare the results obtained by the different reformulations
for the graphs tested. Nc and Q are respectively the number of clusters and the
modularity of the partition obtained as solution. Since each model represents
an exact reformulation of the BOB formulation, the solutions in terms of
number of clusters and modularity value are the same. For each formulation,
the total number of Branch-and-Bound nodes and the computational time are
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Table 2 Details of the size and kind of the formulations (note that |Vc| = |VRc
|+ |VBc

|).

Formulation binary variables continuous variables constraints type

BOB |Vc| |Ec|+ 2 2|Ec|+ 3 MINLP
BOB1a |Vc| |Ec|+ |VRc

||VBc
|+ 2 2|Ec|+ 2|VRc

||VBc
|+ 3 MILP

BOB1b |Vc| |VRc
||VBc

| 2|VRc
||VBc

|+ 1 MILP
BOB2 |Vc| |Ec|+ 1 2|Ec|+ 2 cMIQP
BOB3 |Vc|+ tR + tB + 2 |Ec|+ (tR + 1)(tB + 1) + 2 2|Ec|+ 2(tR + 1)(tB + 1) + 5 MILP

reported. It turns out that the compact formulation BOB1b outperforms the
original Fortet linearization BOB1a, and it yields the best results for small
graphs. For larger graphs, however, the formulation BOB3 which employs
the binary decomposition provides the best results. As a matter of fact, for
the last three instances only BOB3 was able to solve the problem, whilst the
Fortet linearizations failed because of memory space overhead. The formulation
BOB2 is the worst in terms of computing time. We do not provide the results
obtained using the BOB formulation, since the computational time is too
large. For example, solving the instance 1 (Southern Women) using the divisive
heuristics with the BOB model and the MINLP solver Couenne [6] takes
about 40 seconds, whereas using the worst reformulation (BOB2) the solution
is obtained in 1.32 seconds.

Table 3 Comparison between the different reformulations.

BOB1a BOB1b BOB2 BOB3

ID Nc Q nodes time nodes time nodes time nodes time

1 4 0.3409 437 0.30 72 0.19 3372 1.32 670 0.39
2 2 0.2704 154 0.19 10 0.09 1074 1.39 618 0.43
3 2 0.4538 45 0.14 6 0.07 132 0.14 183 0.19
4 5 0.2883 2169 1.46 1360 1.24 67364 13.11 1854 0.93

5 4 0.3329 1963 1.25 276 0.44 117997 23.84 647 0.39

6 3 0.1876 1123 0.77 27 0.16 2497924 646.78 2521 2.12
7 8 0.4939 1223370 4440.04 407104 3038.06 - - 38910 5.26

8 13 0.7153 - - - - - - 3793 5.81

9 139 0.9363 - - - - - - 71927548 15450.40

10 414 0.9696 - - - - - - 91917 38.49

Finally, as for the quality of the partitions provided by our heuristic, we
compare our results with the values of modularity obtained by other heuristics.
More precisely, we consider the label propagation algorithm LPAb proposed by
Barber and Clark [4], which is an adaptation to bipartite case of LPA (Label
Propagation Algorithm), proposed by Raghavan, Albert, and Kumara in [28].
LPA works by initially assigning a unique label to each vertex, then vertices
are visited in a random order and the label of a visited vertex becomes the
label shared by the majority of its neighbors. This process is iterated until
convergence. Another heuristic considered is the adaptive BRIM (Bipartite
Recursively Induced Modules) proposed by Barber [3]: starting from an ar-
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bitrary partition of the blue vertices, the corresponding partition of the red
vertices which maximizes the modularity is easy to find. Then, the partition
of the red vertices is used to update that of blue vertices and the process con-
tinues until convergence. Some greedy algorithms are proposed as well. For
example, the extension to bipartite graphs of the greedy agglomerative algo-
rithm CNM of Clauset, Newman, and Moore [12], that is an algorithm which
improves the performances of the heuristic proposed by Newman in [26] by
using more sophisticated data structures. The multistep greedy agglomerative
algorithm MSG by Schuetz and Caflish [31,32] proposes some tricks to solve
one of the problems of CNM, i.e., the identification of very large communities.
Liu and Murata proposed some extensions of label propagation algorithms: in
[24], they presented a combination of LPA and BRIM (LP-BRIM), while in
[25] they proposed a combination of LPAb and MSG, as well as LPAb+, that
is a combination of a modified version LPAb, called LPAb’ (where labels of
blue and red vertices are not updated randomly as for LPAb, but by turn)
and MSG. A more detailed comparison of heuristics for bipartite modularity
maximization is given in [17].

For bipartite graphs there are not many instances of the literature that
are extensively used. In [25], the results are available only for three instances
among the ones we tested (e.g., Southern women, Scotland interlocks and
network science), and they are reported in Table 4. Our algorithm appears
in the last row of the table, and it is referred as “Divisive”. It appears that

Table 4 Comparison between different algorithms for bipartite modularity maximization
on three instances: 1 (Southern women), 8 (Scotland interlocks) and 10 (network science).

Graph ID 1 Graph ID 8 Graph ID 10
Algorithm Nc Q Nc Q Nc Q

Adaptive-BRIM 4 0.3455 13 0.6861 107 0.8894
LPA-BRIM 4 0.3455 17 0.7141 500 0.9363
CNM 3 0.3430 32 0.7008 414 0.9695
MSG 3 0.3411 30 0.7004 414 0.9687
LPAb 4 0.3192 60 0.5783 691 0.7807
LPAb-MSG 4 0.3455 16 0.7194 414 0.9695
LPAb+ 4 0.3455 16 0.7194 415 0.9696

Divisive 4 0.3409 13 0.7153 414 0.9696

our heuristic presents results comparable with those provided by the other
algorithms. More precisely, it provides the best result (together with LPAb+)
for network science graph, the second best result for Scotland Interlock, while
many other heuristics find slightly better results for the small Southern women
graph. Note that our version of the network science graph consists of 2580
edges, whereas the one of [25] has 2579 edges.
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5 Conclusions

This paper presents the extension to bipartite graphs of a previously proposed
heuristic for modularity maximization in general graphs. We first propose some
reformulations of the mathematical programming model used by this heuristic
to compute, at each step, the optimal splitting of a cluster into two new clus-
ters, starting from the best model presented in [9,13] for the general case. A
compact model using Fortet linearization is the best one for small instances,
and the model using binary decomposition is more suitable for larger instances.
Indeed, it could solve an instance with 102 nodes and 192 edges in about 600
times less computing time than the second best formulation. Note that formu-
lation BOB2 was not introduced for its performances in terms of computing
time, but in order to understand better which reformulations are efficient in
terms of size of instances solved, as well as the close relationship between the
models for unipartite graphs and for bipartite graphs.

Acknowledgements The authors would like to thank Sonia Cafieri and Leo Liberti for
the precious suggestions and comments. Financial support by grants: Digiteo 2009-14D
“RMNCCO”, Digiteo 2009-55D “ARM” is gratefully acknowledged.

References

1. D. Aloise, S. Cafieri, G. Caporossi, P. Hansen, S. Perron, and L. Liberti. Column
generation algorithms for exact modularity maximization in networks. Physical Review
E, 82(4):046112, 2010.
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