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Abstract Finding clusters, or communities, in a graph, or networkusry important prob-
lem which arises in many domains. Several models were pegpfus its solution. One of
the most studied and exploited is the maximization of theadled modularity, which repre-
sents the sum over all communities of the fraction of edgésimihese communities minus
the expected fraction of such edges in a random graph witbatime distribution of degrees.
As this problem is NP-hard, a few non-polynomial algoritremsl a large number of heuris-
tics were proposed in order to find respectively optimal ghhinodularity partitions for a
given graph. We focus on one of these heuristics, namely iaid#vhierarchical method,
which works by recursively splitting a cluster into two nelusters in an optimal way. This
splitting step is performed by solving a convex quadratmgpam. We propose a compact
reformulation of such model, using change of variablesaagin of integers in powers of
two and symmetry breaking constraints. The resolution tsweduced by a factor up to 10
with respect to the one obtained with the original formwiati

Keywords clustering:- compact reformulationdivisive hierarchical heuristicmodularity
maximization.

1 Introduction

A graph, or networkG = (V,E) can be represented as a ¥ebf vertices and a sef of
edges connecting pairs of vertices. This model has beemsintddy used in several domains
to represent complex systems (Newman 2010). For instameenétabolic network studied
in biology and bioinformatics (Guimaret Amaral 2004, Palla et al. 2005), social networks
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(Girvan and Newman 2002) and other applications in infoitsatis recommender systems
(Adomavicius and Tuzhilin 2005) or the World Wide Web (Flatel. 2002).

One of the most important tasks is to identify the structdrguch graphs, and in partic-
ular to find subsets of vertices, calledmmunitieor clusters where each cluster contains
vertices which are more likely to be connected pairwise Ww#town vertices than to those
belonging to other communities. In order to formalize tlied, different definitions were
proposed. One of the best known is provided by Radicchi €2@04), with the concepts of
strong communitandweak communitya strong community contains vertices having more
neighbours inside than neighbours outside the communltgreas in a weak community
the total number of inner edges (joining two vertices of gr@e community) must be greater
or equal to half of the number of cut edges (with two verticedifferent communities).

Given a graph and a partition, another measure of the exdenlich the classes of the
partition can be considered to be communities is providethkyfamous criterion called
modularity (Girvan and Newman 2002; Newman and Girvan 2004), whichesspts the
fraction of edges within communities minus the expectedtioa of such edges in a ran-
dom graph with the same degree distribution. Alternativgiyen a graph, modularity can
be maximized to find an optimal partition, together with itember of clusters and their
modularities. Given an unweighted gra@hits modularityQ is defined as:

me  D¢?

wherem is the number of edges of the graph, is the number of edges within cluster
¢, andD¢ is the sum of the degrees of the vertices which are insidecthier. Note that
the modularity of the graph can be seen as the sum of the nrdddaof each cluster.
The extension of this definition to weighted graphs is presgbin Fortunato (2010). The
maximization of modularity is a NP-hard problem, as provedbandes et al. (2008).

Although modularity maximization is a very popular critari a few criticisms have
been recently raised, the most important of them being tbelwgon limit and the degen-
eracy of the modularity function. The former refers to thetfnat in some cases some
clusters, smaller than a certain size which depends on tbeuof edges of the network,
may not be detected and they remain hidden within largetensisas reported in Fortunato
and Barthelemy (2007), Good et al. (2010). The latter ige€l#o the possible presence of
several high modularity partitions, even very differewnfreach other, which makes hard to
identify the global optimum (Good et al. 2010). Some appheado address these criticisms
are presented in Arenas et al. (2008), Kumpula et al. (2@&aihardt and Bornholdt (2006)
and Sales-Pardo et al. (2007), though they do not solve tit#gims in a fully satisfactory
manner. Strengths and weaknesses of modularity are alsesdisd in Fortunato (2010) and
Cafieri et al. (2010). Despite these criticisms, modulastily remains an interesting crite-
rion for network clustering, which is widely employed in tliterature. Clear advantages of
this criterion include its intuitive meaning and simple menatical formulation, as well as
its independence on any parameter to be decided arbitrarely

Several methods have been proposed in the literature toifiinchiodularity partitions:
a few exact methods, and several heuristics. Among the ematiiods, there is a clique
partitioning algorithm originally proposed by Gschel and Wakabayashi (1989), which is
similar to the one presented in Brandes et al. (2008), colgemerations algorithms pro-
posed by Aloise et al. (2010), and a mixed-integer convexigaige programming formula-
tion due to Xu et al. (2007). Concerning the heuristics, maeyhods have been proposed.
They are presented in the survey of Fortunato (2010). Giagténeuristics are either hi-
erarchical, which aim at finding a set of nested partitiomspartitioning schemes, which
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aim at finding a single partition or possibly several panti§ into given numbers of clus-
ters. The aim of this paper is to investigate mathematicag@mming reformulations of a
clustering bipartition problem formulated as a quadratired-integer program, arising in
the locally optimal hierarchical divisive approach for nuattity maximization proposed in
Cafieri et al. (2011). We present several reformulationsiefariginal model. They include
reformulations aiming to reduce the dimension of the pnokleumber of variables and con-
straints), reformulations aiming to linearize nonlineamnts by binary decompositions and a
reformulation based on symmetry breaking constraints.petle of reformulations leading
to thebest formulatiorfor the bipartition problem appears to be the one passirmutir

a few steps whose effect is to reduce the number of variablésenstraints and to adjoin
symmetry breaking constraints to the obtained compactdtation. Note that with best for-
mulation we mean the one that provide the optimal solutidass CPU time. Hence, we do
not improve the quality of the results, in terms of modulanitrovided by the hierarchical
divisive heuristic in Cafieri et al. (2011). Rather, we prspsome techniques to decrease
the computational time required to obtain the solution.

The rest of the paper is organized as follows: in Section 2hiristic proposed in
Cafieri et al. (2011) is presented more in details, while ioti®a 3 we introduce our re-
formulations of the bipartition model. Then, in Section 4 present numerical results and
finally Section 5 concludes the paper.

2 Original model for cluster bipartition

Hierarchical heuristics are in principle devised for firglenhierarchy of partitions implicit
in the given graph when it corresponds to some situation evh@rarchy is observed or
postulated. This is often the case, for instance, in socgdmzation and evolutionary pro-
cesses. Hierarchical heuristics can be further dividen dgglomerative and divisive ones.
Hierarchical divisive heuristics (see, e.g. Newman 20@8breed from an initial partition
containing all then vertices of the graph and iteratively divide a cluster im0 in such a
way that the increase in the objective function value is éingdst possible, or the decrease in
the objective value is the smallest possible. Cluster kitfars are iterated until a partition
into n clusters having each a single entity is obtained. In practiéth an objective function
like modularity, bipartitions can be ended once they do ngirbve the objective function
value anymore. A sketch of the divisive algorithm is givertig. 1.

The subproblem of finding a bipartition locally optimiziniget modularity criterion is
difficult. Brandes et al. (2008) in fact proved that modujamaximization is NP-hard
even for two clusters. Cafieri et al. (2011) recently proplcgenodularity maximizing di-
visive heuristic where the optimization subproblem forstéu bipartition is expressed as
a quadratic mixed-integer program with a convex relaxati®inary variables are used to
identify to which cluster each vertex and each edge beldvigse precisely, variableX;
for each edgévi,vj) ands= 1,2, and variable¥; ; fori = 1,2,...n are defined in such a
way thatX j s is equal to 1 if the edgéy;, vj) is inside the clustes (i.e., both vertices; and
vj are inside the clustes), andY; 1 is equal to 1 if the vertey; is inside the cluster 1, and
0 otherwise. VariableX give rise to two sets of variableX; j 1 andX; j », as an edge may
belong to the first cluster, or to the second one, or be a bbdggeen both of them. As for
variablesy, only one seY; ; suffices as any vertex which does not belong to the first aluste
must belong to the second.

Recall the definition of modularity (1). Since a bipartitibas to be computed, only two
sub-clusters have to be considered, and the sum of degrerestices belonging to one of
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Algorithm: Hierarchical divisive algorithm
Input: graphG = (V,E), where[V| =nand|E| =m
Output: a partitionsP of V

1 P«C = {{V]_,Vz7 . ,Vn}}

2 k«1

3 while k < |P| and3C; € P not visiteddo

4 selecC; € P (not visited) with the smallest possible indiex
5 partitionC; into Cy; andCyi.1 maximizing the modularity
6 if Q(Czi) +Q(Cait1) > Q(Ci)
7 then
8 P« (PU{Ca} U{Ca1a})\{Ci}
9 k—k+1
10 end if
11 end while

Fig. 1: The hierarchical divisive algorithm.

the two sub-clusters can be expressed as a function of thefsdegrees of the other cluster:
D2 = DC - D17 (2)

whereD1 andD> are the sum of the degrees of the vertices inside the twoethiahdD. is
a parameter given by the sum of degrees in the cludtebe bipartitioned (it is equal to2
at the outset). Hence, the objective function (1) of the iflan subproblem :

M +mp D12+ Dy?
T m T am (3)

wheremy, andmy, are respectively the numer of edges inside the two clustarsbe rewrit-
ten, using equation (2), as:

Qe

o _m1+mziD12+(Dc—D1)2_m1+mziD7127D702+D1Dc @
7 m 4m? Tom 2m 4m2 T 2me
As for the constraints, the following inequalities are useinpose that any edde;, vj)
with end vertices indiced biyand j can only belong to clustesif both of its end vertices
also belong to that cluster:

Y(vi,Vvj) €Ec Xij1<Yi1 (5)
V(vi,vj) €Ec Xij1<VYj1 (6)
V(vi,vj) €Ec Xij2<1-Yi1 (7
V(vi,vj) €Bc Xij2<1-Yj1. (8)

Furthermore, the number of edges of each of the two clustelshee sum of vertex degrees
of the first cluster are expressed as follows:

vse{l2} ms= 3 Xjs 9
(vi,vj)€Ec

D; = kiYi1, (10)

ViEVe
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wherek; is the degree of the vertexandV; andE. are respectively the set of vertices and the
set of edges of the clusterto be bipartitioned. Hence, the complete formulation pegub
in Cafieri et al. (2011), and called from nd®B (Optimal Bipartition), is the following:

max © (m1+m2—i (D12+D°2 —Dch>> (11)

m 2m 2
S.t. V(Vi,Vj) €E X,j1<VYi1 (12)
V(vi,vj) €Ec X j1<VYj1 (13)
V(vi,vj) €Ec Xij2<1-Yi1 (14)
V(Vi,Vj) €E Xj2<1-Yj1 (15)
vse{l2} ms= 3 Xjs (16)

(Vivj)€Ee
Di= ) kY1 (17)
Vi€V

vse{1,2} mseR (18)
Di1eR (19)
Wi eVe Yiie {01} (20)
V(vi,Vj) €E;,Vse {1,2} X jseR{. (21)

Note that the variabl®1 is not defined to be integer and non-negative in @& model,
since this is automatically implied by constraint (17).

3 Improved formulations of the bipartition problem

It is possible to obtain a compact and more efficient formomafor the OB model. This
can be done thanks to 3 reformulations, which are discussgarately in the rest of the
section: (i) reduction of the number of variables and casts; (ii) application of the binary
decomposition technique; (iii) addition of a symmetry kiag constraint.

3.1 Reduction of number of variables and constraints

Starting from theOB model, half of the variableX can be removed and the number of
constraints can be reduced on the basis of the followingideretions.

Consider theX variables. Looking at the objective function (11) of b8 formulation,
we notice that it contains the tenm + np, which represents the sum of the number of edges
in the first and the second cluster. Since we are interestéadsrsum, we do not actually
need to know if an edge is in the cluster 1 or 2, but only if it igwm a cluster or not. Hence,
we can drop the indegof variablesX, moving from the original definition:

(22)

1, ifedge(v;,v;j) belongs to clustes,
XiA,js = .
0, otherwise,

to a new set of variableX j, whereX; j is equal to 1 if the edgév;, vj) is within the cluster
1 or 2, and O otherwise. In other words, we can deXjgeas:

1, Y=Y,
= 23
A {O, otherwise, (23)
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where we also drop the meaningless index 1 fromtheriables. SinceX j can be seen
as the negation of the XOR operation betw¥eandY; variables, the following constraints
can be employed (Brown and Dell, 2007) to express the reiship betweeX andY':

V(Vi,Vj)EEC ijj SYi—Yj—i-l (24)
V(Vi7VJ’)€E¢ )(j"j SYj*YiJrl (25)
V(vi,vj) €eEc X;j=>Yi+Y,—1 (26)
V(Vi7Vj)€Ec Xi=1=-Yi—=Y]. (27)

Actually, only half of these constraints are useful: as akmd in Adams and Dearing
(1994), since the coefficient of the variablss positive in the objective function, and we
are considering a maximization problem, we can drop thetcaings (26) and (27). Note
that, as in the original model, thevariables are binary and thevariables are non-negative
and continuous. On the basis of these consideration§Brmodel can be reformulated this
way:

max E ( z X j— i <D12+ Dicz — Dch)) (28)
m (Vi TeEe Too2m 2
st V(vi,vj)) €eEc X;<Y-Y;+1 (29)
V(Vi,Vj)EEC XiﬁngijiJrl (30)
Di= Y kY (31)
Vi Ve
Di1eR (32)
Wi eV Yie{0,1} (33)
V(vi,vj) €eEc X j€eR. (34)

Due to the elimination of the indexfrom the variables(, their number is now halved.
Consider again the definition (23) of the variabdesWe can express it by employing
the product of the variableg andY; this way:

Xj=2%Y; =YY +1 (35)

Using this definition, we can replace the constraints (2#)-(vith a new set of inequal-
ities, and replace the set of variabswith another set of variableS (having the same
cardinality), which represent the product of theariables in (35). The new variabl&sare
then defined as:

V(Vi7Vj) cE §j=YYj, (36)

where the inequalities needed to describe this relatipnstun be obtained after applying
(35) to (24)-(27) (note that these constraints corresporithé Fortet inequalities (Fortet,
1960), which provide an exact linearization of a productiofby variables):

Y(vi,vj) €Ec S >0 37)
V(vi,vj)eE: S;j>Yj+Yi—1 (38)
V(vi,vj) €Ec Sj<Y (39)
(Vi,Vj)

vi,vj)eE. §;j <Y, (40)
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We can put now in the objective function (28) the definitioB)(3using theS variables, in
place ofX; j, and we can replace the constraints (29)-(30) with the n&\{B88¢-(40) (again,
only half of the constraints are needed). Thus, the new modiédOBy, is the following:

1 1 D2
max ( > (28X =Y+ Bl - o (D12+2°—D1DC)) (41)
(Vi,Vj)€Ee

st V(vi,vj))eEc §;<Y (42)
V(Vi,Vj) cE S, <Y (43)
D1 = kiYi (44)

ViV
V(vi,vj) eEc SjeR (45)
D;eR (46)
Wi eV, Y e{0,1}, (47)

where in the objective function we use the fact thaj v )ce, 1 = |E¢|. Computational ex-
periments show that the formulation using ®eariables outperforms the one with te
variables. Intuitively, the constraints (42) and (43), efhinvolve separately variabl&sand
Yj, give rise to a more sparse matrix constraints than the @oe@ged with constraints (29)
and (30) involving bothy; andY; variables.

The reformulation ofOB into OB; proposed in this section is the result of a few re-
formulation steps aiming at reducing the number of varislaed constraints. These re-
formulations, though proposed in the framework of modtyamaximizing graph clus-
tering, can be more generally applied to a mathematicalrarogexhibiting objective and
constraints with the same mathematical expressions. Ma@sely, consider variables of
type X js s < {1,2}, whereX j1+ X j2 < 1, coupled with binary variable¥ such that
Vse {1,2} X js=11if Y =Y; =1, and 0 otherwise. If in the problem the variabkg s
only appear in the forny o1 51 X j.s, the following symbolic algorithm can be applied to
automatically obtain the described reformulations:

1. replace expressidfsc 1.2y Xi js With X j

2. replace variableX ; with 2Y;Y; —Yi —Y; +1

3. replace productgY; with variablesS |

4. adjoin constraints (37)-(40) (only (37)-(38) if the \&lesS are minimized in the ob-
jective function, (39)-(40) if they are maximized).

As remarked, th&; j represent the negation of the XOR operation betwgandy;. In case

of other relationships holding betwe&nandsS, these relationships have to be expressed by

a different set of constraints. An extended version of tlepsed symbolic algorithm can

take into account binary operators other than the negafidiO®R.

3.2 Binary decomposition

The objective function 0OB involves the ternD12, which is the square of a sum of binary
variablesy multiplied by integer values, i.e., the degrees of the westi Hence, it is possible
to apply the binary decomposition technique recently eggaddor mixed-integer quadratic
programming in Billionnet et al. (2010) which consists intig the termD1 this way:

t
Di=Y 2a, 48
1 |;) a (48)
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wherea, are binary variables, arids a parameter which will be computed later. Using this
definition of D1, we can expresb;? as:

t t t ot t ot t t
D12 _ Z)Zla‘ . Zozhah _ 20 %thalah _ Z) %ZIJthlh _ Z)zzlal + Z)z\ZIJrh+lth7
1= h= I=0h= I=0h= 1= IZ0R<
(49)
whereR are the variables used to replace the products between tiablesa. The Fortet
inequalities can be used to express this relationship:

V1 €{0,...,t},vhe{0,....I -1} Rp>0 (50)
VIe{0,... t},vhe{0,....I-1} Rp>a+a,—1 (51)
VIe{0,... t},vhe{0,....I-1} Rn<a (52)
VI €{0,....t},vhe{0,....I -1} Rn<an (53)

Again, as for constraints (37)-(40), only half of the inelifies need to be adjoined. This
time, since the variablg? appear in the objective function with a negative sign, weugtho
adjoin (50) and (51) to the model.

Finally, to estimate, recall that the maximum value which can be takebhys the sum
D. of the degrees of all the vertices in the current cluster.edeer, from (48) the maximum
possible value fob; is 21 — 1. Hencef can be computed as:

21 _1>D; = t=/logy(Dc+1)—1]. (54)

Now we can define the formulatidDBy;:

max — m+mz—i t22'au+t 2R +D—°2—DD (55)
m\ " 2m |; éﬁr; "2 ne

st V(vi,vj) €eEc Xij1<VYi1 (56)
V(vi,vj) €Ec Xij1<Yj1 (57)
V(vi,vj) €Ec Xij2<1-Yi1 (58)
V(vi,vj) €Ec Xij2<1-Yj1 (59)
VI e{0,....t},vhe{0,...,I-1} Rp>a+an—1 (60)
vsef{l2} ms= 3 Xjs (61)

(vi,vj)€Ec
D1 = kiYi 1 (62)
ViEVe
Dy = t%z'a; (63)
|=
vse{1,2} mseR (64)
DieR (65)
Wi eV, Vse {1,2} Yise{0,1} (66)
V(vi,vj) € Ec,¥se {1,2} X js€ Ra’ (67)

vl €{0,...,t},vhe{0,....I -1} RpeR{. (68)
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3.2.1 Compact binary decomposition

It is possible to reduce the number of varialfRis the previous model. The variatiR, is
the linearization of the term ay,, used in the objective function (55). We can write the term
of this objective function which involves the variablgg, in this way:

t t t t t
2|+h+1R|h — 2|+h+1alah _ 2H—1aI zhah _ 2I+1a| b| _ 2|+1R|7
R S
whereR, = a /by andby is a new variable defined g5, 2May,. Since the upper bound for
isUp, = he 2" =2 — 1, the constraints to add to the model are the following:

vl €{0,...,t} b|:22hah (70)
h<

vie{0,....,t} R>0 (71)

VIe{0,....t} R >Upa+b —Uy. (72)

With respect to the previous formulation, we have nowl variablesR, instead oftzT+t
variablesR ,, and we have adjoinddr 1 variables andt + 1 constraints (70). Actually, we
can notice thabg = 0 andb; = ag, but avoiding to define these variables does not change
significatively the computation time. This formulation Wik addressed a3B;y,.

3.2.2 Compact binary decomposition 2
Consider again the objective function (55) obtained afterttansformation proposed in the

previous section. In order to have a more compact repreagamt it, we can put together
the term containing the variablesandR, in this way:

t 2l t 11 t 2l 22| t 2l a4b|

Hence, we can write

|t%22| <a +2II7PI1) N |t%22i|184 (bl +2|_l> B IiZ'”am B |t%2|+lTl7 7

where the new variable is equal toby + 2'-1 andT, is the linearization ofyz. Then, we
should remove the variablésandb from our formulation (and all the related constraints),
and adjoin the new variablesandT, as well as these constraints:

vl € {0,...,t} z.:Zzhaﬁz'*l (75)
h<

vle{0,....,t} T>0 (76)

V1€ {0,...,t} Ti>Uza+2—Uy, (77)

whereU,, is the upper bound of the varialdg and it is equal to 2 The number of variables
and constraints is the same as in the previous section (ageicould omit to definey and
71, sincezg = 21 andz; = ag+ 1). The corresponding reformulation is call®@,:.



10 Sonia Cafieri et al.

3.3 Symmetry breaking constraint

At each step of the hierarchical divisive algorithm a clug@esplit in two new clusters, if this
division improves the total modularity. It is easy to sed,tbaven a solution of the bipartition
problem, the vertices in the first and second cluster can lapp&d to obtain a symmetric
solution. Since the problem of the optimal bipartitionisgsblved exactly by the Branch-
and-Bound Mixed Integer Linear Programming (MILP) algomit of CPLEX, removing
symmetric optima may reduce the size of the Branch-and-8dree, and consequently
reduce the time to reach the leaves of the tree (i.e., thenaptolutions). A simple way to
avoid this is to fix one of the vertex to belong to one of the thusters.

Some tests show that the best results are obtained by fixengeftex with highest
degree. Intuitively, this happens because that vertew@iad in more constraints. Hence,
the modelOBs; is obtained by adding the following constraint to the madst

Yg=0, g=argmaxk, v € Vc}. (78)

4 Numerical results

In this section we present a comparison of numerical reputtéided by the hierarchical di-
visive heuristic with the proposed reformulations. Reshhlve been obtained on a 2.8GHz
Intel Core i7 CPU of a computer with 8 GB RAM running Linux an®KEX 12.2 (IBM
2010), where we performed a fine tuning of the parametersgpiacisely, we found ex-
perimentally that the best configuration is the one wherévthd® cutting plane generation
is disabled, and the branching variable selection stratetye branch based on pseudo re-
duced costs). The stopping rule of CPLEX is the default, ne.limitation on the number
of nodes or execution time has been used, so CPLEX stops wkeoptimal solution of
the bipartition problem is found. Results are obtained oetakinstances of the literature,
presented in Table 1. In Tables 2-4 we show the comparisoheopérformances of the
divisive hierarchical heuristic algorithm when the diffat proposed formulations for the
bipartition model are usedd denotes the number of cluste€3the modularity andhodes
the total number of Branch-and-Bound nodes. Computinggiare in seconds. Note that
slight discrepancies may arise in the value®dadndQ; they are due to the fact that optimal
bipartitions are not necessarily unique.

It appears from Table 2 that the proposed reformulationkebtiginal quadratic model
clearly impact the resolution tim&B; outperformsOB andOBg in terms of computational
time. As expecte®B; reduces the number of Branch-and-Bound nodes.

From Table 3 we note that when using the binary decompositéformulations we
obtain the best computational time by employ®B,., except for the largest instances (i.e.,
7 (Football), 9 (USAIir97), and 12 (Power)) where the best Bn@®By,. The interest of
reformulations based on binary decomposition is that theldyMILP models which can
be solved by other integer linear programming solvers whatmot be employed to solve
convex mixed-integer quadratic problems. However, whé@muSPLEX, best results can be
obtained by a suitable parameter setting with the quadmefiicmulated model, as shown in
Table 4. Note that with different settings of the parameterds earlier versions of CPLEX,
the best results (but still worse than the ones presentedbte®) were obtained by the
binary decomposition reformulatiddB,:; merged withOB; andOBs.

In Table 4 we present the results of the best formulation dooiotained by merging
OB; andOBg, that is the compact reformulation of the original quadratiodel with the
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Table 1: Informations about the used graphs.

ID Graph n m Reference
1 Karate 34 78  Zachary (1977)
2 Dolphins 62 159 Lusseau et al. (2003)
3 Les Mistrables 77 254  Hugo (1951), Knuth (1993)
4 A00 main 83 135 Batagelj and Mrvar (2006)
5 Protein p53 104 226 Dartnell at al. (2005)
6  Political books 105 441  Krebs (2008)
7  Football 115 613  Girvan and Newman (2002)
8 A0l main 249 635 Batagelj and Mrvar (2006)
9 USAIr97 332 2126 Batagelj and Mrvar (2006)
10 Netscience main 379 914  Newman (2006a)
11 S838 512 819 Milo et al. (2004)
12 Power 4941 6594  Watts and Strogatz (1998)

Table 2: Comparison between the original formulat@®B proposed in Cafieri et al. (2011)
and recalled in Section 2, the reformulatiom; with fewer variables and constraints pro-
posed in Section 3.1, ardB; obtained by adjoining the symmetry breaking constraint to
the original formulation, as proposed in Section 3.3.

OB OB, OBg

D M Q nodes time  nodes time  nodes time
1 4 0.4188 45 0.14 41 0.06 18 0.07
2 4 0.5265 207 0.59 157 0.19 98 0.49
3 8 0.5468 205 1.09 185 0.40 102 0.58
4 7 0.5281 76 0.35 56 0.11 27 0.08
5 7 0.5284 275 1.10 201 0.53 135 0.59
6 4 0.5263 313 3.04 294 1.00 145 1.36
7 10 0.6009 8853 307.66 5410 56.69 3014 118.24
8 15 0.6288 1119 47.83 1010 16.85 997 45.85
9 8 0.3596 16682 4585.04 178111041.89 9446 2510.81

10 20 0.8470 291 3.64 267 1.44 108 1.82

11 15 0.8166 392 5.26 304 1.26 197 2.15

12 41 0.9396 1459 708.51 1449 217.61 815 417.26

symmetry breaking constraint adjoined. The computing tisnggnificantly reduced with
respect to the original formulation. It is reduced by a factp to 10 for one of the largest
instances, that is the number 9 (USAIr97). For the sake ofpteteness, we also report
the optimal resultsNlop: andQopt) Obtained by the column generation method presented in
Aloise et al. (2010) for the tested graphs except the numbgrel, Power, since the largest
instance solved by this approach is S838.

5 Conclusions
In this paper we analyze the impact of reformulating the maudtical programming for-

mulation of the bipartition problem arising in a hierardlidlivisive algorithm for graph
clustering. The original quadratic model is reformulateciich a way that the number of
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Table 3: Comparison between the different binary decontiposieformulations proposed
in Section 3.2

OBga OBy, OByc

D M Q nodes time  nodes time  nodes time

1 4 04188 123 0.52 137 0.44 148 0.13

2 4 0.5265 505 1.29 466 1.92 498 0.59

3 8 0.5468 577 2.16 563 197 559 0.80

4 7 0.5281 251 0.74 272 0.46 345 0.35

5 7 0.5284 678 3.22 815 1.85 1052 1.38

6 5 05270 1284 9.17 1407 4.19 1670 3.99

7 10 0.6009 25406 252.96 40922 340.23 38910 331.50

8 15 0.6288 4395 61.49 5912 66.04 5783 58.73

9 8 0.3596 63687 3074.09 89520 4295.85 91917 4610.60
10 20 0.8470 931 14.53 1206 9.46 1359 7.17
11 15 0.8167 1348 22.46 2032 24.08 2317 1131
12 41 0.9395 11289 2029.63 16940 2605.25 19672 3071.16

Table 4: Optimal solutionsMop: and Qqpt) Obtained by the column generation approach
presented in Aloise et al. (2010), and results obtained &ydimulation with less variables
and constraint®B; together with the symmetry breaking constraint of formolaOB;.

OB OB, + OBg
ID  Mopt Qopt M Q nodes time nodes time
1 4 0.4198 4 0.4188 45 0.14 17 0.04
2 0.5285 4 0.5265 207 059 93 0.16
3 6 0.5600 8 0.5468 205 1.09 105 0.35
4 9 0.5309 7 05278 76 0.35 26 0.04
5 7 0.5351 7 05284 275 1.10 119 0.26
6 5 0.5272 4  0.5263 313 3.04 152 0.51
7 10 0.6046 10 0.6009 8853 307.56 3822 44.38
8 14 0.6329 15 0.6288 1119 47.83 726 9.72
9 6 0.3682 8 0.3596 16682 4585.04 8665 446.06
10 19 0.8486 20 0.8470 291 3.64 94 0.85
11 12 0.8194 15 0.8166 392 5.26 186 1.18
12 - - 41 0.9396 1459 708.51 891 123.85

variables and constraints is reduced and a symmetry biggakimstraint is added. An alter-
native linear formulation, obtained by employing a binaegdmposition, is also proposed.
Numerical results show that the proposed reformulatiotiseofjluadratic model significantly
reduce the computational time.
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