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Abstract Finding clusters, or communities, in a graph, or network is avery important prob-
lem which arises in many domains. Several models were proposed for its solution. One of
the most studied and exploited is the maximization of the so called modularity, which repre-
sents the sum over all communities of the fraction of edges within these communities minus
the expected fraction of such edges in a random graph with thesame distribution of degrees.
As this problem is NP-hard, a few non-polynomial algorithmsand a large number of heuris-
tics were proposed in order to find respectively optimal or high modularity partitions for a
given graph. We focus on one of these heuristics, namely a divisive hierarchical method,
which works by recursively splitting a cluster into two new clusters in an optimal way. This
splitting step is performed by solving a convex quadratic program. We propose a compact
reformulation of such model, using change of variables, expansion of integers in powers of
two and symmetry breaking constraints. The resolution timeis reduced by a factor up to 10
with respect to the one obtained with the original formulation.

Keywords clustering· compact reformulation· divisive hierarchical heuristic· modularity
maximization.

1 Introduction

A graph, or network,G = (V,E) can be represented as a setV of vertices and a setE of
edges connecting pairs of vertices. This model has been intensively used in several domains
to represent complex systems (Newman 2010). For instance, the metabolic network studied
in biology and bioinformatics (Guimerà et Amaral 2004, Palla et al. 2005), social networks
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(Girvan and Newman 2002) and other applications in informatics, as recommender systems
(Adomavicius and Tuzhilin 2005) or the World Wide Web (Flakeet al. 2002).

One of the most important tasks is to identify the structure of such graphs, and in partic-
ular to find subsets of vertices, calledcommunitiesor clusters, where each cluster contains
vertices which are more likely to be connected pairwise withits own vertices than to those
belonging to other communities. In order to formalize this idea, different definitions were
proposed. One of the best known is provided by Radicchi et al.(2004), with the concepts of
strong communityandweak community: a strong community contains vertices having more
neighbours inside than neighbours outside the community, whereas in a weak community
the total number of inner edges (joining two vertices of the same community) must be greater
or equal to half of the number of cut edges (with two vertices in different communities).

Given a graph and a partition, another measure of the extent to which the classes of the
partition can be considered to be communities is provided bythe famous criterion called
modularity (Girvan and Newman 2002; Newman and Girvan 2004), which represents the
fraction of edges within communities minus the expected fraction of such edges in a ran-
dom graph with the same degree distribution. Alternatively, given a graph, modularity can
be maximized to find an optimal partition, together with its number of clusters and their
modularities. Given an unweighted graphG, its modularityQ is defined as:

Q= ∑
c

(

mc

m
−

Dc
2

4m2

)

, (1)

wherem is the number of edges of the graph,mc is the number of edges within cluster
c, andDc is the sum of the degrees of the vertices which are inside thiscluster. Note that
the modularity of the graph can be seen as the sum of the modularities of each cluster.
The extension of this definition to weighted graphs is presented in Fortunato (2010). The
maximization of modularity is a NP-hard problem, as proved by Brandes et al. (2008).

Although modularity maximization is a very popular criterion, a few criticisms have
been recently raised, the most important of them being the resolution limit and the degen-
eracy of the modularity function. The former refers to the fact that in some cases some
clusters, smaller than a certain size which depends on the number of edges of the network,
may not be detected and they remain hidden within larger clusters, as reported in Fortunato
and Barthelemy (2007), Good et al. (2010). The latter is related to the possible presence of
several high modularity partitions, even very different from each other, which makes hard to
identify the global optimum (Good et al. 2010). Some approaches to address these criticisms
are presented in Arenas et al. (2008), Kumpula et al. (2007),Reichardt and Bornholdt (2006)
and Sales-Pardo et al. (2007), though they do not solve the problems in a fully satisfactory
manner. Strengths and weaknesses of modularity are also discussed in Fortunato (2010) and
Cafieri et al. (2010). Despite these criticisms, modularitystill remains an interesting crite-
rion for network clustering, which is widely employed in theliterature. Clear advantages of
this criterion include its intuitive meaning and simple mathematical formulation, as well as
its independence on any parameter to be decided arbitrarely.

Several methods have been proposed in the literature to find high modularity partitions:
a few exact methods, and several heuristics. Among the exactmethods, there is a clique
partitioning algorithm originally proposed by Grötschel and Wakabayashi (1989), which is
similar to the one presented in Brandes et al. (2008), columngenerations algorithms pro-
posed by Aloise et al. (2010), and a mixed-integer convex quadratic programming formula-
tion due to Xu et al. (2007). Concerning the heuristics, manymethods have been proposed.
They are presented in the survey of Fortunato (2010). Clustering heuristics are either hi-
erarchical, which aim at finding a set of nested partitions, or partitioning schemes, which
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aim at finding a single partition or possibly several partitions into given numbers of clus-
ters. The aim of this paper is to investigate mathematical programming reformulations of a
clustering bipartition problem formulated as a quadratic mixed-integer program, arising in
the locally optimal hierarchical divisive approach for modularity maximization proposed in
Cafieri et al. (2011). We present several reformulations of the original model. They include
reformulations aiming to reduce the dimension of the problem (number of variables and con-
straints), reformulations aiming to linearize nonlinear terms by binary decompositions and a
reformulation based on symmetry breaking constraints. Thepath of reformulations leading
to thebest formulationfor the bipartition problem appears to be the one passing through
a few steps whose effect is to reduce the number of variables and constraints and to adjoin
symmetry breaking constraints to the obtained compact formulation. Note that with best for-
mulation we mean the one that provide the optimal solution inless CPU time. Hence, we do
not improve the quality of the results, in terms of modularity, provided by the hierarchical
divisive heuristic in Cafieri et al. (2011). Rather, we propose some techniques to decrease
the computational time required to obtain the solution.

The rest of the paper is organized as follows: in Section 2 theheuristic proposed in
Cafieri et al. (2011) is presented more in details, while in Section 3 we introduce our re-
formulations of the bipartition model. Then, in Section 4 wepresent numerical results and
finally Section 5 concludes the paper.

2 Original model for cluster bipartition

Hierarchical heuristics are in principle devised for finding a hierarchy of partitions implicit
in the given graph when it corresponds to some situation where hierarchy is observed or
postulated. This is often the case, for instance, in social organization and evolutionary pro-
cesses. Hierarchical heuristics can be further divided into agglomerative and divisive ones.
Hierarchical divisive heuristics (see, e.g. Newman 2006b)proceed from an initial partition
containing all then vertices of the graph and iteratively divide a cluster into two in such a
way that the increase in the objective function value is the largest possible, or the decrease in
the objective value is the smallest possible. Cluster bipartitions are iterated until a partition
into n clusters having each a single entity is obtained. In practice, with an objective function
like modularity, bipartitions can be ended once they do not improve the objective function
value anymore. A sketch of the divisive algorithm is given inFig. 1.

The subproblem of finding a bipartition locally optimizing the modularity criterion is
difficult. Brandes et al. (2008) in fact proved that modularity maximization is NP-hard
even for two clusters. Cafieri et al. (2011) recently proposed a modularity maximizing di-
visive heuristic where the optimization subproblem for cluster bipartition is expressed as
a quadratic mixed-integer program with a convex relaxation. Binary variables are used to
identify to which cluster each vertex and each edge belongs.More precisely, variablesXi, j,s

for each edge(vi ,v j) ands= 1,2, and variablesYi,1 for i = 1,2, . . .n are defined in such a
way thatXi, j,s is equal to 1 if the edge(vi ,v j) is inside the clusters (i.e., both verticesvi and
v j are inside the clusters), andYi,1 is equal to 1 if the vertexvi is inside the cluster 1, and
0 otherwise. VariablesX give rise to two sets of variables,Xi, j,1 andXi, j,2, as an edge may
belong to the first cluster, or to the second one, or be a bridgebetween both of them. As for
variablesY, only one setYi,1 suffices as any vertex which does not belong to the first cluster
must belong to the second.

Recall the definition of modularity (1). Since a bipartitionhas to be computed, only two
sub-clusters have to be considered, and the sum of degrees ofvertices belonging to one of
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Algorithm: Hierarchical divisive algorithm
Input: graphG= (V,E), where|V|= n and|E|= m
Output: a partitionsP of V

1 P←C1 = {{v1,v2, . . . ,vn}}
2 k← 1
3 while k≤ |P| and∃Ci ∈ P not visiteddo
4 selectCi ∈ P (not visited) with the smallest possible indexi
5 partitionCi into C2i andC2i+1 maximizing the modularity
6 if Q(C2i)+Q(C2i+1)≥Q(Ci)
7 then
8 P← (P∪{C2i}∪{C2i+1})\{Ci}
9 k← k+1

10 end if
11 end while

Fig. 1: The hierarchical divisive algorithm.

the two sub-clusters can be expressed as a function of the sumof degrees of the other cluster:

D2 = Dc−D1, (2)

whereD1 andD2 are the sum of the degrees of the vertices inside the two clusters andDc is
a parameter given by the sum of degrees in the clusterc to be bipartitioned (it is equal to 2m
at the outset). Hence, the objective function (1) of the bipartition subproblem :

Qc =
m1+m2

m
−

D1
2+D2

2

4m2 , (3)

wherem1 andm2 are respectively the numer of edges inside the two clusters,can be rewrit-
ten, using equation (2), as:

Qc =
m1+m2

m
−

D1
2+(Dc−D1)

2

4m2 =
m1+m2

m
−

D1
2

2m2 −
Dc

2

4m2 +
D1Dc

2m2 . (4)

As for the constraints, the following inequalities are usedto impose that any edge(vi ,v j)
with end vertices indiced byi and j can only belong to clusters if both of its end vertices
also belong to that cluster:

∀(vi ,v j) ∈ Ec Xi, j,1 ≤Yi,1 (5)

∀(vi ,v j) ∈ Ec Xi, j,1 ≤Yj,1 (6)

∀(vi ,v j) ∈ Ec Xi, j,2 ≤ 1−Yi,1 (7)

∀(vi ,v j) ∈ Ec Xi, j,2 ≤ 1−Yj,1. (8)

Furthermore, the number of edges of each of the two clusters and the sum of vertex degrees
of the first cluster are expressed as follows:

∀s∈ {1,2} ms = ∑
(vi ,v j )∈Ec

Xi, j,s (9)

D1 = ∑
vi∈Vc

kiYi,1, (10)
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whereki is the degree of the vertexvi andVc andEc are respectively the set of vertices and the
set of edges of the clusterc to be bipartitioned. Hence, the complete formulation proposed
in Cafieri et al. (2011), and called from nowOB (Optimal Bipartition), is the following:

max
1
m

(

m1+m2−
1

2m

(

D1
2+

Dc
2

2
−D1Dc

))

(11)

s.t. ∀(vi ,v j) ∈ Ec Xi, j,1≤Yi,1 (12)

∀(vi ,v j) ∈ Ec Xi, j,1≤Yj,1 (13)

∀(vi ,v j) ∈ Ec Xi, j,2≤ 1−Yi,1 (14)

∀(vi ,v j) ∈ Ec Xi, j,2≤ 1−Yj,1 (15)

∀s∈ {1,2} ms = ∑
(vi ,v j )∈Ec

Xi, j,s (16)

D1 = ∑
vi∈Vc

kiYi,1 (17)

∀s∈ {1,2} ms∈ R (18)

D1 ∈ R (19)

∀vi ∈Vc Yi,1 ∈ {0,1} (20)

∀(vi ,v j) ∈ Ec, ∀s∈ {1,2} Xi, j,s∈ R
+
0 . (21)

Note that the variableD1 is not defined to be integer and non-negative in theOB model,
since this is automatically implied by constraint (17).

3 Improved formulations of the bipartition problem

It is possible to obtain a compact and more efficient formulation for theOB model. This
can be done thanks to 3 reformulations, which are discussed separately in the rest of the
section: (i) reduction of the number of variables and constraints; (ii) application of the binary
decomposition technique; (iii) addition of a symmetry breaking constraint.

3.1 Reduction of number of variables and constraints

Starting from theOB model, half of the variablesX can be removed and the number of
constraints can be reduced on the basis of the following considerations.

Consider theX variables. Looking at the objective function (11) of theOB formulation,
we notice that it contains the termm1+m2, which represents the sum of the number of edges
in the first and the second cluster. Since we are interested inthis sum, we do not actually
need to know if an edge is in the cluster 1 or 2, but only if it is within a cluster or not. Hence,
we can drop the indexs of variablesX, moving from the original definition:

Xi, j,s =

{

1, if edge(vi ,v j) belongs to clusters,

0, otherwise,
(22)

to a new set of variablesXi, j , whereXi, j is equal to 1 if the edge(vi ,v j) is within the cluster
1 or 2, and 0 otherwise. In other words, we can defineXi, j as:

Xi, j =

{

1, if Yi =Yj ,

0, otherwise,
(23)
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where we also drop the meaningless index 1 from theY variables. SinceXi, j can be seen
as the negation of the XOR operation betweenYi andYj variables, the following constraints
can be employed (Brown and Dell, 2007) to express the relationship betweenX andY:

∀(vi ,v j) ∈ Ec Xi, j ≤Yi−Yj +1 (24)

∀(vi ,v j) ∈ Ec Xi, j ≤Yj −Yi +1 (25)

∀(vi ,v j) ∈ Ec Xi, j ≥Yi +Yj −1 (26)

∀(vi ,v j) ∈ Ec Xi, j ≥ 1−Yi−Yj . (27)

Actually, only half of these constraints are useful: as explained in Adams and Dearing
(1994), since the coefficient of the variablesX is positive in the objective function, and we
are considering a maximization problem, we can drop the constraints (26) and (27). Note
that, as in the original model, theY variables are binary and theX variables are non-negative
and continuous. On the basis of these considerations, theOBmodel can be reformulated this
way:

max
1
m



 ∑
(vi ,v j )∈Ec

Xi, j −
1

2m

(

D1
2+

Dc
2

2
−D1Dc

)



 (28)

s.t. ∀(vi ,v j) ∈ Ec Xi, j ≤Yi −Yj +1 (29)

∀(vi ,v j) ∈ Ec Xi, j ≤Yj −Yi +1 (30)

D1 = ∑
vi∈Vc

kiYi (31)

D1 ∈ R (32)

∀vi ∈Vc Yi ∈ {0,1} (33)

∀(vi ,v j) ∈ Ec Xi, j ∈ R. (34)

Due to the elimination of the indexs from the variablesX, their number is now halved.
Consider again the definition (23) of the variablesX. We can express it by employing

the product of the variablesYi andYj this way:

Xi, j = 2YiYj −Yi−Yj +1. (35)

Using this definition, we can replace the constraints (24)-(27) with a new set of inequal-
ities, and replace the set of variablesX with another set of variablesS (having the same
cardinality), which represent the product of theY variables in (35). The new variablesSare
then defined as:

∀(vi ,v j) ∈ Ec Si, j =YiYj , (36)

where the inequalities needed to describe this relationship can be obtained after applying
(35) to (24)-(27) (note that these constraints correspond to the Fortet inequalities (Fortet,
1960), which provide an exact linearization of a product of binary variables):

∀(vi ,v j) ∈ Ec Si, j ≥ 0 (37)

∀(vi ,v j) ∈ Ec Si, j ≥Yj +Yi−1 (38)

∀(vi ,v j) ∈ Ec Si, j ≤Yi (39)

∀(vi ,v j) ∈ Ec Si, j ≤Yj . (40)
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We can put now in the objective function (28) the definition (35), using theSvariables, in
place ofXi, j , and we can replace the constraints (29)-(30) with the new set (39)-(40) (again,
only half of the constraints are needed). Thus, the new model, calledOB1, is the following:

max
1
m



 ∑
(vi ,v j )∈Ec

(2Si, j −Yi−Yj)+ |Ec|−
1

2m

(

D1
2+

Dc
2

2
−D1Dc

)



 (41)

s.t. ∀(vi ,v j) ∈ Ec Si, j ≤Yi (42)

∀(vi ,v j) ∈ Ec Si, j ≤Yj (43)

D1 = ∑
vi∈Vc

kiYi (44)

∀(vi ,v j) ∈ Ec Si, j ∈ R (45)

D1 ∈ R (46)

∀vi ∈Vc Yi ∈ {0,1}, (47)

where in the objective function we use the fact that∑(vi ,v j )∈Ec 1= |Ec|. Computational ex-
periments show that the formulation using theS variables outperforms the one with theX
variables. Intuitively, the constraints (42) and (43), which involve separately variablesYi and
Yj , give rise to a more sparse matrix constraints than the one associated with constraints (29)
and (30) involving bothYi andYj variables.

The reformulation ofOB into OB1 proposed in this section is the result of a few re-
formulation steps aiming at reducing the number of variables and constraints. These re-
formulations, though proposed in the framework of modularity maximizing graph clus-
tering, can be more generally applied to a mathematical program exhibiting objective and
constraints with the same mathematical expressions. More precisely, consider variables of
type Xi, j,s, s∈ {1,2}, whereXi, j,1 +Xi, j,2 ≤ 1, coupled with binary variablesY such that
∀s∈ {1,2}Xi, j,s = 1 if Yi = Yj = 1, and 0 otherwise. If in the problem the variablesXi, j,s

only appear in the form∑s∈{1,2} Xi, j,s, the following symbolic algorithm can be applied to
automatically obtain the described reformulations:

1. replace expression∑s∈{1,2} Xi, j,s with Xi, j

2. replace variablesXi, j with 2YiYj −Yi−Yj +1
3. replace productsYiYj with variablesSi, j

4. adjoin constraints (37)-(40) (only (37)-(38) if the variablesS are minimized in the ob-
jective function, (39)-(40) if they are maximized).

As remarked, theXi, j represent the negation of the XOR operation betweenYi andYj . In case
of other relationships holding betweenX andS, these relationships have to be expressed by
a different set of constraints. An extended version of the proposed symbolic algorithm can
take into account binary operators other than the negation of XOR.

3.2 Binary decomposition

The objective function ofOB involves the termD1
2, which is the square of a sum of binary

variablesY multiplied by integer values, i.e., the degrees of the vertices. Hence, it is possible
to apply the binary decomposition technique recently employed for mixed-integer quadratic
programming in Billionnet et al. (2010) which consists in writing the termD1 this way:

D1 =
t

∑
l=0

2l al , (48)
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whereal are binary variables, andt is a parameter which will be computed later. Using this
definition ofD1, we can expressD1

2 as:

D1
2 =

t

∑
l=0

2l al ·
t

∑
h=0

2hah =
t

∑
l=0

t

∑
h=0

2l+hal ah =
t

∑
l=0

t

∑
h=0

2l+hRlh =
t

∑
l=0

22l al +
t

∑
l=0

∑
h<l

2l+h+1Rlh,

(49)
whereR are the variables used to replace the products between the variablesa. The Fortet
inequalities can be used to express this relationship:

∀l ∈ {0, . . . , t}, ∀h∈ {0, . . . , l −1} Rl ,h ≥ 0 (50)

∀l ∈ {0, . . . , t}, ∀h∈ {0, . . . , l −1} Rl ,h ≥ al +ah−1 (51)

∀l ∈ {0, . . . , t}, ∀h∈ {0, . . . , l −1} Rl ,h ≤ al (52)

∀l ∈ {0, . . . , t}, ∀h∈ {0, . . . , l −1} Rl ,h ≤ ah. (53)

Again, as for constraints (37)-(40), only half of the inequalities need to be adjoined. This
time, since the variablesR appear in the objective function with a negative sign, we should
adjoin (50) and (51) to the model.

Finally, to estimatet, recall that the maximum value which can be taken byD1 is the sum
Dc of the degrees of all the vertices in the current cluster. Moreover, from (48) the maximum
possible value forD1 is 2t+1−1. Hence,t can be computed as:

2t+1−1≥ Dc ⇒ t = ⌈log2(Dc+1)−1⌉. (54)

Now we can define the formulationOB2a:

max
1
m

(

m1+m2−
1

2m

(

t

∑
l=0

22l al +
t

∑
l=0

∑
h<l

2l+h+1Rlh +
Dc

2

2
−D1Dc

))

(55)

s.t. ∀(vi ,v j) ∈ Ec Xi, j,1 ≤Yi,1 (56)

∀(vi ,v j) ∈ Ec Xi, j,1 ≤Yj,1 (57)

∀(vi ,v j) ∈ Ec Xi, j,2 ≤ 1−Yi,1 (58)

∀(vi ,v j) ∈ Ec Xi, j,2 ≤ 1−Yj,1 (59)

∀l ∈ {0, . . . , t}, ∀h∈ {0, . . . , l −1} Rl ,h≥ al +ah−1 (60)

∀s∈ {1,2} ms = ∑
(vi ,v j )∈Ec

Xi, j,s (61)

D1 = ∑
vi∈Vc

kiYi,1 (62)

D1 =
t

∑
l=0

2l al (63)

∀s∈ {1,2} ms∈ R (64)

D1 ∈ R (65)

∀vi ∈Vc, ∀s∈ {1,2} Yi,s∈ {0,1} (66)

∀(vi ,v j) ∈ Ec, ∀s∈ {1,2} Xi, j,s∈ R
+
0 (67)

∀l ∈ {0, . . . , t}, ∀h∈ {0, . . . , l −1} Rl ,h ∈ R
+
0 . (68)
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3.2.1 Compact binary decomposition

It is possible to reduce the number of variablesR in the previous model. The variableRl ,h is
the linearization of the termal ah, used in the objective function (55). We can write the term
of this objective function which involves the variablesRl ,h in this way:

t

∑
l=0

∑
h<l

2l+h+1Rlh =
t

∑
l=0

∑
h<l

2l+h+1al ah =
t

∑
l=0

2l+1al ∑
h<l

2hah =
t

∑
l=0

2l+1al bl =
t

∑
l=0

2l+1Rl ,

(69)
whereRl = al bl andbl is a new variable defined as∑h<l 2hah. Since the upper bound forbl

is Ubl = ∑h<l 2h = 2l −1, the constraints to add to the model are the following:

∀l ∈ {0, . . . , t} bl = ∑
h<l

2hah (70)

∀l ∈ {0, . . . , t} Rl ≥ 0 (71)

∀l ∈ {0, . . . , t} Rl ≥Ubl al +bl −Ubl . (72)

With respect to the previous formulation, we have nowt + 1 variablesRl instead of t2+t
2

variablesRl ,h, and we have adjoinedt+1 variablesb andt+1 constraints (70). Actually, we
can notice thatb0 = 0 andb1 = a0, but avoiding to define these variables does not change
significatively the computation time. This formulation will be addressed asOB2b.

3.2.2 Compact binary decomposition 2

Consider again the objective function (55) obtained after the transformation proposed in the
previous section. In order to have a more compact representation of it, we can put together
the term containing the variablesal andRl in this way:

t

∑
l=0

22l al +
t

∑
l=0

2l+1Rl =
t

∑
l=0

22l al +
22l

2l−1 Rl =
t

∑
l=0

22l
(

al +
al bl

2l−1

)

. (73)

Hence, we can write

t

∑
l=0

22l
(

al +
al bl

2l−1

)

=
t

∑
l=0

22l

2l−1 al

(

bl +2l−1
)

=
t

∑
l=0

2l+1al zl =
t

∑
l=0

2l+1Tl , (74)

where the new variablezl is equal tobl +2l−1 andTl is the linearization ofal zl . Then, we
should remove the variablesR andb from our formulation (and all the related constraints),
and adjoin the new variablesz andT, as well as these constraints:

∀l ∈ {0, . . . , t} zl = ∑
h<l

2hah+2l−1 (75)

∀l ∈ {0, . . . , t} Tl ≥ 0 (76)

∀l ∈ {0, . . . , t} Tl ≥Uzl al +zl −Uzl , (77)

whereUzl is the upper bound of the variablezl , and it is equal to 2l . The number of variables
and constraints is the same as in the previous section (again, we could omit to definez0 and
z1, sincez0 = 2−1 andz1 = a0+1). The corresponding reformulation is calledOB2c.
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3.3 Symmetry breaking constraint

At each step of the hierarchical divisive algorithm a cluster is split in two new clusters, if this
division improves the total modularity. It is easy to see that, given a solution of the bipartition
problem, the vertices in the first and second cluster can be swapped to obtain a symmetric
solution. Since the problem of the optimal bipartitioning is solved exactly by the Branch-
and-Bound Mixed Integer Linear Programming (MILP) algorithm of CPLEX, removing
symmetric optima may reduce the size of the Branch-and-Bound tree, and consequently
reduce the time to reach the leaves of the tree (i.e., the optimal solutions). A simple way to
avoid this is to fix one of the vertex to belong to one of the two clusters.

Some tests show that the best results are obtained by fixing the vertex with highest
degree. Intuitively, this happens because that vertex is involved in more constraints. Hence,
the modelOB3 is obtained by adding the following constraint to the modelOB:

Yg = 0, g= argmax{ki , ∀vi ∈Vc}. (78)

4 Numerical results

In this section we present a comparison of numerical resultsprovided by the hierarchical di-
visive heuristic with the proposed reformulations. Results have been obtained on a 2.8GHz
Intel Core i7 CPU of a computer with 8 GB RAM running Linux and CPLEX 12.2 (IBM
2010), where we performed a fine tuning of the parameters (more precisely, we found ex-
perimentally that the best configuration is the one where theMILP cutting plane generation
is disabled, and the branching variable selection strategyis the branch based on pseudo re-
duced costs). The stopping rule of CPLEX is the default, i.e., no limitation on the number
of nodes or execution time has been used, so CPLEX stops when the optimal solution of
the bipartition problem is found. Results are obtained on a set of instances of the literature,
presented in Table 1. In Tables 2-4 we show the comparison of the performances of the
divisive hierarchical heuristic algorithm when the different proposed formulations for the
bipartition model are used.M denotes the number of clusters,Q the modularity andnodes
the total number of Branch-and-Bound nodes. Computing times are in seconds. Note that
slight discrepancies may arise in the values ofM andQ; they are due to the fact that optimal
bipartitions are not necessarily unique.

It appears from Table 2 that the proposed reformulations of the original quadratic model
clearly impact the resolution time.OB1 outperformsOBandOB3 in terms of computational
time. As expectedOB3 reduces the number of Branch-and-Bound nodes.

From Table 3 we note that when using the binary decompositionreformulations we
obtain the best computational time by employingOB2c, except for the largest instances (i.e.,
7 (Football), 9 (USAir97), and 12 (Power)) where the best oneis OB2a. The interest of
reformulations based on binary decomposition is that they yield MILP models which can
be solved by other integer linear programming solvers whichcannot be employed to solve
convex mixed-integer quadratic problems. However, when using CPLEX, best results can be
obtained by a suitable parameter setting with the quadraticreformulated model, as shown in
Table 4. Note that with different settings of the parametersand earlier versions of CPLEX,
the best results (but still worse than the ones presented in Table 4) were obtained by the
binary decomposition reformulationOB2c merged withOB1 andOB3.

In Table 4 we present the results of the best formulation found obtained by merging
OB1 andOB3, that is the compact reformulation of the original quadratic model with the
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Table 1: Informations about the used graphs.

ID Graph n m Reference

1 Karate 34 78 Zachary (1977)
2 Dolphins 62 159 Lusseau et al. (2003)
3 Les Miśerables 77 254 Hugo (1951), Knuth (1993)
4 A00 main 83 135 Batagelj and Mrvar (2006)
5 Protein p53 104 226 Dartnell at al. (2005)
6 Political books 105 441 Krebs (2008)
7 Football 115 613 Girvan and Newman (2002)
8 A01 main 249 635 Batagelj and Mrvar (2006)
9 USAir97 332 2126 Batagelj and Mrvar (2006)

10 Netscience main 379 914 Newman (2006a)
11 S838 512 819 Milo et al. (2004)
12 Power 4941 6594 Watts and Strogatz (1998)

Table 2: Comparison between the original formulationOB proposed in Cafieri et al. (2011)
and recalled in Section 2, the reformulationOB1 with fewer variables and constraints pro-
posed in Section 3.1, andOB3 obtained by adjoining the symmetry breaking constraint to
the original formulation, as proposed in Section 3.3.

OB OB1 OB3
ID M Q nodes time nodes time nodes time

1 4 0.4188 45 0.14 41 0.06 18 0.07
2 4 0.5265 207 0.59 157 0.19 98 0.49
3 8 0.5468 205 1.09 185 0.40 102 0.58
4 7 0.5281 76 0.35 56 0.11 27 0.08
5 7 0.5284 275 1.10 201 0.53 135 0.59
6 4 0.5263 313 3.04 294 1.00 145 1.36
7 10 0.6009 8853 307.66 5410 56.69 3014 118.24
8 15 0.6288 1119 47.83 1010 16.85 997 45.85
9 8 0.3596 16682 4585.04 17811 1041.89 9446 2510.81

10 20 0.8470 291 3.64 267 1.44 108 1.82
11 15 0.8166 392 5.26 304 1.26 197 2.15
12 41 0.9396 1459 708.51 1449 217.61 815 417.26

symmetry breaking constraint adjoined. The computing timeis significantly reduced with
respect to the original formulation. It is reduced by a factor up to 10 for one of the largest
instances, that is the number 9 (USAir97). For the sake of completeness, we also report
the optimal results (Mopt andQopt) obtained by the column generation method presented in
Aloise et al. (2010) for the tested graphs except the number 12, i.e., Power, since the largest
instance solved by this approach is S838.

5 Conclusions

In this paper we analyze the impact of reformulating the mathematical programming for-
mulation of the bipartition problem arising in a hierarchical divisive algorithm for graph
clustering. The original quadratic model is reformulated in such a way that the number of
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Table 3: Comparison between the different binary decomposition reformulations proposed
in Section 3.2

OB2a OB2b OB2c
ID M Q nodes time nodes time nodes time

1 4 0.4188 123 0.52 137 0.44 148 0.13
2 4 0.5265 505 1.29 466 1.92 498 0.59
3 8 0.5468 577 2.16 563 1.97 559 0.80
4 7 0.5281 251 0.74 272 0.46 345 0.35
5 7 0.5284 678 3.22 815 1.85 1052 1.38
6 5 0.5270 1284 9.17 1407 4.19 1670 3.99
7 10 0.6009 25406 252.96 40922 340.23 38910 331.50
8 15 0.6288 4395 61.49 5912 66.04 5783 58.73
9 8 0.3596 63687 3074.09 89520 4295.85 91917 4610.60

10 20 0.8470 931 14.53 1206 9.46 1359 7.17
11 15 0.8167 1348 22.46 2032 24.08 2317 11.31
12 41 0.9395 11289 2029.63 16940 2605.25 19672 3071.16

Table 4: Optimal solutions (Mopt andQopt) obtained by the column generation approach
presented in Aloise et al. (2010), and results obtained by the formulation with less variables
and constraintsOB1 together with the symmetry breaking constraint of formulation OB3.

OB OB1+OB3
ID Mopt Qopt M Q nodes time nodes time

1 4 0.4198 4 0.4188 45 0.14 17 0.04
2 5 0.5285 4 0.5265 207 0.59 93 0.16
3 6 0.5600 8 0.5468 205 1.09 105 0.35
4 9 0.5309 7 0.5278 76 0.35 26 0.04
5 7 0.5351 7 0.5284 275 1.10 119 0.26
6 5 0.5272 4 0.5263 313 3.04 152 0.51
7 10 0.6046 10 0.6009 8853 307.56 3822 44.38
8 14 0.6329 15 0.6288 1119 47.83 726 9.72
9 6 0.3682 8 0.3596 16682 4585.04 8665 446.06

10 19 0.8486 20 0.8470 291 3.64 94 0.85
11 12 0.8194 15 0.8166 392 5.26 186 1.18
12 - - 41 0.9396 1459 708.51 891 123.85

variables and constraints is reduced and a symmetry breaking constraint is added. An alter-
native linear formulation, obtained by employing a binary decomposition, is also proposed.
Numerical results show that the proposed reformulations ofthe quadratic model significantly
reduce the computational time.
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Fortet, R. (1960). Applications de l’algèbre de Boole en recherche opérationelle.Revue Française de
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