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2 CMAP, École Polytechnique

Abstract. We present a novel method for computing correspondences
between pairs of non-rigid shapes. Unlike the majority of existing tech-
niques that assume a deformation model, such as intrinsic isometries,
a priori and use a pre-defined set of point or part descriptors, we con-
sider the problem of learning a correspondence model given a collection
of reference pairs with known mappings between them. Our formulation
is purely intrinsic and does not rely on a consistent parametrization or
spatial positions of vertices on the shapes. Instead, we consider the prob-
lem of finding the optimal set of descriptors that can be jointly used to
reproduce the given reference maps. We show how this problem can be
formalized and solved for efficiently by using the recently proposed func-
tional maps framework. Moreover, we demonstrate how to extract the
functional subspaces that can be mapped reliably across shapes. This
gives us a way to not only obtain better functional correspondences, but
also to associate a confidence value to the different parts of the mappings.
We demonstrate the efficiency and usefulness of the proposed approach
on a variety of challenging shape matching tasks.
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1 Introduction

Finding high quality correspondences is a key component in many tasks includ-
ing statistical shape analysis [12], deformation transfer [30] and interpolation
(morphing) [16] among others. While a number of efficient techniques have been
proposed to address the problem of rigid alignment [32], the problem of general
non-rigid shape matching remains difficult.

Most existing methods for finding correspondences between non-rigid shapes
rely on an a priori deformation model, which specifies the space of “reasonable”
maps between shapes. Perhaps the most popular and widely used such model is
that of approximate intrinsic isometries [5, 21], where the mapping is assumed
to preserve geodesic distances between all pairs of points on the shapes. A more
general possibility is to consider conformal deformations, which are only assumed
to preserve angles [19, 17] or to parameterize the space of possible maps using
a fixed deformation model [36]. Although these techniques can produce good
results when the deformation satisfies the a priori model, they can fail badly
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as soon as even moderate deviations from the model are introduced. This is
especially critical since many natural deformations, such as articulated motion of
humans or animals are known to induce potentially significant geodesic distortion
[27]. Incorporating the possibility for such distortion into a deformation model
is challenging especially using a purely axiomatic (theoretical) approach.

Rather than trying to devise a theoretical deformation model capable of
adapting to known deformations, several communities have tackled this chal-
lenge by using a data-driven approach, where the space of “reasonable” maps or
deformations is learned from a set of examples, e.g. [8]. Since obtaining exam-
ple deformations is often significantly easier than devising a unified theoretical
deformation model, such an approach allows the resulting techniques to remain
flexible yet efficient in the particular settings where they are applied.

Most data-driven approaches for devising a deformation model, however, rely
heavily on a consistent parametrization of the deformation domain (e.g. on a
fixed grid in Euclidean space), and perform statistical analysis on the positions
of vertices of the shapes [9, 4, 10, 11]. When computing correspondences between
pairs of surfaces in 3D, such parametrization is often unavailable and moreover,
shapes can undergo severe deformations which are difficult to capture using
purely extrinsic approaches.

In this paper, we propose a purely intrinsic method for exploiting prior cor-
respondence information between pairs of shapes to find better correspondences
between a reference shape and a new previously unseen instance. Rather than
doing the learning over, e.g., the positions of the vertices on the shapes, we
propose to find the optimal set of point descriptors that can be jointly used to
reproduce the given reference maps. While such an optimization is, in general,
very complicated, since even to evaluate how well the descriptors can reproduce a
given map would require a full solution of the shape matching problem, we show
how this problem can be formalized and solved for efficiently by using the re-
cently proposed functional maps framework [22]. Moreover, we demonstrate how
to extract the functional subspaces that can be mapped reliably across shapes.
This gives us a way to not only obtain better functional correspondences, but
also to associate a confidence value to the different parts of the mappings. Our
approach is also quite general since it can be used as a preprocessing step of
other methods using functional maps [24, 14, 3] in order to improve the quality
of the results and help to handle difficult deformation. Note that in this paper we
focus on the shape matching problem which is the most developed application
of the functional maps.

1.1 Related Work

Non-rigid shape matching is a very-well developed area and its complete overview
is beyond the scope of this paper (see, e.g., [6, 35] for recent surveys of this
field). We therefore concentrate on the work directly related to ours, namely
near-isometric shape matching with special emphasis on approaches that utilise
prior knowledge for establishing correspondences between pairs of shapes.
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The vast majority of techniques for non-rigid shape matching implicitly
make use of a deformation model for finding correspondences between geometric
shapes. Perhaps the most common model in the context of intrinsic (i.e., not re-
lying on vertex positions and not assuming approximate alignment) approaches
is approximate isometries, introduced by Bronstein et al. [5] and Mémoli [21].
This model has been used by a large number of methods, (e.g., [13, 33, 23, 28,
22] among many others) that all assume that the sought correspondences must
approximately preserve pairwise geodesic distances. Another set of approaches
is based on a more relaxed model, conformal mappings, used by, e.g., [19, 17]
where only angles are assumed to be preserved. Other techniques, such as the
one used by Zhang et al. [36] explicitly deform a shape using a fixed deformation
model to find correspondences between non-rigid shapes.

All of these approaches use a model given a priori to find correspondences,
which can be problematic if the real deformations do not agree with the given
model. Interestingly, it has recently been observed [27] that even articulated
motion of humans can induce noticeable isometric distortion, which could explain
some of the difficulties encountered by previously proposed techniques.

In contrast, other works have proposed to learn an appropriate deformation
model from a set of examples, and then use this model for shape matching.
Perhaps the best-known example of this approach are Active Shape and Active
Appearance Models [8, 9] and their variants (see, e.g., [11]) used widely in Com-
puter Vision. In a similar vein, techniques in Statistical Shape Analysis [10] use
the distribution of positions of pre-specified landmark points in 3D to learn a sta-
tistical deformation model over which inference can be made. Related techniques
are commonly used in medical imaging and Morphometrics [4] and in Geometry
Processing communities, e.g. [1, 12] among many others. However, all of these
methods assume the existence of a common domain over which learning can be
made, and which most often is done using vertex coordinates of either landmark
points or all points on a fixed reference shape. In the context of intrinsic shape
matching, where shapes lack labeled landmark points and can undergo severe
deformations, vertex coordinates are often not relevant, limiting the applicability
of such techniques.

Rather than relying on vertex positions, recent methods have considered
using derived properties such as point or triangle descriptors for learning. Thus,
Kalogerakis et al. [15] and Van Kaick et al. [34] have proposed using a set example
shape to train classifiers for part segmentation and labeling, which can then be
used to establish part-level correspondences. Similarly, Chen et al. [7] explore
the predictive power of various descriptors for detecting distinctive landmark
(schelling) points identified by users. These methods, while similar to ours in
learning on the level of descriptors do not, however, specifically address the
shape matching problem.

Perhaps most closely related to ours are recent works by Litman et al. [20]
and Rodolà et al. [26], where the authors use a set of examples to learn the most
informative descriptors that are used directly in the context of shape match-
ing. Our approach is fundamentally different, however, since rather than trying
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to identify descriptors that can distinguish different points, we propose to find
the optimal descriptor set that can be used to jointly produce the entire map

across shapes. We thus avoid the problem of obtaining consistent correspon-
dences present in these approaches (and obtained during post-processing), since
consistency is incorporated directly in the learning stage. Crucially, we use the
recently proposed functional map representation [22] that allows us to formulate
the learning problem purely intrinsically, while permitting to directly control
and optimize for the influence of descriptors on the quality of the final map.

Goals Given a collection of (training) shapes with known correspondences our
goal is to identify the most informative descriptor set that can be used to solve
the non-rigid shape matching problem on new (test) instances. Besides we want
to learn where are the most stable correspondences.

2 Consistent Functional Maps

Our method is based on the functional map representation introduced in [22].
In this section, we give a brief overview of the representation and the method
used in [22] to construct a functional map for a given pair of shapes.

While our method is general, throughout the paper we assume that all shapes
are represented as triangle meshes, and all functions are expressed as vectors in
the basis of the eigenfunctions of the Laplace-Beltrami operator. This basis needs
to be computed beforehand on each shape. The objective is to output a uniquely
defined functional map.

2.1 Functional Map Representation

The functional map representation is based on the observation that given two
surfaces S0 and Si, a point-to-point map Ti : Si → S0 induces a map between
function spaces Ci : L2(S0) → L2(Si), where L2(S) is the set of square inte-
grable functions defined on the surface S. The functional map Ci is defined by
composition with Ti as Cif = f ◦ Ti. The operator Ci is a linear transformation
and given a basis it can be represented as a matrix in the discrete setting. This
matrix can be easily computed if the map T is known.

The basic method described in [22] approximates the functional map Ci using
a set of linear constraints. The first type of constraints is given by a set of pairs
of functions, which we refer to below as “probe functions”, that are expected
to be preserved by the deformation. The second is a regularization term coming
from the deformation model. This leads to the least square problem:

Xi = argmin
C

‖CG0 −Gi‖
2
F + α‖C ⊙W‖2F , (1)

where ‖.‖F denotes the Frobenius norm. The use and meaning of each term will
be detailed in the following paragraphs.
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Probe Functions The probe functions can be represented by two matrices G0

and Gi, where each pair of corresponding columns represents a pair of functions
g0, gi such that Cig0 ≈ gi is expected to hold for the unknown Ci. In practice we
normalize the corresponding column so that each column has the same L2 norm.
Thus, the functional map should verify CG0 ≈ Gi. In the context of isometric
matching the probe functions are given by classical descriptors, such as the HKS
[31], or WKS [2].

Regularization The existence of intrinsic symmetries can lead to an ambiguity
between two equally good solutions. In general, the probe functions do not resolve
the symmetry ambiguity, that is G0 and Gi are composed only of symmetric
functions. So, in addition to the probe function constraints, the authors of [22]
have proposed a regularization using the assumption that the deformation is
nearly isometric. This assumption is equivalent to the commutativity of Ci with
the Laplace-Beltrami operator, namely Ci∆0 = ∆iCi. In the discrete setting the
eigenfunctions of the Laplace-Beltrami operator are used as function basis. Thus,
this equation can be written as Ci ⊙W = 0 where “⊙” denotes the component-
wise multiplication and the matrix W is defined by Wkl = λi

k − λ0
l with λi

k the
kth eigenvalue of the Laplace-Beltrami operator on the surface Si.

Uniqueness of the solution. In practice the eigenvalues of the Laplace-Beltrami
operator of two different shapes are always numerically different except for the
zero eigenvalues. Thus, the only zero coefficient of W is W1,1 which weights the
coefficient C1,1 of the functional map. Since the corresponding eigenfunctions are
constant, C1,1 maps the constant functions of L2(S0) into the constant functions
of L2(Si). The coefficient C1,1 should always be one. Therefore, since W is non
zero everywhere, the solution of (1) is unique without any assumptions on G0.

2.2 Main Challenge

In the original article [22] the probe functions are assumed to be given, so how to
choose them was not discussed. As mentioned in introduction, this choice can al-
ready be challenging. For example in Figure 1a the smoothed Gaussian curvature
computed on two different meshes provides a decent functional correspondence.
At the same time, in Figure 1b the logarithm of the Gaussian curvature, while
intrinsic in theory, does not result in a useful correspondence.

One option to identify the best descriptors would be to simply find the most
stable probe functions in the example (training) set, by learning spectral descrip-
tors [20] for example. However, some descriptors (e.g., the constant function) can
be stable without at all being informative. More importantly, however, as can be
seen from Equation (1), the descriptors influence the resulting functional maps
Xi jointly. As an example, if a correspondence is described by several probe
functions the resulting functional map will tend to respect this constraint while
other meaningful correspondences will be arbitrarily put aside due to their low
redundancy. So picking the best descriptors independently will not necessarily
result in high quality maps.
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(a) Smoothed Gaussian curvature. (b) Logarithm of the absolute value of
Gaussian Curvature.

Fig. 1: Probe functions computed independently on two shapes. One carries
meaningful information (a) and the other is misleading (b).

Thus, the key idea developed in this paper is to introduce weights for probe
functions, over which learning can be made. As explained below, the probe func-
tion constraint will be replaced by: ‖CG0D − GiD‖2F . The weights D will be
optimized so that the weighted descriptors are jointly as informative as possible.
This will allow us to improve the quality of the functional maps and to extract
the most stable functional subspaces.

2.3 Algorithm Outline

We propose a two-step method described in following two sections and summa-
rized in Figure 2. Given collection of shapes, we learn the most informative set
of weight D by solving an optimization problem. We then extract a function
basis whose components are ordered by quality of correspondence. When given
a previously unseen shape, we use this information to compute a high-quality
functional map using the optimal weights and to discard the badly mapped
functions by reducing the functional space.

3 Selection of the Best Functional Correspondences

The idea developed here is to assign a weight to each pair of probe functions.
These weights can then be tuned according to their consistency in the matching.
Since a priori there is no reason to choose one probe function over another, we
propose to learn the optimal weights given a training set of shapes.

As input we need a set of N triangulated meshes with known correspon-
dences representing the same object undergoing a set of deformations. Our main
assumption is that the optimal weights on the probe functions should be stable
across the shapes in the collection. Thus, if we are given a new deformation of
the same shape, the learned weight should also select the consistent probe func-
tions. The output of our algorithm will be a set of weights for the probe functions,
which, as we will show below, can then be used to find correspondences between
new, unseen shape instances.
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Fig. 2: Pipeline of the proposed algorithm with the corresponding section. Top:
learning from a given collection. Bottom: processing a new shape.

3.1 Weighting the probe functions

As described above, our main idea is to introduce a set of weights on the func-
tional correspondences to measure their usefulness in finding a relevant map by
using a diagonal matrix D. For a given weight matrix D, the linear constraints
given by the probe functions become CG0D = GiD. We can then define the func-
tion Xi(D), which maps a given sets of weight to the corresponding functional
map, via the solution of the optimization problem:

Xi(D) = argmin
C

‖CG0D −GiD‖2F + α‖C ⊙W‖2F (2)

We choose here to fix α and tune D. We could also try to tune all the
parameters (α andD) but the coefficients would be defined up to a multiplicative
constant and C(D) may no longer be well-defined when α is equal to zero.

Since all the functional map start from the reference shape S0, this shape
obviously plays special role in our method. Ideally we would like to take as ref-
erence the most “average” shape of the collection. Following this idea, a simple
procedure is presented in [29] to find the shape of the collection which mini-
mizes the average isometric distortion. However, in our experiments we chose
the symmetric standing pose as reference.

As discussed in the previous section Xi(D) is well-defined and differentiable.

3.2 Finding the best weights

Learning from a given collection. We assume we are given a collection of N

nearly isometric deformations of the same object with known functional maps
Ci. The optimal weights D⋆ are the ones that produce an approximation Xi(D)
that is closest to the ground truth Ci. Thus, we want to solve the following
optimization problem:

D⋆ ∈ argmin
D

N
∑

i=1

‖Xi(D)− Ci‖, (3)
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where the sum is over the set of given training maps Ci.
Note that the choice of the norm is important. We would like the functional

map Xi(D) to match Ci over as-large-as possible functional subspace. This is
equivalent to minimizing the rank of the difference Xi(D) − Ci. Thus, the im-
portant quantities are the singular values of the differences Xi(D)− Ci.

The naive choice of the squared Frobenius norm is not well suited for our
problem since ‖A‖2F = ‖σ(A)‖22 where σ(A) is the vector containing the singu-
lar values of the matrix A. Therefore this norm would give a large weight to
the biggest singular values, which correspond to the worst-matched functional
subspaces. Among these subspaces is the space of antisymmetric functions that
we have no hope of mapping since the probe functions give us very little infor-
mation about this subspace. At the same time, the small singular values have
little influence on the minimization whereas they are the ones we would like to
optimize.

The choice of the norm. To tackle the rank minimization problem , we choose
the following norm which a regularization of the l0-norm:

‖A‖ǫ =

N
∑

i=1

σ(A)2i
σ(A)2i + ǫ

. (4)

Note that the problem (3) is differentiable as long as ‖.‖ǫ is differentiable. The
gradient can be computed efficiently using the Jacobian matrix of the singular
values as expressed in [25]. In practice, we solve this optimization problem using
a standard L-BFGS algorithm.

The choice of ǫ can have a big impact on the results. In fact since we are
using a gradient descent method the big singular values are in the flat part of
‖.‖ǫ therefore their gradient will be granted a small weight. On the contrary the
singular values in the slope will have a big influence on the minimization. So
with an ǫ too small only a few singular values will be minimized but with an ǫ

too big a lot of singular values will be minimized not well.
We chose the parameter ǫ such that at the initialization 80 percent of the

singular values satisfy
σ2

i

σ2

i
+ǫ

≤ 0.9.

4 Basis function extraction

Since the probe functions can give redundant information in some shape parts
and incomplete information in others, our functional map will map some sub-
spaces of L2(S0) with more confidence than others. Using a collection of shapes
we would like to extract the most stable subspaces.

For this purpose we propose to use the learned optimal weights D and the
resulting estimated functional maps Xi(D) and to identify stably mapped func-
tional subspaces by comparing Xi(D) to the reference maps Ci. The output will
be Y an orthonormal basis of L2(S0) ordered with decreasing confidence. As we
demonstrate in Section 5, in most cases this order remains stable even for maps
that are estimated to previously unseen shapes.
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4.1 Identifying stable subspaces

The most well-mapped function y0 ∈ L2(S0) is such that Xiy0 is the closest to
Ciy0 for all i. Such function is solution of the problem:

y0 ∈ argmin
y∈L2(S0), ‖y‖=1

N
∑

i=1

‖(Xi − Ci)y‖
2
F

We can then iteratively define an orthonormal basis of L2(S0) ordered by
decreasing accuracy in the mapping, by solving the following problem:

yn+1 ∈ argmin
y∈L2(S0), (y,yj)=0 ∀j≤n

N
∑

i=1

‖(Xi − Ci)y‖
2
F

Such a basis can be efficiently computed by considering the singular value
decomposition of the matrix:

X =





X1 − C1

. . .

XN − CN



 = UΣV t.

It is well-known that yj must be equal to singular vectors corresponding to the
jth smallest singular value of X. We can, therefore, form a new orthonormal
basis Y of L2(S0) composed of the singular vectors of X by increasing singular
values. This allows us to quantify the quality of the mapping of a functional
subspace just by looking at the singular values of X: the smaller the singular
values are, the better the mapping.

4.2 Functional map to a test shape using a reduced basis

Now if we are given an extra shape SN+1 that does not belong to the training
set, we first compute its probe functions and store them in a matrix GN+1.
We then compute the functional map XN+1 by using the previously solved for
weight matrixD. Finally, since we know thatXN+1 contains some badly mapped
subspaces (for example the antisymmetric functions), by using Yp the p first
column of Y , we compute the reduced map X

p
N+1

X
p
N+1 = XN+1Yp : L2(S0) ∩ L2(Im(Yp)) → L2(SN+1)

5 Experimental Results

5.1 Functional correspondences

The probe functions used to solve the problem in Eq. (2) are given by various
descriptors computed on each shape:

– Heat Kernel Signature [31]
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– Wave Kernel Signature [2] at three different variances
– Gaussian and Mean Curvature
– Logarithm of the absolute value of Gaussian and Mean Curvature
– Mesh Saliency [18]

The HKS, WKS and Mesh Saliency are computed at various scales to ensure
a wide variability. The curvatures are processed in order to obtain a family of
functions. Since the curvatures can have very high peaks we take the logarithm of
their absolute value to put more weight on the small curvatures areas. The family
of functions is then created by considering the solution of the Heat Diffusion
Equation at various times when each function is used as initial heat distribution
over the surface.

5.2 Isometric Shape Matching

TOSCA Dataset. We have evaluated our method on the shape matching bench-
mark TOSCA [6]. For each shape class we use all the available shapes for training,
except one for testing and we choose the standard standing pose as shape S0.
We compare three ways of weighting the probe functions: a unique weight for
all the functions, a weight per category of descriptors and one weight per probe
function.

For all the experiments we express all functions in the basis given by the
first 50 eigenfunctions of the Laplace-Beltrami operator. We compute 50 probe
functions divided in 9 categories (WKS is divided in three categories with tree
different variances) of descriptors. We take 5 functions per category except for the
Mesh Saliency where 10 functions are computed. Since all the shapes in TOSCA
have an internal symmetry, we cannot hope to recover the entire functional map,
and thus Eq. (4) is a reasonable choice of norm.

The experiments follow the pipeline shown in Figure 2. First we learn the
optimal weights and extract the ordered basis using the training set of shapes.
Second we are given an unknown shape. We use the optimal weights to com-
pute the functional map and the extracted basis to suppress the badly mapped
function subspaces. The L-BFGS algorithm used to solve the optimization prob-
lem in Eq. (3) is initialized with the naive functional maps solution of (1) with
α = 10−3. As several methods using functional maps [22, 24] have been proved to
be more efficient than the state-of-the-art methods, we compare all of the func-
tional maps and subspaces computed with our method to the baseline “naive”
map, obtained using the identity matrix D, which correspond to the original
method described in [22].

Performance The proposed approach was implemented in MATLAB. Note that
the number of vertices of each shape has no effect on the performance since all
the functions are expressed in a reduced function basis. The most time consum-
ing task in our pipeline is the training part which requires to solve a difficult
non-linear optimization problem (3). The processing cost is dominated by the
computation of the gradient of the energy, which is done by solving two linear
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Fig. 3: Left: Optimal weights for different strategies after training with 9 cats.
Right: Effect of the different weights on the distribution of the singular value of
the difference XN+1(D)− CN+1.

systems for each shape of the training set at each iteration. However, the con-
tributions of each shape to the gradient are independent so this can be done in
parallel. The learning process with a training set of 10 shapes took about 45 min
on an Intel i7 processor without parallelization.

Optimal Weights Figure 3 (left) shows the weights obtained after solving the
problem in Eq. (3) with a training set composed of 9 cats. To demonstrate
the importance of weighting the probe functions on the quality of the functional
map, we study the distribution of the singular values of the differenceXN+1(D)−
CN+1 for the different learned weights. In Figure 3 (right) each curve depicts the
percentage of singular values below the threshold given on the x-axis. For the
perfect map, all singular values would be zero. As can be seen, the functional
maps with the optimal weights have a bigger concentration of small singular
values than the naive functional map. Therefore there exists a bigger functional
subspace on which these functional maps provide a good approximation of the
ground truth. Note that the naive map has no small singular values and is indeed
a very bad approximation.

Stable subspaces From the naive maps and functional maps with optimal weights,
we extract four function bases ordered by decreasing stability. The most stable
functions for each case are shown in Figure 4. Even the most stable functions
from the naive maps are not mapped very accurately since they are very bad
approximation of the truth. For the other bases the functions seem consistent
with the information we would expect from descriptors as HKS and WKS: a
distinction between flat area (body) and salient area (legs, tail, head). Note that
even with only one weight we are able to retrieve meaningful stable areas.

We also evaluate the extracted functional basis by computing the difference
between the ground truth map and our approximation on the unseen shape:

ǫi = ‖(XN+1(D)− CN+1)yi‖2, (5)

where yi is the i
th function of the extracted basis. We compare this error for the

three weighting strategies with the naive map in Figure 5 (left). The extracted
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(a) (b) (c) (d)

Fig. 4: Visualization of the first component of the extracted basis. First row:
the reference shape. Second row: transfer using different functional maps: (4a)
naive map, (4b) unique weight, (4c) one weight per category of function, (4d)
one weight per functions.

basis was ordered by decreasing quality on the training set. Note that this order
is still preserved on the unknown shape for the 25 first functions of the basis.
Most of all we are able to identify the worst mapped subspaces, which can be
safely removed.

Despite only estimating the functional maps on a subspace of the full func-
tional space, we converted them to point-to-point correspondences using the
method described in [22]. Figure 5 right compares the quality of the correspon-
dences before and after reducing the space dimension from 50 to 25. We obtain
better results with our learned weight than with the naive map. For the weighted
maps, the reductions perform better or similarly than the full maps. Thus our
basis extraction manages to identify correctly the most stable subspaces. For
the naive map our reduction space strategy fails as there is no well-mapped
subspace.

5.3 Non-Isometric Shape Matching

Until now we have assumed the deformation to be nearly isometric. Our algo-
rithm to find the optimal set of probe functions and the extraction of the most
stable subspaces do not contain any explicit knowledge of the type of deforma-
tion. In fact, this assumption is only used to construct the least-square problem
(1). Which means that our framework can be adapted to any kind of deformation
model as long as we have a consistent way of computing a functional map form
probe functions.

To test this case, we consider a man or a gorilla and 12 women in different
poses from the TOSCA dataset. The ground truth functional maps are computed
using a thousand user-picked correspondences. The meshes have different number
of vertices and different connectivity. We train our method on 10 poses and use
the last for testing.
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Fig. 5: Left: Accuracy of the extracted function basis measured with Eq. (5).
Right: Comparison between full map (plain lines) and reduced map (dash lines).
Symmetric correspondences are considered correct.

The resulting problem is very noisy for two reasons. First, the ground truth
functional maps are computed from sparse correspondences, and therefore can
be inaccurate on some functional subspace. However, the use of a collection of
shape for training allows us to remove this noise. Second, since all the probe
functions used are designed for isometric deformation, few are going to contain
useful information.

In order to introduce a wide variability of functions we pre-compute on each
shape 50 basis functions, 310 probe functions and we put a weight on each probe
function. The descent algorithm is initialized as in the previous experiment.
Figure 7 (left) shows the most stable functions learned from the training maps.
Each of these functions is also mapped to a previously unseen pose using the
“ground truth” map converted to a functional map. Note that the functions are
badly transferred, due to the incompatibility of the LB basis and the noise in
the input maps. Compare this with Figure 7 (right) where the probe functions
have been weighted using our method. The stable functions indicate the head,
the hands and the feet to be the most stable area. Besides, these functions are
correctly mapped on a new shape using a computed functional map with the
learned weights. Clearly, the fact that we use a collection helps removing the
noise of the input data. Thus, our method is able to correctly identify the most
stable functional subspace with mild assumptions on the underlying deformation.

6 Conclusion

In this work, we presented a method to learn the most informative descriptors
for non-rigid shape matching, from a given set of shape correspondences. Our
method is purely intrinsic and allows us to obtain high quality consistent cor-
respondences to new, unseen shapes, and to identify the most reliably mapped
functional subspaces. The approach is flexible and can potentially be applied to
scenarios that lack a good theoretical deformation model, as demonstrated by
meaningful even non isometric deformation. One of its weaknesses is a relatively
high cost for the training, and in the future, we plan to explore more efficient
optimization strategies.
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Stable functions before training. Stable functions after training.

Fig. 6: Visualization of the first two components of the extracted basis on the
reference shape (man) then mapped to the unseen shape (woman) using the
functional map without optimization (left) and with the learned weight (right).

Stable functions before training. Stable functions after training.

Fig. 7: Visualization of the first two components of the extracted basis on the
reference shape (gorilla) then mapped to the unseen shape (woman) using the
functional map without optimization (left) and with the learned weight (right).
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26. Rodolà, E., Bulò, S.R., Windheuser, T., Vestner, M., Cremers, D.: Dense non-rigid
shape correspondence using random forests. In: Proc. CVPR (2014)

27. Rustamov, R.M., Ovsjanikov, M., Azencot, O., Ben-Chen, M., Chazal, F., Guibas,
L.: Map-based exploration of intrinsic shape differences and variability. ACM
Transactions on Graphics (TOG) 32(4), 72 (2013)
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