
Valid constraints for the Point Packing in a Square

problem

Alberto Costaa,∗

aSingapore University of Technology and Design, 138682 Singapore

Abstract

We consider the problem of placing n points in the unit square in such a way
as to maximize their minimum pairwise distance m. Starting from two prop-
erties of the optimal solution presented by Locatelli and Raber in [Discrete
Applied Mathematics 122(1-3):139-166, 2002], and using the known theoretical
lower and upper bounds, we derive some constraints for tightening the original
formulation of the problem.

Keywords: symmetry, nonconvex NLP, point packing in a square

1. Introduction

Circle packing in a square is a classical problem in mathematics, with several
applications, for example cutting problems [1, 2, 3] and container loading [4, 5].
Other examples can be found in [6].

This problem can be stated in different but equivalent ways, e.g., place non-
overlapping circles in a square maximizing their common radius, or place points
in a square maximizing their minimum pairwise distance. We consider the latter,
which can be defined more formally as follows:

Point Packing in a Square (PPS). Given an integer n > 0, place
n points in the unit square U = [0, 1]2 such that their minimum
pairwise distance m is maximal.

Let N = {i ∈ N : 1 ≤ i ≤ n}. A mathematical programming formulation for
the PPS problem is the following:

max α (1)

s.t. ∀i ∈ N, ∀j ∈ N : i < j x2
i + x2

j − 2xixj + y2i + y2j − 2yiyj ≥ α (2)

∀i ∈ N xi ∈ [0, 1] (3)

∀i ∈ N yi ∈ [0, 1] (4)

α ∈ R, (5)

∗Corresponding author
Email address: costa@sutd.edu.sg (Alberto Costa)

Preprint submitted to Discrete Applied Mathematics June 3, 2013

where α = m2; this variable should be defined as nonnegative, but we are
maximizing it so we can let it be free. Note that this problem is difficult to
solve because it is nonconvex and nonlinear due to the distance constraints (2).
Actually, these constraints could alternatively be written in this way:

∀i ∈ N, ∀j ∈ N : i < j (xj − xi)
2 + (yj − yi)

2 ≥ α. (6)

However, some experiments performed using the solver Couenne [7] showed
that for large instances it is better to employ (2).

In [8] some bounds for the optimal distance m∗ are introduced (in order to
have a uniform notation, we employ m∗ to refer to the optimal distance for the
PPS problem with n points, without reporting the index n):

Ln ≤ m∗ ≤ Un, (7)

where

Ln =

√

2√
3n

. (8)

Un =
1

n− 1
+

√

1

(n− 1)2
+

2√
3(n− 1)

. (9)

Using these bounds and some properties of the optimal solution presented in
the next section, we introduce further constraints to tighten the formulation
(1)-(5).

2. Improved formulation for the PPS problem

In this section we first report some properties of the optimal solution of
PPS, whose proofs are provided in [9]. Starting from these properties, we prove
a theorem which allows us to fix some points of the optimal solution along
the left and right sides of the square. Then three corollaries of this theorem
are presented, as well as additional constraints which are helpful to tighten
the formulation. The improved PPS formulation is reported at the end of the
section.

2.1. Fixing points along sides of the square

In [10] the authors present two properties for the PPS problem (in their
paper the name of the problem is PSP), which are proved in [9]:

Property 1 (Locatelli and Raber [10]). There always exists an optimal solution
of the PPS problem such that at each vertex v of the unit square U , incident to
the sides e1 and e2, one and only one of the following statements holds:

(1a) a point of the optimal solution is located at the vertex v;

2

(1b) two points of the optimal solution belong to the sides e1 and e2 and have
distance equal to the optimal one.

Property 2 (Locatelli and Raber [10]). There always exists an optimal solution
of the PPS problem such that along each side of U there is no portion of the
side of width greater than or equal to twice the optimal distance m∗, which does
not contain any point of the optimal solution.

Using the Property 1 we can prove the following lemma (the proof can also
be found in [11], and a short version is presented in [12]):

Lemma 1. Consider the PPS problem with n ≥ 4. There is always an optimal
solution where at least two points are on the left side of the square, and at least
two points are on the right side of the square.

Proof. Consider the left side of the square, and call v1 the bottom-left vertex,
while v2 is the top-left one; by Property 1, we can have four different situations:

(a) we have a point (p1) in v1 and one (p2) in v2;

(b) we have a point (p1) in v1, and we have 2 other points: one on the left side
of the square (p2), one on the top side (p3) whose distance is the optimal
one m∗;

(c) we have a point (p2) in v2, and we have 2 other points: one on the left
side of the square (p1), one on the bottom side (p4) whose distance is the
optimal one m∗;

(d) we have one point on the left side of the square (p2) and one on the top side
(p3) whose distance is the optimal one m∗; furthermore, we have another
point on the left side (p1) and one on the bottom side (p4) whose distance
is the optimal one m∗.

In all these cases, that are presented in Figure 1, we have at least two points on
the left side of the square.

All that remains to be shown is that in cases 1(b), 1(c), and 1(d) the points
p1 and p2 cannot coincide. For cases (b) and (c) if p1 = p2 then m∗ > 1.
This is not possible since the optimal distance when n = 4 is equal to 1, and for
larger instances the distance decreases. Consider now the case (d). Suppose that
p1 = p2, that v1 has coordinates (0,0), and call ya the distance between v1 and p1
(hence the distance between p1 and v2 is equal to 1−ya). The distance between
p1 and p4 is equal to m∗, and the coordinate x of p4 is in (0, 1). Similarly, m∗ is
equal to the distance between p1 and p3, and the coordinate x of p3 is in (0, 1).
Hence the following inequalities hold:

1− ya < m∗ <
√

1 + (1− ya)2

ya < m∗ <
√

ya2 + 1,

where ya ∈ (0, 1). Comparing these inequalities, it turns out that in or-

der to have a valid value of m∗ the intervals
(

1− ya,
√

1 + (1− ya)2
)

and

3

(a) (b) (c)

(d)

Figure 1: Possible configurations of points in the optimal solution of PPS according to Prop-
erty 1.

(

ya,
√

ya2 + 1
)

must have a nonempty intersection. To ease the following steps

we can apply the square operator to the previous inequalities (since all the terms
are positive), thus obtaining:

(1− ya)
2 < m∗2 < 1 + (1− ya)

2

ya
2 < m∗2 < ya

2 + 1.

In order to check whether the intersection is nonempty, one should derive an
order relationship between the left and right-hand sides of these inequalities.
Since ya ∈ (0, 1), we have actually 3 cases to consider:

• ya ∈
(

0, 1
2

)

. In this case the order relationship is the following: ya
2 <

(1− ya)
2 < ya

2 +1 < 1+ (1− ya)
2. Thus, m∗2 must be between (1− ya)

2

and ya
2+1. In other words, we have that 1− ya < m∗ <

√

ya2 + 1, ya ∈
(

0, 1
2

)

;

• ya ∈
(

1
2 , 1

)

. In this case the order relationship is the following: (1−ya)
2 <

ya
2 < 1 + (1 − ya)

2 < ya
2 + 1. Thus, m∗2 must be between ya

2 and 1 +
(1− ya)

2. In other words, we have that ya < m∗ <
√

1 + (1− ya)2, ya ∈
(

1
2 , 1

)

;

• ya = 1
2 . In this case we have (1 − ya)

2 = ya
2 = 1

4 and 1 + (1 − ya)
2 =

ya
2 + 1 = 5

4 . Hence,
1
2 < m∗ <

√
5
2

In the three cases presented above, it is easy to check that m∗ must always
respect the following constraint:

1

2
< m∗ <

√
5

2
. (10)

4

This means that we can have p1 = p2 only if the optimal distance satisfies the
inequality (10). We are considering the instances having n ≥ 4. When n = 4,

the optimal distance is 1, that is less than
√
5
2 . The optimal distance when

n = 9 is equal to 1
2 , and for larger instances the optimal distance decreases.

This means that the only instances where p1 can be equal to p2 are those where
4 ≤ n ≤ 8. However, in these cases the optimal solutions are known, and there
are always at least 2 points on a side of the square, as can be checked in [8]
or in http://www.packomania.com. Hence, it is not possible that p1 and p2
coincide.

A similar idea can be used to prove the same for the right side of the square.
Moreover, it is true even if we consider the other pair of opposite sides (that is
top/bottom) in place of the left/right ones.

It is actually possible to say more. Using Property 2 and Lemma 1 we
can fix k(n) ≥ 2 points along the left and right sides of the square, where
k(n) is monotonically nondecreasing with respect to n. The following theorem
formalizes this fact:

Theorem 1. Consider the PPS problem with n ≥ 4. There is always an optimal

solution where at least k(n) = 2 + max
{

0,
⌊

1
2Un

−
√
2
2

⌋}

points are on the left

side of the square, and at least k(n) points are on the right side of the square.

Proof. The result of Lemma 1 is that there are at least two points of the optimal
solution on the left and right sides of the square. Consider now the left side
of the square, and the distance between the points p1 and p2 in the four cases
depicted in Figure 1; as notation, this distance will be indicated with d(p1, p2).
To decide if we can put further points on the left side of the square, we need
a lower bound on d(p1, p2). In the case of Figure 1(a) we have d(p1, p1) = 1.
In the cases of Figures 1(b) and 1(c) we have d(p1, p2) > 1 − m∗, since p3
(p4) can be at distance ǫ > 0 from v2 (v1). Finally, for Figure 1(d) one may
expect that d(p1, p2) > 1 − 2m∗. However, in this case (i.e., p3 and p4 close
respectively to v2 and v1) one can take the top and bottom sides of the square to
obtain a greater distance between the points playing the role of p2 and p1. The
worst case is when d(v2, p2) = d(v2, p3) = d(v1, p1) = d(v1, p4) =

m∗

√
2
, leading to

d(p1, p2) ≥ 1− 2m∗

√
2

= 1−
√
2m∗. In these four cases, the lowest value of the lower

bound (i.e., the one valid in general) is the last one, that is d(p1, p2) ≥ 1−
√
2m∗.

Since we do not known m∗ (except for n <= 30 and n = 36), we should use the
upper bound to obtain d(p1, p2) ≥ 1−

√
2m∗ ≥ 1−

√
2Un.

Using Property 2 we know that it is not possible to have d(p1, p2) ≥ 2Un,
unless there is another point between p1 and p2. Since d(p1, p2) is at least
1−

√
2Un, if 1−

√
2Un ≥ 2Un there must be another point between p1 and p2.

And if 1−
√
2Un ≥ 4Un there are at least other 2 points between p1 and p2. In

general, if 1−
√
2Un ≥ 2t(n)Un we have at least t(n) points between p1 and p2,

5

with t(n) : N\{0, 1, 2, 3} → Z defined as follows:

t(n) =

⌊

1

2Un

−
√
2

2

⌋

.

Actually, for small instances t(n) could be negative. More precisely, it is the

case when Un >
√
2
2 . In order to avoid this issue, we can take the maximum

between 0 and t(n). Consequently, the number of points on the left side of the
square is at least:

k(n) = 2 +max{0, t(n)} = 2 +max

{

0,

⌊

1

2Un

−
√
2

2

⌋}

. (11)

For the right side, the proof is similar.

Using the result of Theorem 1 we can introduce three corollaries. Before
doing that, as the need arises, we should define two sets, representing respec-
tively the indices of the points which are fixed on the left (SLn) and on the
right (SRn) sides of the square by Theorem 1:

SLn = {i ∈ N : 1 ≤ i ≤ k(n)} (12)

SRn = {i ∈ N : n− k(n) + 1 ≤ i ≤ n}. (13)

In other words, Theorem 1 states that :

∀i ∈ SLn xi = 0 (14)

∀j ∈ SRn xj = 1. (15)

Note that the choice of the points to put in SLn and SRn is taken in order
to be consistent with the order constraints (26) presented later.

To avoid some symmetries (which can impair performances of Branch-and-
Bound based algorithms [11, 12, 13, 14, 15, 16] like Couenne [7], the solver
we use for our tests), we can impose without loss of generality the following
conditions:

∀i ∈ SLn\{1} yi > yi−1 (16)

∀j ∈ SRn\{n} yj+1 > yj . (17)

Corollary 1. Consider the PPS problem with n ≥ 4. From Theorem 1 we can
fix k(n) on the left side of the unit square (i.e., those having indices i ∈ SLn)
and other k(n) points on the right side of the unit square (i.e., those having
indices j ∈ SRn). Then, ∀i ∈ SLn\{1} yi − yi−1 < min{1, 2Un} and ∀j ∈
SRn\{n} yj+1 − yj < min{2Un, 1}.

Proof. We provide a proof for the left side of the unit square. The proof for
the right side is almost the same. From Theorem 1 we have k(n) points on the
left side of the square (those having indices i ∈ SLn). Let m∗ be the optimal

6

solution of the PPS instance considered. From Property 2 and condition (16)
we have ∀i ∈ SLn\{1} yi − yi−1 < 2m∗. Then, using the upper bound (9),
and recalling that the maximum distance between two points along a side of the
square is 1, we can write:

∀i ∈ SLn\{1} yi − yi−1 < 2m∗ ≤ 2Un ⇒ yi − yi−1 < min{1, 2Un}. (18)

From Property 2 and condition (17) we obtain a similar result for the right side
of the square:

∀j ∈ SRn\{n} yj+1 − yj < 2m∗ ≤ 2Un ⇒ yj+1 − yj < min{1, 2Un}. (19)

It is possible to derive another set of inequalities to tighten the PPS formu-
lation, as proved by the next corollary of Theorem 1.

Corollary 2. Consider the PPS problem with n ≥ 4. From Theorem 1 we
can fix k(n) points on the left side of the unit square (i.e., those having indices
i ∈ SLn) and other k(n) points on the right side of the unit square (i.e., those
having indices j ∈ SRn). Then, ∀i ∈ SLn\{1} yi − yi−1 ≥ Ln and ∀j ∈
SRn\{n} yj+1 − yj ≥ Ln hold.

Proof. Consider the distance constraint (6) involving the points having indices
i ∈ SLn and i− 1 ∈ SLn : i > 1 (the same holds for the pairs of points having
indices j ∈ SRn and j+1 ∈ SRn : j < n). At the optimum this constraint can
be rewritten as:

(xi − xi−1)
2 + (yi − yi−1)

2 ≥ α∗ = m∗2.

From Theorem 1 it holds that xi = xi−1. Thus, using condition (16) we obtain
the following inequalities:

∀i ∈ SLn\{1} yi − yi−1 ≥ m∗ ≥ Ln ⇒ yi − yi−1 ≥ Ln. (20)

Similarly, for the right side of the square we have:

∀j ∈ SRn\{n} yj+1 − yj ≥ m∗ ≥ Ln ⇒ yj+1 − yj ≥ Ln. (21)

Last corollary is helpful to tighten the range, on the y coordinate, for some
of the points which are fixed on the left and right sides of the square.

Corollary 3. In the optimal solution of PPS, where the points having indices
in SLn are fixed on the left side of the square and the points having indices in

7

SRn are fixed on the right side of the square, the following conditions hold:

y1 ≤ min

{

Un,
1

2

}

(22)

yk(n) ≥ max

{

1− Un,
1

2

}

(23)

yn−k(n)+1 ≤ min

{

Un,
1

2

}

(24)

yn ≥ max

{

1− Un,
1

2

}

(25)

Proof. Consider the cases depicted in Figure 1. Intuitively, the corollary states
that among the k(n) points fixed on the left (right) side of the square, one
is on the bottom-half, and one in on the top-half. According to Theorem 1,
and to (16)-(17), these points are respectively those having indices 1 and k(n)
(n− k(n) + 1 and n for the right side of the square).

Consider the left side of the square. In the worst case (in terms of distance
of a point from the closest vertex) the distance between the bottom-left vertex
and the point with index 1 is smaller than m∗, that is smaller than or equal to
Un, and the same happens for the distance between the point with index k(n)
and the top-left vertex. Moreover, we can write without loss of generality that
y1 ≤ 1

2 and yk(n) ≥ 1
2 . Hence, we can conclude that (22) and (23) are valid. In

a similar way we can prove the result for the right side of the square.

Using Theorem 1 and Corollaries 1, 2, and 3 we can improve the PPS for-
mulation (1)-(5), by adjoining constraints (14), (15), (18), (19), (20), (21), (22),
(23), (24), and (25). However, some considerations lead to further constraints
which can be used to tighten the formulation. They are presented in the next
section.

2.2. Other constraints

A first set of inequalities which can be adjoined to the PPS formulation are
the order symmetry-breaking constraints on the x variables [11, 12, 16]:

∀i ∈ N\{n} xi ≤ xi+1. (26)

However, using (14)-(15) we can reduce the number of such constraints:

∀i ∈ N\{SLn ∪ SRn ∪ {n− k(n)}} xi ≤ xi+1. (27)

Another set of symmetry-breaking constraints can be derived from the fol-
lowing facts [17]:

• at least nx = ⌈n
2 ⌉ points are on the left-half of the square (we call it x

bounds constraints);

• among the previous nx points, at least ny = ⌈nx

2 ⌉ are on the bottom-half
(y bounds constraints).

8

Note that these constraints also hold if nx points are placed on the right-
half of the square, and among them ny are placed on the top-half of the square
(this is actually how they are presented in [17]). Unfortunately, in general we
cannot have the x bounds constraints, the y bounds constraints and the order
constraints (27) together. It is possible to do it by removing from (27) the
inequality xny

≤ xny+1. However, we need to preserve the order constraints to
derive the triangular inequality constraints (31) presented later. Moreover, due
to constraints (16)-(17), the y bounds constraints are difficult to express. Hence,
we only consider the x bounds constraints to improve the PPS formulation.
Using (27), these constraints can be expressed by means of a single inequality:

xnx
≤ 1

2
. (28)

In the general case, another constraint which can be adjoined is the following:

y2 − y1 ≤ yn−k(n)+2 − yn−k(n)+1. (29)

However, due to constraints (27) and (28), the constraint (29) could not hold.
As a matter of fact, if n is an odd number we are imposing that more than half
on the points are on the left side of the square, thus we cannot a priori say if
(29) is valid or not. Hence, we adjoin (29) to our model only if n is an even
number. Moreover, in case that k(n) = 2 and n is an even number, we can
combine (29) with (18), (19), (20), and (21) to obtain a stronger condition:

Ln ≤ y2 − y1 ≤ yn − yn−1 < min{1, 2Un}. (30)

To resume, in our improved model we have the constraints (18), (19), (20), and
(21). If n is an even number and k(n) = 2, the constraints (18)-(21) are replaced
by (30). If n is an even number but k(n) > 2, then (29) is adjoined to the PPS
formulation. Otherwise the model is not changed.

A final set of inequalities can be derived from the triangular inequality be-
tween pairs points. The triangular inequalities can be written as:

∀i ∈ N, ∀j ∈ N : i < j |xj − xi|+ |yj − yi| ≥ d(i, j) ≥ m =
√
α

where d(i, j) represents the distance between the points having indices i and
j. First, we can remove the absolute value from the x variable, since the order
constraints (27) hold. Moreover, we can avoid to define these constraints for the
pairs of indices (i, j) belonging to SLn or SRn, because in this case xj − xi = 0
and the resulting constraint is implied by (6). Hence, the triangular inequalities
are defined for pairs of indices belonging to T = {(i, j) : i ∈ N, j ∈ N, i <

j, ¬ ((i ∈ SLn ∧ j ∈ SLn) ∨ (i ∈ SRn ∧ j ∈ SRn))}. Now we can write:

∀(i, j) ∈ T xj − xi + |yj − yi| ≥
√
α.

We are interested in finding linear inequalities, because we do not want to worsen
the formulation with additional nonlinear constraints. To do this, we should

9

remove the absolute value and the square root. The former can be done by
relaxing the constraint by means of the following inequality: yj + yi ≥ |yj − yi|.
The latter can be done by noticing that the optimal distance for the instances
where n ≥ 4 is in (0, 1]. This means that

√
α ≥ α. Actually we can obtain

a tighter bound, i.e., we want to find the maximum value for a parameter
p ∈ R : p ≥ 1 such that

√
α ≥ pα. Hence, we have:

√
α ≥ pα ⇒ p2 ≤ 1

α
.

Since we are interested in the maximum value of p, we can write:

p2 =
1

α
⇒ p =

1√
α

≥ 1

Un

.

Since p must be greater than or equal to 1, it can be determined as:

p = max

{

1,
1

Un

}

.

Finally, we have:

∀(i, j) ∈ T xj − xi + yj + yi ≥ xj − xi + |yj − yi| ≥
√
α ≥ pα,

leading to the final form of the triangular inequality constraints which will be
adjoined to our PPS model:

∀(i, j) ∈ T xj − xi + yj + yi ≥ max

{

1,
1

Un

}

α. (31)

Note that the only case, among those considered, for which 1
Un

< 1 (using
the upper bound definition in (9)) is when n = 4. However, for the sake of
completeness we provide a constraint that is valid for the general case.

2.3. Improved mathematical programming formulation

Using the results of Theorem 1, Corollary 1, Corollary 2, Corollary 3 and
the inequalities presented in the previous section, we can modify the PPS for-
mulation (1)-(5). As notation, mod(n, 2) represents the modulo operation, and
it is equal to 0 if n is an even number, 1 otherwise. Moreover, let τn be equal

10

to min{1, 2Un}. The improved PPS formulation can be defined as:

max α (32)

s.t. ∀i ∈ N, ∀j ∈ N : i < j x2
i + x2

j − 2xixj + y2i + y2j − 2yiyj ≥ α (33)

∀i ∈ N\{SLn ∪ SRn} xi ∈ [0, 1] (34)

∀i ∈ N yi ∈ [0, 1] (35)

∀i ∈ SLn xi = 0 (36)

∀j ∈ SRn xj = 1 (37)

if (mod(n, 2) = 0 ∧ k(n) = 2) y2 − y1 ≥ Ln (38)

if (mod(n, 2) = 0 ∧ k(n) = 2) y2 − y1 ≤ yn − yn−1 (39)

if (mod(n, 2) = 0 ∧ k(n) = 2) yn − yn−1 ≤ τn (40)

if (mod(n, 2) = 0 ∧ k(n) > 2) y2 − y1 ≤ yn−k(n)+2 − yn−k(n)+1 (41)

if ¬ (mod(n, 2) = 0 ∧ k(n) = 2) ∀i ∈ SLn\{1} yi − yi−1 ≤ τn (42)

if ¬ (mod(n, 2) = 0 ∧ k(n) = 2) ∀j ∈ SRn\{n} yj+1 − yj ≤ τn (43)

if ¬ (mod(n, 2) = 0 ∧ k(n) = 2) ∀i ∈ SLn\{1} yi − yi−1 ≥ Ln (44)

if ¬ (mod(n, 2) = 0 ∧ k(n) = 2) ∀j ∈ SRn\{n} yj+1 − yj ≥ Ln (45)

y1 ≤ τn

2
(46)

yk(n) ≥ max

{

1− Un,
1

2

}

(47)

yn−k(n)+1 ≤ τn

2
(48)

yn ≥ max

{

1− Un,
1

2

}

(49)

∀i ∈ N\{SLn ∪ SRn ∪ {n− k(n)}} xi ≤ xi+1 (50)

xnx
≤ 1

2
(51)

∀(i, j) ∈ T xj − xi + yj + yi ≥ max

{

1,
1

Un

}

α (52)

α ∈ R. (53)

Note that we replaced the strict inequality of (18), (19), and (30) with nonstrict
ones in (42), (43), and (40), because it is much easier to deal with nonstrict
inequalities (otherwise the feasible region could be an open set). However, this
does not change the global optimum: a solution which makes the left-hand side
of one of those inequalities equal to its right-hand side would not be the optimal
according to Property 2, unless in the optimal solution there is another point
between those involved in this inequality.

3. Computational results

In order to show the effect of these constraints, we now compare the results
obtained by solving some PPS instances, using the original formulation (1)-(5)

11

and the improved formulation (32)-(53). The results have been obtained on
a 2.4 GHz Intel Xeon CPU computer with 24 GB RAM running Linux and
the solver Couenne 0.4, which implements a spatial Branch-and-Bound (sBB)
algorithm (the sBB algorithm is an ǫ-approximation algorithm for solving non-
convex Nonlinear Programming (NLPs) problems and Mixed Integer Nonlinear
Programming (MINLPs) problems [18]). We report the value of the best known
distance m∗, found on www.packomania.com (if in bold, this means that it has
been proved to be the optimal distance). Then, for each formulation, we report
the best value of distance (

√
LB), the best value of α (LB) and the upper bound

on α (UB) found by Couenne within 2 hours, the gap still open (we use the

CPLEX definition [19]:
(

100·|LB−UB|
|LB|+10−10

)

%), the number of sBB nodes explored,

and the CPU time in seconds, with a time limit of 2 hours (the symbol ∗ in-
dicates that the time limit is reached). Note that a gap of 0% means that the
optimal solution has been found. Values in bold are the best among the two
formulations; all the values related to the distance (i.e., m∗,

√
LB, LB and UB)

are rounded to 4 decimal places.

4. Conclusion

In this paper we study the PPS problem from both the theoretical and
computational points of view. Starting from some properties presented in [9, 10],
we derive a theorem and some corollaries. Using these results, together with
some other properties presented in the second part of the Section 2.2 and some
symmetry breaking constraints proposed in [11, 16], we derive an improved
formulation for the PPS problem.

The computational experiments performed on some instances of PPS show
that the improved formulation is more efficient for small instances (solved within
the time limit), as the optimal solution is found in less time. For larger instances,
the improved formulation gives better values of the upper bound; one of the
reason for this behavior is that the improved formulation changes the bounds
for some of the variables, and this has been shown to have a high impact on the
solution process of the PPS problem in [11, 15]. This difference in the upper
bound value is also underlined by the gap, which is much lower for the improved
formulation, and also seems to increase more slowly with respect to the original
formulation.

Moreover, by comparing the number of sBB nodes, it appears that when it
is possible to solve the problem within the time limit, the sBB tree is smaller for
the improved formulation. If the time limit is reached, the number of sBB nodes
explored is lower for the original formulation, meaning that each subproblem is
more difficult to solve.

A very interesting fact that can be noted is that the original formulation
provides very good values of the lower bound. In other words, using the original
formulation it is possible to find solutions which are the same, or very close, to
the best known solutions so far. As future work, this idea could be used to devise
a Branch-and-Bound based algorithm to solve the PPS problem based on the

12

Original formulation Improved formulation

n m∗ √
LB LB UB gap % sBB nodes CPU time

√
LB LB UB gap % sBB nodes CPU time

4 1 1 1 1 0 90 0.94 1 1 1 0 0 0.03

5 0.7071 0.7071 0.5 0.5 0 6,667 9.06 0.7071 0.5 0.5 0 0 0.18

6 0.6009 0.6009 0.3611 0.3611 0 963,499 1421.49 0.6009 0.3611 0.3611 0 164 1.46

7 0.5359 0.5359 0.2872 0.4021 40.01 2,906,775 7,200∗ 0.5359 0.2872 0.2872 0 1,535 5.03

8 0.5176 0.5176 0.2679 0.4941 84.43 2,098,921 7,200∗ 0.5176 0.2679 0.2679 0 6,376 20.11

9 0.5 0.5 0.25 0.5 100.00 1,389,918 7,200∗ 0.5 0.25 0.25 0 18,458 63.53

10 0.4213 0.4213 0.1775 0.5036 183.72 1,353,701 7,200∗ 0.4213 0.1775 0.1775 0 1,438,562 4791.66

11 0.3982 0.3982 0.1586 0.5077 220.11 825,030 7,200∗ 0.3980 0.1584 0.1940 22.47 1,682,724 7,200∗

12 0.3887 0.3887 0.1511 0.5109 238.12 623,710 7,200∗ 0.3887 0.1511 0.2281 50.96 1,040,836 7,200∗

13 0.3661 0.3661 0.1340 0.8331 521.72 489,671 7,200∗ 0.3555 0.1264 0.2521 99.45 833,256 7,200∗

14 0.3489 0.3489 0.1217 0.9530 683.07 407,215 7,200∗ 0.3480 0.1211 0.2815 132.45 677,372 7,200∗

15 0.3411 0.3411 0.1163 0.9604 725.80 338,281 7,200∗ 0.3339 0.1115 0.3081 176.32 577,482 7,200∗

16 0.3333 0.3333 0.1111 0.9685 771.74 284,220 7,200∗ 0.3129 0.0979 0.3066 213.18 481,512 7,200∗

17 0.3062 0.3062 0.0937 0.9697 964.03 245,477 7,200∗ 0.2994 0.0896 0.2995 234.26 406,807 7,200∗

18 0.3005 0.3005 0.0903 0.9771 982.06 207,707 7,200∗ 0.2987 0.0892 0.2889 223.88 440,880 7,200∗

19 0.2895 0.2895 0.0838 0.9756 1064.20 179,246 7,200∗ 0.2782 0.0774 0.2814 263.57 297,878 7,200∗

20 0.2866 0.2866 0.0821 0.9787 1092.08 153,955 7,200∗ 0.2795 0.0781 0.2761 253.52 335,925 7,200∗

21 0.2718 0.2718 0.0739 0.9804 1226.66 137,755 7,200∗ 0.2681 0.0719 0.2795 288.73 196,908 7,200∗

22 0.2680 0.2680 0.0718 0.9773 1261.14 118,984 7,200∗ 0.2567 0.0659 0.2706 310.62 227,138 7,200∗

23 0.2588 0.2587 0.0669 1.25 1768.46 108,941 7,200∗ 0.2504 0.0627 0.2686 328.39 194,857 7,200∗

24 0.2543 0.2543 0.0647 0.9788 1412.83 92,997 7,200∗ 0.25 0.0625 0.2783 345.28 165,955 7,200∗

25 0.25 0.25 0.0625 0.9778 1464.48 82,985 7,200∗ 0.2360 0.0557 0.2748 393.36 144,203 7,200∗

26 0.2387 0.2387 0.0570 0.9790 1617.54 76,460 7,200∗ 0.2265 0.0513 0.2713 428.85 122,228 7,200∗

27 0.2358 0.2358 0.0556 1.25 2148.20 67,465 7,200∗ 0.2229 0.0497 0.2664 436.02 114,467 7,200∗

28 0.2305 0.2305 0.0532 0.9773 1737.03 59,132 7,200∗ 0.2117 0.0448 0.2623 485.49 105,330 7,200∗

29 0.2269 0.2269 0.0515 0.9780 1799.03 51,351 7,200∗ 0.2142 0.0459 0.2577 461.44 88,318 7,200∗

30 0.2245 0.2245 0.0504 0.9850 1854.37 46,519 7,200∗ 0.2131 0.0454 0.2555 462.78 75,783 7,200∗

31 0.2175 0.2175 0.0473 0.9939 2000.13 41,968 7,200∗ 0.2058 0.0424 0.2498 489.15 64,332 7,200∗

32 0.2132 0.2132 0.0454 1.25 2653.30 40,704 7,200∗ 0.1992 0.0397 0.2475 523.43 60,377 7,200∗

33 0.2113 0.2113 0.0447 1.0013 2140.04 34,724 7,200∗ 0.1945 0.0378 0.2422 540.75 55,083 7,200∗

34 0.2056 0.2052 0.0421 1.25 2869.12 33,947 7,200∗ 0.1886 0.0356 0.2418 579.21 49,583 7,200∗

35 0.2028 0.1986 0.0395 1.25 3064.56 29,648 7,200∗ 0.1859 0.0346 0.2374 586.13 40,866 7,200∗

36 0.2 0.1954 0.0382 1.25 3172.25 26,752 7,200∗ 0.1887 0.0356 0.2303 546.91 34,384 7,200∗

37 0.1964 0.1946 0.0379 1.0252 2605.01 21,345 7,200∗ 0.1853 0.0343 0.2221 547.52 38,653 7,200∗

38 0.1953 0.1723 0.0297 1.0429 3411.48 22,956 7,200∗ 0.1830 0.0335 0.2142 539.40 33,760 7,200∗

39 0.1944 0.1858 0.0345 1.25 3523.19 20,482 7,200∗ 0.1813 0.0329 0.2065 527.66 28,849 7,200∗

40 0.1882 0.1878 0.0353 1.0346 2830.89 16,681 7,200∗ 0.1655 0.0274 0.1984 624.09 42,787 7,200∗

Table 1: Performances of the Couenne solver on small PPS instances.

13

formulations proposed in this paper: one could employ the original formulation
to find good solutions, and then use the improved formulation to obtain good
upper bound values that can be used to cut nodes from the Branch-and-Bound
tree. This idea could be tested, using also other solvers as BARON [20], to
prove the optimality for some of the smallest open instances (e.g., 31, 32, 33)
for which the solution found within two hours using the original formulation is
almost as good as the best known solution.

Acknowledgements

The author would like to thank the anonymous referees for their suggestions
and comments. Moreover, the author thanks Pietro Belotti and Giacomo Nan-
nicini for the interesting discussions about the solver Couenne. This research
was supported by IDC Grant IDSF1200101OH.

References

[1] M. Hifi, V. Th. Paschos, V. Zissimopoulos, A simulated annealing approach
for the circular cutting problem, European Journal of Operational Research
159 (2) (2004) 430 – 448.

[2] M. Hifi, R. M’Hallah, Approximate algorithms for constrained circular cut-
ting problems, Computers & Operations Research 31 (5) (2004) 675 – 694.

[3] Y. Cui, Generating optimal t-shape cutting patterns for circular blanks,
Computers & Operations Research 32 (1) (2005) 143 – 152.

[4] H. J. Fraser, J. A. George, Integrated container loading software for pulp
and paper industry, European Journal of Operational Research 77 (3)
(1994) 466 – 474.

[5] J. A. George, J. M. George, B. W. Lamar, Packing different-sized circles
into a rectangular container, European Journal of Operational Research
84 (3) (1995) 693 – 712.

[6] I. Castillo, F. Kampas, J. Pintér, Solving circle packing problems by
global optimization: Numerical results and industrial applications, Euro-
pean Journal of Operational Research 191 (3) (2008) 786 – 802.

[7] P. Belotti, J. Lee, L. Liberti, F. Margot, A. Wächter, Branching and bounds
tightening techniques for non-convex MINLP, Optimization Methods and
Software 24 (4) (2009) 597 – 634.

[8] P. G. Szabó, M. C. Markót, T. Csendes, E. Specht, L. G. Casado, I. Garćıa,
New Approaches to Circle Packing in a Square: With Program Codes
(Springer Optimization and Its Applications), Springer-Verlag New York,
2007.

14

[9] M. Locatelli, U. Raber, Packing Equal Circles in a Square: I. Theoretical
Results, Tech. Rep. 08-99, Dipartimento Sistemi e Informatica, Università
di Firenze (1999).

[10] M. Locatelli, U. Raber, Packing equal circles in a square: a determinis-
tic global optimization approach, Discrete Applied Mathematics 122 (1-3)
(2002) 139 – 166.

[11] A. Costa, Applications of Reformulations in Mathematical Programming,
Ph.D. thesis, École Polytechnique, France (2012).

[12] A. Costa, I. Tseveendorj, Symmetry breaking constraints for the problem
of packing equal circles in a square, in: C. J. Luz, F. Valente (Eds.), Pro-
ceedings of the 1st International Conference on Operations Research and
Enterprise Systems (ICORES), SciTePress, 2012, pp. 5 – 10.

[13] L. Liberti, Symmetry in mathematical programming, in: J. Lee, S. Leyffer
(Eds.), Mixed Integer Nonlinear Programming, Vol. 154 of IMA, Springer,
New York, 2012, pp. 263 – 286.

[14] L. Liberti, Reformulations in mathematical programming: automatic sym-
metry detection and exploitation, Mathematical Programming 131 (2012)
273 – 304.

[15] A. Costa, P. Hansen, L. Liberti, Bound constraints for Point Packing in
a Square, in: L. Adacher, M. Flamini, G. Leo, G. Nicosia, A. Pacifici,
V. Piccialli (Eds.), Proceedings of the 10th Cologne-Twente Workshop on
Graphs and Combinatorial Optimization (CTW), Università di Roma “Tor
Vergata”, Villa Mondragone, 2011, pp. 126 – 129.

[16] A. Costa, P. Hansen, L. Liberti, On the impact of symmetry-breaking con-
straints on spatial Branch-and-Bound for circle packing in a square, Dis-
crete Applied Mathematics 161 (1-2) (2013) 96 – 106.

[17] K. Anstreicher, Semidefinite programming versus the reformulation-
linearization technique for nonconvex quadratically constrained quadratic
programming, Journal of Global Optimization 43 (2) (2009) 471 – 484.

[18] L. Liberti, Introduction to Global Optimization, Tech. rep., LIX, École
Polytechnique (2008).

[19] IBM, ILOG CPLEX 12.2 User’s Manual, IBM (2010).

[20] N. V. Sahinidis, BARON 12.1.0: Global Optimization of Mixed-Integer
Nonlinear Programs, User’s Manual (2013).

15

