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Abstract )

We address the problem of automatic synthesis of assertions?
sequential programs with singly-linked lists containiregal over
infinite domains such as integers or reals. Our approactsicban
an accurate abstract inter-procedural analysis. Progeenfigeira-
tions are represented by graphs where nodes represeetjisests
without sharing. The data in these list segments are ctaizet
by constraints in abstract domains. We consider a domaimevhg
constraints are in a universally quantified fragment of tree-firder 1
logic over sequences, as well as a domain constraining thesets 12
of data in sequences. ﬁ
Our analysis computes the effect of each procedure in a logal
manner, by considering only the reachable part of the hesp itis 16
actual parameters. In order to avoid losses of informati@intro- 17
duce a mechanism based on unfolding/folding operationsvaih 13
to strengthen the analysis in the domain of first-order fdasiby
the analysis in the multisets domain.
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typedef struct list {
int data;
struct list *next;
} list;
list* qui cksort(list *a){
list *left,*right,*pivot, *res, *start;
int d;
if (a NULL || a->next == NULL)
res = clone(a);
el se {
d = a->data;
pivot = create(1);
pi vot->data = d;
start = a->next;
split(start,d, &eft,&ight);
left = quicksort(left);
right = quicksort(right);
res = concat(left, pivot,right); }
return res; }

// list of length 1

Figure 1. Thequi cksort algorithm on singly-linked lists.

The same mechanism is used for strengthening the sound (but

incomplete) entailment operator of the domain of first-ofdemu-
las. We have implemented our techniques in a prototype tadl a
we have shown that our approach is powerful enough for attoma
(1) generation of non-trivial procedure summaries, (2)post-
condition reasoning, and (3) procedure equivalence chgcki

1. Introduction

Automatic synthesis of valid assertions about programeh s
loop invariants or procedure summaries, is an importantégtaly
challenging problem. In this paper, we address this prolfiterse-
quential programs manipulating singly-linked lists witibounded
data such as integers or reals. These programs may conteie-pr
dure calls, and actually they are in many cases naturallftesmri
using recursive procedures.

Assertions about these programs typically involve constsa
on the shape of the structures, their sizes, the data valhmes c
tained in the memory cells, the multisets of their data, €mn-
sider for instance the algorithiqui cksort in Figure 1 that sorts
the input list pointed to by the variable (and where the call
split(start,d, & eft, &ight) copies all the cells of the list
pointed to bystart which have data larger thadh in the list
right, and all the other ones in the liseft). The specification
of qui cksort includes (1) the sortedness of the output list pointed
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to byr es, expressed by the formula:

Vy1,¥2. 0<y; <y» < len(res)=data(y;) <data(y2) (A)

wherey; andy, are interpreted as integers and used to refer to
positions in the list pointed to kiyes, len(r es) denotes the length
of this list, anddat a(y;) denotes the integer stored in the element
of res at positiony1, and (2) the preservation property saying that
the multiset of data of the input liatis equal to the multiset of data
of the output list es. This property is expressed by

ms(a®) = s (res) (B)
where s (a®) (resp.ms(res)) denotes the multiset of integers
stored in the list pointed to by at the beginning of the procedure
(resp.res at the end of the procedure).

We propose an approach for automatic assertion synthesgsiba
on inter-procedural analysis within the framework of adstrin-
terpretation [7], that is, we consider abstract domainefqress-
ing constraints on relations between program configuratiand
we define compositional techniques for computing proceduns-
maries concerning various aspects such as shapes, sidefatan

We build on the work by Bouajjani et al. in [2] where they define
an accuratentra-procedural abstract analysis for synthesizing in-
variants of programs with lists and without procedure cétisheir
approach, abstract domains are defined where elementsiese pa
composed of a heap backbone and an abstract data consftant.
heap backbone is an abstraction of Heap graph(the graph rep-
resenting the allocated memory) where only a bounded nuofber
nodes are kept, including all sharing nodes and all the npoiesed
to by program variables. An edge in the backbone represgratha
(without sharing nodes) relating the source and targetsiotthe
original heap. The data constraint is given as an elementroks
abstract domain and allows to specify properties of the data
guences represented by the edges of the heap backbone.dFhe pr
vided analysis in that paper is based on (a) unfolding thesttres



caller heap

Figure 2. Relation between caller and callee local heaps.

in order to reveal the properties of some internal nodesenisis,
which makes necessary to introduce in the structures souahesno
called simple nodes, others than the sharing nodes or thoaseg
to by variables, and then (b) folding the structures by elating
the simple nodes and in the same time collecting the infdomat
on these nodes using a formula that speaks about sequertza of
The analysis is iterated several times, which may lead tdiadél
unfoldings and foldings. Then, widening techniques on micaé
domains are used in order to force termination. Severatadisio-
mains are defined for the analysis, and in particular, dosnahere
elements are (1) formulas in a universally quantified fraginoé
the first-order logic over data words, or (2) conjunctionggtial-
ity constraints between unions of multisets of data in woiidse
formulas in the first abstract domain contain a (quantifiedyer-
sal part which is a conjunction of formul&y. (P = U), wherey
is a vector of variables interpreted as positions in the wdpds

a constraint on the positions (seen as integers) associdttethe
y's, andU is a constraint on the data values at these positions. It is
assumed tha® is obtained from a finite set of fixguhtternscorre-
sponding to, e.g., order constraints or difference comgtrawhile
the techniques presented in [2] are strong enough to geneat-
plex invariants for iterative programs, they cannot be iappfor
compositional computation of procedure summaries.

In this paper, we propose an extension of the approach in [2]
by defining new techniques for accuramger-procedural abstract
analysis. This extension is not trivial due to many deligatélems
that appear when addressing the compositionality issdeeih in
the spirit of [23], at each procedure call, the callee hag antess
to the part of the heap that is reachable from its actual petens
The use of such local heaps is delicate due to the fact tha dre
relations between the elements of the local heap of thee;adied
of the heaps of the procedures that are in the call stackeHeth
relations are lost during the analysis, this one can be umbau
some cases, or very imprecise in others. However, it is rasiliée
to maintain explicitly these relations during the analysist us
examine this crucial problem.

This problem has been addressed in [23] in a framework where

data are not considered. In this case, the relations intet-heaps
are due to reachability: nodes in the local heap of the caltee
be reachable from the other heaps through paths that do net co
tain nodes pointed to by the parameters of the procedure(ting
points of the local heap). If during the call these nodes beco
locally unreachable and deleted, the analysis becomesundso
The solution to this proposed in [23] consists in maintaifang
the calls the points, called cutpoints, where these (iloat heap)
paths enter local heaps. This is a tricky problem since iregen

Indeed, even for cutpoint free programs, the problem above
persists when data constraints are considered as we do in our
framework. The reason is that elements in the local heap of a
procedure can be related to elements in the rest of the hehp wi
data constraints such as equality, ordering, etc. Thistit is
depicted in Figure 2. Elements in the local heap of the callee
linked at the call point to external elements by some datioe,
¢, and the analysis generates a summagym of the procedure
relating the input heap with the output heap. Then, the prakis
whether there is a ling between the elements in the callee output
heap and the external elements in the caller heap. Thisgobl
depends on the accuracy of the used summarization technique
Consider for instance thgui cksort procedure that takes the first
elementd of the input lista as the pivot, splits the tail of the list
a into two listsl eft andri ght where all the elements dfef t
resp.ri ght are smaller resp. greater thdynand then performs two
recursive calls on the listeft andri ght, before composing the
results, together witld, into a sorted list. After the recursive call
at line 16 onl ef t, the information we obtain from the analysis
with the domain of first-order formulas is that the outputllisf t ’
is sorted. Since we had already the information that the efésn
of the input listl eft were all less thad, we must infer after the
return from that call that the elementsl@f t ' are also less thash
But, since the link betweethand the elements b&ft has not been
passed to the recursive call, this information cannot beptaed.
This is because the used abstract domain cannot expresacthe f
that a list is a permutation of another list (which requiresrfulas
beyond the universally quantified fragment). Again, maimtey
all the relations between the elements of the local heapstand
external elements is not feasible. Our solution to this |gmbis
based on strengthening the analysis in the domain of fidstor
formulas with the analysis in the domain of multiset coristea
Indeed, for theyui cksort example, knowing thdteft andl eft’
have the same multisets of elements should allow to infen fitee
fact that all elements dfef t are less thad, that the same fact also
holds about the elements loéf t ’ .

call Proc Q
/‘ Ay (1)
&om
Proc P
Ay(2P)
call
—
Proc Q
rc%\ Ay(P2)

Figure 3. Compositional analysis with patterns.

Another problem that must be addressed for the design of com-

positional analysis is due to the use of pattd®rier left-hand sides

of implications in the first-order formulas. Indeed, the lggs of
different procedures may need the use of different setstténoe,

and therefore it is important to be able to localize the oh@€
these patterns to each procedure. Otherwise, it would bessary

to use a set of patterns including the union of all the setsata
used during the whole analysis, and this would obviously enak
the analysis inefficient. For instance, the computationhef for-
mula (Vy. 0 <y < len(left) = data(y) <d) A (VW.0<y<

the number of cutpoints may be unbounded. However, there is alen(right ) = dat a(y) > d) describing the effect of the procedure

significant class of programs for which cutpoints are newsreg-
ated during the analysis. The class of such cutpoint fregrprs
[24] includes programs such as sorting algorithms, tralefdists,
insertion, deletion, etc. In this paper, we consider cutpioee pro-
grams and focus on the problems induced by data manipulation

split called byqui cksort does not need the use of the pattern
0<y; <y» < len(res)thatis used for the generation of the sorted-
ness property. Consequently, during the analysis, at groeecalls
and returns, we need to switch from an abstract domain ofiftarsn
parametrized by some set of patterns, 8ayo an abstract domain



parametrized by another set of pattemr 2, as shown in Figure
3 (ay(?) denotes the domain of first-order formulas parametrized
by the set of patterns).

¢). The semantics assumes a garbage collector and conslgguent
the statemerftr ee is useless. We assume a call-by-value semantics
for the procedure parameters and that each procedure hasrits

The two problems exposed above show that in order to define set of local variables. We forbid pointers to procedureszoidter

a compositional and accurate inter-procedural analysésneed
to define an operation for composing abstract domains fes-,
order formulas with multiset constraints, or first-ordemfioilas of
different types). We propose in this paper a mechanism walich
lows to solve these problems. This mechanism is based otdunfo
ing/folding operations which can be used, at procedures caitl
returns, to (1) compute an over-approximation of the irgetisn
between a first-order formula and a multiset constraint @)dd
convert universal formulas defined over a set of pattexnt for-
mulas defined over a set of pattemns

Beyond compositional summary computation, the operatien w
define for combining abstract domains allows to tackle tweot
interesting problems. First, it allows to define an entaiitr@pera-
tion on combined constraints of the fopm Y = ¢ whereg and
¢ are two universal first-order formulas (potentially ovefatient
sets of patterns), andl is a multiset constraint. This provides a
lightweight sound (but not complete) decision proceduresfech
kind of formulas, which is useful for carrying out pre-posindi-
tion reasoning. Furthermore, our techniques are accunaigg to
be used for automatic procedure equivalence checkingetsy to
see that this problem can be reduced to inter-procedurysisa
provided that it is possible to express equality betweeauctires,
and derive such properties. This is not trivial in generatsirea-
soning about combined abstract domains is needed. Fonagsta
to check that two sorting procedur®s and P, are equivalent, it
is possible to call each of them on two identical input listand
I, and then assert that the two outp@s andO, are equal. As-
suming that the summary &f is sorted O;) Ams(l;) = mns(GO;), for
i € {1,2}, this amounts to check the validity of the formula:

(equally,lz) A sortedO1) Ams(l1) =ms(O1)
A sorted Op) Ams(l2) =ms(Oy))
= equalO1,0;),
where the predicatesqualandsortedare expressed by first-order

formulas. Our techniques are able to find that this formuiadeed
valid.

©

arithmetic.

The inter-procedural control flow grapliiCFG, for short) of a
program is defined as usual by replacing edges labeled byproc
dure calls with (1) ecall to start edge labeled bycall y=Q(x)),
and (2) arexit to returnedge labeled byret y=Q(x)).

Semantics: A program configuration is a valuation of the vari-
ables interpreted as integers together with a configuraifaime
allocated memory. The latter is represented by a labelexttdid
graph where nodes correspond to objects of tyipg and edges
correspond to values of the reference fielkt . The nodes are
labeled by the values of the fiettht a and by the program pointer
variables which are pointing to the corresponding objéldts. con-
stantNULL is represented by a distinguished ngd&uch a repre-
sentation for a program configuration is calledeap

DEFINITION 2.1 (Heap). A heap overPVar and DVar is a tuple
H = (N,SV,L,D) where:

1. N is a finite set of nodes which contains a distinguishec:ipd

2. S:N x N is a set of edges such that S contains at most one edge
(n,n’), forany ne N, and S does not contain an edgen) with
neN,

3. V: PVar— N is a function associating nodes to pointer vari-

ables s.t. (NULL) = 4,

L:N — Zis a partial function associating nodes to integers s.t.

only L(f) is undefined, and

5. D: DVar — Z is a valuation for the data variables.

4,

DEFINITION 2.2 (Simple/crucial node). A node which is labeled
by a pointer variable or which has at least two predecessers i
called acrucial node Otherwise, it is called aimple node

For any procedur® = (fpi,fpo,loc,G) and any control point
in P, we consider relations between program configurationseat th
entry point of P and program configurations at These relations
can be represented using a double vocabulacy loc®, where
loc® = {\? | v € loc} denote the values of the variabledae at the

We have implemented our techniques and carried out severalentry point ofP. A relation associated t8 at c is represented by a

experiments showing the strength of our approach.

2. Programs

Let PVar be a set of variables of type reference to a record type
calledl i st defined by a single reference fieldxt and one data
field data of integer type. We consider th&Var includes the
constantNULL. Also, let DVar be a set of variables interpreted as
integers. The generalization to record types with sevextl fields
and data fields of different basic types is straightforward.

Syntax: A programis defined by a set of procedures, each of
them represented by itstra-procedural control flow grapl{CFG,
for short). Formally, a procedurP is a tuple (fpi,fpo,loc,G),
whereloc C PVaru DVar is the vector of local variablespi C

loc and fpo C loc are the vectors of formal input, resp. output,
parameters, an@ is its CFG. W.l.0.g., we suppose that the CFG
of P contains a uniquentry point $ and a uniqueexit point e.

Its edges are labeled by (1) statements of the fprmew, p=q,

p- >next =g, p- >dat a=dt, andy=Q(x), wherep,q € PVar, dt is a
term representing an integer (built over terms of the fdrenDVar
and p- >dat a using operations ovef), andy,x C PVaru DVar,

(2) boolean conditions on data built using predicates &ef3)
boolean conditions on pointers of the fopr=qwherep, g € PVar,

or (4) statements of the forassert ¢ andassume ¢, whered is

a formula (see Section 4 for more details concerning theasyoit

heap ovetocUloc® containing a valuation for the integer variables
in (locn DVar) U (locn DVar)? together with a graph which is the
union of two sub-graphss represents the heap at the entry point
of P andG represents the heap at the control pairffor example,

a relation associated tpii cksort at line 16 is represented by the
valuation[d® = 0,d = 6] and the labeled graph in Figure 4(a) (we
suppose that local integer variables are initialized tare nodes
which correspond to objects pointed to by program variabtes
circled. The subgraph containing only nodes reachable fitwen
node labeled by? represents the input configuration while the rest
of the graph represents the heap configuration at line 16.

The concrete semantics defines a mapgnghich associates
to each control point in the CFG of a procedur® a set of heaps
overlocUloc?. As usual, the mapping is defined by a system of
recursive equations [8, 28] of the form:

Rinit € p(sp) andp(c) =p(c)U [ J post(Stp(c)),

St
¢ —>cC

where (1)Rinit is @ heap containing two copies of the initial con-
figuration of some procedure = (fpi,fpo,loc,G), one copy over

loc®, and one copy ovebc, (2) d-cisan edge from the ICFG
labeled bySt, and (3)post is the postcondition operator.

For any statement, except for procedure calls and retgozs,
affects only the part of the heap reachable from nodes ldhste

(D)
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Universally quantified formula:

We : hd(ny) < hd(np) Ahd(ny) > hd(np)
Alen(ng) = len(n)+len(n;) + len(np)
AVY.y € t1(n) = nly] <hd(np)

AVY.y € £1(nr) = ne[y] > hd(np)
Ad=hd(np) Aety(na,nd) Alen(np) =1,

T

left
Multiset formula:

Ye :ms(na) =ms(n) Ums(n;) Ums(np)
Ams(nQ) =ms(n,)

©

Np | pi vot

Figure 4. Relations between program configurations.

variables ifloc. For simplicity, we assume that (1) heaps don't con-
tain garbage, i.e., all the nodes are reachable from notheseth
by pointer variables, and (2) each pointer assignmenhext =q,
resp.p=q, is preceded by- >next =NULL, resp.p=NULL. The se-
mantics of the procedure calls and returns is baseld@al heaps
[23], i.e. heaps containing only objects reachable fromattteial
parameters. For example, in Figure 4(a), the local heaghéopto-
cedure callqui cksort (| eft) contains only the nodes reachable
from the node labeled blyef t . As we consider only cutpoint-free
programs [24], the definition of this semantics is straigtwiard.

3. Abstractions of program relations
In this section, we recall the abstract domains defined in [2]

Preliminaries on abstract interpretation: Let ¢ = (C,C) and
4 = (A,C) be two lattices ¢, resp.C, are order relations on
C, resp.A). The latticea is anabstract domairfor ¢ [7, 10] if
there exists a monotonic functign A — C. In the following, an
abstract domaim is denoted bya = (A,C,M,U, T, L), where
M denotes its greatest lower bound (meet) operatatenotes its
lowest greater bound (join) operatdr, its top element and._ its
bottom element. Moreover, as usual in the abstract intexpoa
framework, O represents the widening operator. L&t be a set
of concrete transformers, that is, of functions fr@ninto C. If 2
is an abstract domain far, the set of its abstract transformers,
denoteds #, contains a functiorf# : A— Afor eachf € 7. The

transformerf# is soundif f(y(a)) C y(f#(a)), for anyac A.

3.1 Abstract domains for heaps

The abstraction of a labeled graph representing (relations be-
tween) program configurations is defined starting frode@ompo-
sition obtained by (1) keeping only some nodes froinbut at least

all the crucial nodes (2) adding an edge between any two nodes
which are reachable in the initial graph, and (3) labelingrgwode

n with a word overZ which contains the integers on the path from

H betweem and its successor in the new graph. For example, Fig-
ure 4(b) gives a decomposition for the graph in Figure 4(a).

Abstractions of program relations can be defined by reptesen
ing the values of the integer program variables and the wavds
Z as formulas in some logic. The logics we use capture various
aspects such as constraints on the sizes, the multiseteiotet
ters, or the data at different positions of the words. Fongla,
the graph and the formuld; in Figure 4(c) represent an abstrac-
tion of the program relation in Figure 4(a) obtained startirom
the decomposition in Figure 4(b). The same holds for thetgeeal
the multiset formulapy; in Figure 4(c). Such a pair between a graph
and a formula is calledbstract heapin the formulayg, ng, na,

n;, N, andnp are variables interpreted as words o#ghd(n|) de-
notes the first letter of the word denotedrpylen(na) denotes the
length of the word denoted hy,, y is a variable interpreted as a
position in some word (as usual, the positions of a vayd, . .. a,
are the integers from 0 1@, y € t1(n;) means thay belongs to the
tail of ny (i.e., the suffix starting with the second letter), ang] is

a term interpreted as the letter at the posityarf n;. The formula
eq,(na, nd) states that the words denoted tyandn are identi-
cal. We distinguish the first letter of a word from its tail bese
programs assignments can update only this first letter (tte-s
ment p- >dat a=. .. updates the first letter of the word associated
to the node labeled bp). In the multiset formulams(n,) denotes
the multiset containing all the letters iof.

Let Z* denote the set of non-empty sequences @eand let
DWVar be a set ofdata word variablesinterpreted as elements
of Z*. A data words logids a (possibly infinite) set of formulas
from a first order logidFO (DWVar,DVar, O, P) over the variables
DWVaruDVar, whereQ is a set of operation symbols affds a set
of predicate symbols. In order to express program transftioms
we suppose thad contains at least the concatenation operatar
function symbolien : Z* — Z which returns the length of the input
sequence and the equality predicate between wegdklowever,
we do not require that these symbols are used in the set ofifasm
belonging to some data words logic.

DEFINITION 3.1 (LDW-domain). A logical data words abstract
domain oveDWVarandDVar (LDW-domain, for short) is a lattice
aw = (A, CW %W, uW TW 1W), where AV is a data words
logic, which is an abstract domain for the lattice of sets afrp
(L,D) with L: DWVar— Z* and D: DVar — Z.

Notice thatC"W is a sound approximation of the logical impli-
cation= between formulas (i.e., i, TV ¢, thend; = ¢»).

DEFINITION 3.2 (Abstract heap). An abstract heap ovePVar,
DVar, and anLDW-domainayy is a tupleH = (N,SV,W) where
N,SV are as in the definition of heaps, awd is a formula inay
over the data word variables N{#} (we assume that for each node
in N there exists a data word variable with the same name) had t
data variables DVar. A labstract heafs an abstract heap with at
most k simple nodes.

Two abstract heaps aisomorphicif their underlying graphs
are isomorphic. Lety denote the lattice of sets of heaps. We de-
fine ag(k, 4yw) an abstract domain fary whose elements ate
abstract heaps overy s.t. (1) for any two isomorphic abstract
heaps, the lattice operators are obtained by applying thes-co
sponding operators between the values fraf, and (2) the join
and the widening (resp. meet) of two non-isomorphic abstrac
heaps isT™ (resp..L™). Notice that1 is a widening operator be-
cause the heaps generated by the programs which manipulgte o
singly-linked lists contain a bounded number of crucialemfL9].

The domains used in the analysis are finite powerset domains
over ag(k, 4w). Their elements are callddabstract heap sets

DEFINITION 3.3 (Abstract heap set).A k-abstract heap set over
PVar, DVar, and anLDW-domain 4y is a finite set of non-



isomorphic k-abstract heaps over PVar, DVar, aag;. The ab-
stract domain of k-abstract heap sets is denotedily(k, 2w ) =
(AHS(k,ﬂW),;HS,HHS,uHS,THS,J_HS), where AlS(k, aw) is
the set of all k-abstract heap sets over PVar, DVar, argl.

The operators fromys(k, 2y ) and the widening operator are
obtained from those ofiyy(k, 2vw) as usual [9]. For example, the
join of two abstract heap sets is computed by taking the union
of these sets and by applying the join operator between aay tw
isomorphic abstract heaps.

3.2 AnLDW-domain with universally quantified formulas

We present the abstract domain, = (AV,CY, Y, LU, TV 1U)
whose elements are first-order formulas with free varialites
DWVaru DVar. This domain is parametrized by a set of constraints
on position variables (which are interpreted as positianghe
words), calledjuard patternsGuard patterns are conjunctions of:

e formulas that associate vectors of position variables wéta
word variables ¥ € t1(w) means that the position variables
from the vectory are interpreted as positions in the tailcwo,

¢ formulas that impose a total order between the values of the
position variables associated with the same data wordhiaria
(Y =<1¥2 <2 ... <my™ where<ie {<, <, <1} withy <1 ¥ iff
y =y+1),and

¢ alinear constraint on the values of the position variableikv
are the first in the order constraints considered above.

Let ¥ C DWVar and let? be a set of guard patterns. Also,
let #(9) be a set of formulas obtained from guard patterng in
by substituting all data word variables with variables fremAn
element ofAy is a formula of the form:

W) z=E()A N\ Vy.gly) = Ug

gy)er(v)

whereE (V) is a quantifier-free arithmetical formula ov@¥ar and
termshd(w), len(w) withw e %/, g(y) is a guard over the vector of
position variabley, andUy is a quantifier-free arithmetical formula
over the terms ifE (1) together withw[y] andy, for anyw € ¢ and
y € y. It is assumed that the termy] appears irg only if g(y)
associatey with w. Also, E andUg represent elements of some
numerical abstract domaimy, = (AZ,C%,n%, L%, T2, 1 %) which
is a parameter ofiy.
Lattice operators: The valueTU (resp. LU) is defined by the
formula in whichE and allug are TZ (resp.L%). Let

(E)

W(1) = E(V1) A Agiyy e (v W- (9(y) = Ug) and
W/(72) = E'(V2) A N\giy)eo (vy) VY- (9(Y) = Ug).

Before applying any lattice operator we addN¥qresp\W’) univer-
sally quantified formulas’y. g(y) = TZ, for anyg(y) € # (1) \
2 (V2) (resp.g(y) € 2(V2) \ 2 (71)).

Then,W CU W' iff (1) E CZ E/, and (2) for each guard(y) €
2 (1) U2 (72) which associates the vector of position varialyles
with the data word variabhe;, for all 1 <i < n, the following holds:
if EC% 1en(w;) > |yi| +1, for all 1< i < n, thenEN%Ug CZ Uy,

Also, W LIUW' is defined by

(EL“E) A A

gly)ee (v1)ur(v2)

vy. g(y) = (Ug L Ué) )

The operators1V andOV are defined in a similar way.

3.3 AnLDW-domain with multiset formulas

We present the abstract domain A4y
(AM M M MM M) whose  elements  are  multiset

constraints with free variables DWVarU DVar. A basic multiset
termisu ::= mhd(n) |mt1(n) | d, wheren € DWVarandd € DVar.
The termmhd(n) (resp.d) represents the singleton containing the
first letter of the word associated to(resp. the value ofl). The
termmt1(n) represents the multiset containing all the letters of the
word associated to except for the first one. As a shorthandn)
denotes the termhd(n) Umt1(n).

A multiset constrainis a conjunction of formulas of the form
U1UUpU---UUs=ViUWU---Uw, Wheres>1,t > 1, and for all
1<i<sand 1< j <t,u; andv; are pairwise distinct basic multiset
terms, andJ is the usual union operator between multisets.

Multiset constraints can be represented by a polyhedroh wit
a dimension for any basic term: a formula Uu, U --- U us =
ViUV, U---UV is represented by the linear constraint+ u, +
<-4 Us = Vy + Vo + -+ . The entailment relation between the
multiset constraints is defined by the entailment relatietwieen
the corresponding polyhedra. The lattice of multiset a@msts is
finite (for finite DWVar and DVar) and consequently, there is no
need for a widening operator.

4. Abstract semantics

The abstract semantics defines a mapgifigwhich associates to
each control point of the program an abstract heap set. &finetl

by the system of equations obtained from the one defining the
concrete semantics in (D), by replacipgst with asound abstract
transformer post” over abstract heap sets. The termination of
the fixpoint computation is guaranteed by applying the wiiign
operator at the start of each intra-procedural loop andeaetttry

and exit point of each recursive procedure.

The analysis that we have implemented tabulates the input co
figurations of the computed procedure summaries. In this way
avoid to compute twice the same procedure summary. For asy la
Stof some ICFG edge, we defipest” as follows:

e if Stis different fromassune, assert, procedure call and
procedure return, we first define the abstract transfogmet”
over abstract heaps. Thepest*(StHS), whereHS is some
abstract heap set, is the join s of post#(St,H), for each
HeHS

« otherwise, we definpost” directly over abstract heap sets.

The statementpp=NULL: The abstract transformer corresponding
to this statement begins by moving the lapeb the node. It may
happen that the obtained abstract heap contains moré giarple
nodes. If it is the case, the transformer calls a procedultedca
fo1d” which, for anyH € 4y, returns an abstract he&fs with no
simple nodes which over-approximates(i.e., the concretization
of H' includes the concretization f).

Let H = (N,SV,W) be an abstract heap and fgt...,n; be all
its simple nodes. For simplicity, suppose that they are erstme
path between two crucial nodesandm. We definefold*(H) =
(N’,S,V,W), where(N’,S) are obtained by removing the nodes
.,y and by adding the edga, m) andW' is a formula inayy
which is an over-approximation of the following formula

(Enﬂnlmﬂnt. (Ti:n~n1-4.4-nt/\v~\/>)[ﬁ<—n]. (F)

The formula in (F) belongs tery extended with quantification
over data word variables, and a concatenation operatiorb@ym
“.”_ Intuitively, (F) says that the word associatednn fold”(H)
(denoted in (F) by) is the concatenation of the words associated
ton,ng,...,ntin H.

The transformer concat® from [2] computes an over-
approximation of (F) in4y. It is precise for domainsay
parametrized byglosed sets of patternRoughly, a set of patterrs



is closed if whenever it contains a pattéover the set of position
variablesy it also contains all the projections &f (in Presburger
arithmetics) on subsets §f In 4y, an over-approximation of (F)
can be obtained by:

* updating inW, mt1(n;) to

mt1(ng) Umhd(ny) Umtl(ng)U--- Umhd(rg) Umtl(n)

¢ removing all the constraints on the variabtes. .., n

Statements involving reference fields:For a statemenst of the
form p->next =NULL (resp.g=p- >next ), the concretepost mod-
ifies the edge (resp. the target of the edge) starting in the no
labeled byp. The abstract transformegost”(St H), whereH =
(N,SV,W), can not directly modify this edge because it may cor-
respond to a path of arbitrary length in the concrete heaps,Th
post#(St H) begins by calling a procedummfold#(H p) which
returns two abstract heapﬁ andH, such that the concretization
of H is included in the union of the concretizationstof and Ho.
The abstract heal; (resp.Hy) corresponds to the case when the
length of the word associated to the natléabeled byp in H is

1 (resp. strictly greater than 1). Thu$; = (N,S.V,W’) whereW'’

is a formula inay which over-approximateg; : W A len(n)=1
(i.e.,01 = W’). Then,H, = (N/,S,V,W") corresponds to the case
len(n) > 1, where(N',S) is obtained by adding a new nodebe-
tweenn and its successar’ in H andW” is a formula inay that
over-approximates the following formula (given in an exstien of
the logic of 2y with quantification over word variables and with a
concatenation operation symboal)"

<3n. (n =7-n Alen(f) = 1AW Alen(n) > 1)) M«n (G)

This formula says that the word associated to Hs is only the
first letter of the word associated dn H and the word associated
ton’ in Hy is the tail of the word associatedrdn H. The abstract
transformewsplit? given in [2] computes this over-approximation
in the domain of universal formulas.\I¥ is a multiset constraint in
4w, an over-approximation for (G) can be obtained by substigut
mhd(n) with mhd(n) Umhd(n') Umt1(r).

The statementassune andassert: The assertiong we con-
sider for these statements are disjunctions of formulabefdrm
oAby, wherepg describes a unique gragN, S V) as in the def-
inition of heaps andvy is a formula in the data words logic afyy
over the data word variablé& For simplicity, we assume thét is
a separation logic formula [22] defined as a separating oatipn
of atomic formulas of the forms(n,n’), wheren,n’ are variables
interpreted as distinct nodes in the graph. A formuddn,n’) is
true in some abstract heap iff there exists an edge betweertles
represented by andn’ (i.e a path connecting them in the concrete
heap). We require thats (1) contain at most one atomic formula
1s(n,n'), for everyn, and (2) induce a graph that does not contain
simple nodes. Then, I&y be an abstract heap set fromy(awy)
and letd be a formulabs A dyy that describes an elemet; from
the same abstract domaiy; (A ). Thus,post¥(assune ¢,Ay) =
Ay S AL Also, post®(assert ¢,Ay) = Ay if fold#(Ay) S
A, andpost®(assert ¢,Ay) = LTS, otherwise. The extension of
this definition to disjunctions of such formulas is strafghivard.
Procedure calls: The abstract transformer corresponding to a
call to startedge,call y = P(x), whereP = (fpi, fpo,loc, G), com-
putes abstract heap sets ovec® U loc. For any abstract heap
RC = (N€, &,V W°®) from the input abstract heap set it returns an
abstract heap = (NS, S°,VS,WS), where:

e the local heap corresponding to the cd&l(x), denoted

local(RE,P(x)) = (NX, VX WX), is defined by (1)

(NX, $X,VX) is the sub-graph d containing only nodes reach-
able from the nodes labeled by variables in which actual pa-
rameters are replaced by the corresponding formal parasnete
and (2)W* is an over-approximation af(N¢\ N*). W¢(where
J(N®\ N*) denotes an existential quantification over all the
word variables ifN®\ NX).

the graph(N°, $>,V®) contains two copies ofN*, S*,V*) (the
nodes of one copy are labeled by variableli?) andWs is an
over-approximation imyy of the formula:

A

" eN° neN
nis a copy ofn°

WX AWX [neno\neNX}/\

eq(n,n),

whereeq(n,n°) is expressing the equality between the data of
the words denoted by andnC. In ay, eqn,n®) is expressed
precisely by
eq,(n,n°) : hd(n) =hd(n°) Alen(n) = len(nP)
A(YY1,Y2. (y1 € t1(n0) Ayz € t1(N) Ay1 = ¥2)
= ny1] =nly2]),
while 4y, can represent only an over-approximation by

eqn(n,n°) : mhd(n) = mhd(n°) Amt1(n) =mt1(n°). 0}

(H)

Procedure returns: Consider now aexit to returnedge, labeled
by ret y = P(x), from the exit point ofP = (fpi,fpo,loc,G), de-
notedep, to some control point in the CFG of a procedur®. Let
cbe the call point associatedtandR® = (N¢, S¢,VE,W°) € p#(c).
The abstract transformer foet y = P(x) computes an abstract
heap set whose elements are denote®by: (N, S, V", W"). To
this, it uses the (pre) computed summary for this call of the p

cedureP, represented by an abstract heap set whose elements are

denoted?® = (N€, S,V We). The summary must satisfy the prop-
erty that its input configuratiof, is implied by the constraints
on the actual parameters, ilacal(R°,P(x)) C™ R¢.. To compute
R =(N", S,V W)

* we take the union between the call gratf,S*, V) and the

exit graph(NOUt, Ut v/outy of the output configuration in the
summaryRe,

¢ we eliminate the input version of the parameter® of

« we defineW" by (a) definingCombine (WC, W) which applies
the conjunction betweeW¢® andWe after it ensures that the
nodes inN¢ belonging to the local heap of this call have the
same name as the corresponding nodesSmepresenting the
input configuration and (b) computing an over-approxinmatio
of INC. Combine (WS, W®), whereN® is the set of nodes iN®
representing the input configuration.

In 2y and a2y, over-approximations of existentially quantified for-
mulas can be defined by, roughly, removing sub-formulasaiont
ing the existentially quantified data word variables.

5. Combining abstract domains

Let us take a closer look to the analysis of gliecksort procedure
from Figure 1 with the domain of universally-quantified farias,
ays(4y), over the set of guard patterns
yetl(w),  yi,y2€tl(w) Ay <yp,
y1 € t1(w1) AY2 € t1(w) Ay1 =Yo.

The analysis manipulates universally-quantified impiara
where the left part is one of the formulas above, wherecbize



are data word variables. Typically, in the case of recurpiace-

dures, the analysis starts by computing procedure sumsnime
input lists of length 1 and then, for input lists of length Bdaso

on until it reaches a fixpoint (to terminate it applies the evithg

operator).

The analysis is able to compute a procedure summafy,:
sortedng) Alen(n) < 2 for input lists of length at most 2, where
n, represents the list pointed to by the output formal paramete
res of qui cksort. In the next iteration, the context of the first
recursive call I'ef t =qui cksort (Il eft)” is given by the graph
and the formulal; in Figure 4(c). The abstract transformer for
procedure return computés. (We A Lpusjum). This projection will
remove all the constraints anwhich is the actual input parameter.
The same holds for the list pointed to byght and the second
recursive call. The relation obtained after the two callgiven in
Figure 5. We have lost the property that all the elementsebf
are less than the pivot. Consequently, after calliogcat , we can't
obtain that the list pointed to hyes is sorted.

aO
ULL

a.—>u

I eft {
right Np

Figure 5. The relation synthesized at line 17a@fi cksort.

@:d=hd(np) Alen(np) =1 Aeq,(Na,nd)
Asortedn) A len(n) <3
Asortedn;) Alen(ny) < 3,

sortedn) : Vy. y € t1(n) = hd(n) < nfy]
AVY1LY2. ((Y1,Y2) € t1(N) Ay1 < V2)

pi vot = n[yl] < n[yZ]

Next, we give a solution for this problem based on a combina-

tion of abstract analyses. Thus, at the return from the f@insive
call, the abstract transformer computes

any. (strengthenM (lch AU m llJlleIJm>> , )

whereg :ms(n.) =ms(n) is the summary foqui cksort com-
puted inays(Ay) andstrengtheny, : Ay X Ay — Ay. The op-
eratorstrengtheny returns
We A WeymAhd () < hd(np) AVY. y € £1(nj) = mb[y] < hd(np),
and consequently, by eliminating the constraintsypfdue to the
existential quantification), we preserve the fact that teements of
the list pointed to by ef t are smaller than the pivot.

The functionstrengtheny; is an instance of a more general
procedure denotesltrengthenyy.

Given 2y an LDW-domain, the definition obtrengthenyy
uses a procedurinfery which, for any two abstract valus¥, ¢

Ay andWayx € 4wy, returns an over-approximation of their con-
junction expressed iagy.

DEFINITION 5.1. Let ayw be someLDW-domain andinferyy :
Ay X Aw — Ay such that

(\Nn /\Waux) = inferW(Wn,Waux).
The functiorstrengthenyy : Ay x 4w — Ay is defined by
strengthenw (Wn ,Waux) = Wn |_|IU inferw (Wn 7\’i\’/au)() .

Before giving the formal definition ofnfery let us consider
two examples, one for computingfery; and one for computing
infery.

Computinginfery;: Consider the application @ftrengtheny,
from (J). From its arguments, we should only remember theimul

set constrainhs(n,) = ms(n) and the following formula:
&(n) :ha(ny) < hd(np) AVY. y € t1(n) = nyly] <hd(np) (K)

which says that all the elements of the wordhre less thahd(np).

The result obtrengtheny; is computed usingnfer); applied
on the same inputs. Roughly, to compttefery; (1) we unfold a
bounded length prefiyp,, resp.py, of the wordnj, resp.n; thus,
n, = p1-s1 andn = pz2 -, where- denotes the concatenation
of words, (2) we infer the properties of the nodespmnand p,
implied by the conjunction between the constraint in the dionof
universally-quantified formulas and the constraint in thatiset
domain and (3) we fold the prefixgs, and p, and collect the
informations on these nodes using a universally-quantifiedula.
Then, we continue to apply the same transformations on tidsvo
s1 ands, until we reach a fixpoint.

This unfolding/folding mechanism reduces the initial gesb
(of inferring universally-quantified constraints implibgl the con-
junction of the inputs) to the problem of inferrirguantifier-free
constraints implied by the conjunction of the inputs.

{no[0], N6 [1]} Ums (s1) = ms () {no[0], N6 [1]} Ums (s1) = ms ()

0 1 234... 0 1 234...

[
0 1 234.. Omt 0 1 234..

n: CHO o
(@ jmd (b)
01 2 3 45. 01 234...

n: . unfold
01 2 3 45. 01 234...

n: [ HHO n: [P

Figure 6. Computinginfery.

Some steps from the computationiaffery; are given in Fig-
ure 6. The unfolding of a prefix of length 2 is given in Figura)s(
Above each sub-word we give the positions from the initiatdvo
it contains. The sub-words are colored if their elementisfyathe
property from$(n;). At this step, only the sub-words of are col-
ored. In the multiset constraint, for amny> 0, {n,[i]} denotes the
singleton multiset containing the elementrgfat positioni. This
syntax is not exactly the one used in the formulas manipdlbye
our analysis but we use it for the sake of simplicity. On thifold-
ing we apply gpartial reduction operatof9], denotedoy, which
deduces new properties on the unfolded prefix based on thesetul
constraints. Here, it deduces that, for ang 0< 1,

Ny[i] € ms(m) Ad(ny) impliesngi] <hd(np).
The result of applyingy; is given in Figure 6(b). Now, we can
apply a folding operation in the two abstract domains wheselt
is given in Figure 6(c). Then, we continue by unfolding amoth
prefix of length 2 from the sub-word of that starts with position

2 (this is pictured in Figure 6(d)). We repeat these stepi tha
fixpoint computation terminates. The result will be:

infery (lch A ljJHSJUm, llJlleIJm> =YcA qJHsJum/\ ¢(ng)

Computinginfery: Let ad, resp.43, be a domain with uni-
versal formulas parametrized by a set of patterpsresp.#;. Us-
ing a similar mechanism, we compute, for aWye ﬂt[lj, an over-

approximation ofV in ﬂ%, denoteohonvert(@l,@z)(W). For ex-



ample, let
P1 = {yetl(w), Yy,Y2€tL(W)Ay1 <Y}
Py = {yetl(w)Ay=1 yetl(w)Ay=1len(w) —1,

Y1,¥2 € t1(W) Ay1 <1 Yo},

and letW be the sortedness propesgrtedn) in Figure 5. Com-
puting convert (21, ?,)(W) allows us to prove thal/ implies

y(n) 1 Vy1,Y2. (Y1,¥2 € £1(N) Ay1 <1Y2) = nlya] < ny2]

which can not be done using the entailment relatidh defined
in ﬂulj or ﬂ%. We start with the formulaV’ : true and we apply a
procedureinfery to strengthen it using the information frovd.
Again, we unfold a bounded-length prefixmfFor instance, if we
unfold a prefix of length 3, the formul&’ remains unchanged and

the formulaW is transformed into a formuM given by:
n[0] < n[1] An[1] < n[2] An[2] < n[3] Asortedn[3]),

wheresortedn[3]) denotes the fact that the formuartedis true
starting from the third position of. Then, we apply a partial
redugtion operatoqy, that takes the existential part\El[ and adds

it toW’'. Afterwards, we apply a folding operation and the woiid
split into a wordn’ containing only its first 3 elements and a word
n” containing all the other elements. The formulaziﬁ becomes

vy. (yet1(n)Ay=1)=hd(n') <y
AVYLY2. (Y1,Y2 € t1() Ayr <1Y2) = 1 [y1] < 1'yy]
AWY. (Y€ t1(n) Ay =1len(n') —1) =y <hd(n").
As in the previous case, by iterating these two steps into-a fix

point computation that traverses all the elements,ofve obtain
convert (1, P2)(W) which is given by

VY. (yetl(n)Ay=1) =hd(n) <y
AVY1,Y2. (Y1,Y2 € t1(N) Ay1 <1Y2) = Nn[y1] < nly2).

Clearly,convert (21, 2,)(W) CU y(n) which finishes our proof.

5.1 The procedureinferyy

The output ofinferyy is defined by the analysis of a program with-
out procedures with an abstract domain whichpseially reduced
product[9] betweenays (4y) andays(4w). The elements of this
abstract domain are pairs fromys(Ay) x Aps(Aw). The analy-
sis computes an invariant for the reachable program corafiiguns

at each control point. Almost all the abstract transfornierthis
analysis are defined by:

post” (St (HSn, HSaux)) = # (St HSn), post™y (St HSawx)),

where post®;(St,HS) is the abstract transformer iayg(ay)
and post®y (St HSaux) is the abstract transformer iags(aw).
The only exception is the statememt=g- >next whose ab-
stract transformer calls a partial reduction operator{9] oy :
Aps(Ay) X Aps(Aw) — Aps(4u) x Aps(Aw). This operator
propagates information between the two abstract domaidstan
output should satisfy the following: for amy € ags(ay) and
AL € ags(aw),

ol (A, AL) CHS Ay, 0%, (An,AL) CHS A, and

V(OT (A, AL)) UV, (An, AL)) = V(AH) UY(AG),
where ol (A, Aly) is the projection ofoy (A4, A};) on theith
component, for any ¥ i < 2. I1f St: p=g- >next then

post¥(St, (HSn, HSaux)) =
Ow(post#U(Sll, HSn)7post#w(St’7 HSaux))-

(post

(L)

whi | e((zm =NULL) &&
(zn!'=NULL))
{ zm = zm >next;
zn = zn->next; }
whi | e(zm =NULL)
Zm = zm >next;
whi | e(zn! =NULL)
Zn = zn->next;

© N OO A WwN R

Figure 7. A program for computingnferyy.

Let M denote the set of data word variablesigux. The pro-
gram that computesnfery depends orM. In practice, we can
heuristically choose to consider only some of the data wauri v
ables inW,x. The result ofinferyy is still sound.

For example, leM = {m,n}. The program used ifimferyy is
given in Figure 7 and consistswhi | e loops that traverse the lists
represented by the nodeshh

The initial configuration of the program is a pair of abstract
heaps(H.n, Haux) which contain the same grapN, S,V) such that
(1) the graphs contain one node for each data word variatnin
or Wayx with an edge towards (2) each node € N is labeled by
at least two variables, one being, (3) Hin = (N,SV,Wp) and
Haux = (N,SV,Waux). The first loop traverses simultaneously the
two list segments. At each iteration, the pointer varialaiesand
zn are advanced to the next element. Since the lists may not have
the same length, we add another two | e loops to continue the
traversing of the unfinished list starting from where thevimes
loop stopped.

Let (An,AL) € aps(Au) x 4ms(aw) be the postcondition of
this program (i.e, the pair of abstract heap sets assodiateé last
control point). Remark thato1d(Ap) = {H} andfold*(A) =
{HA’}, whereH andH’ are abstract heaps that contain exactly the
same graph as the abstract heaps from the precondition. file de
1nferW(Wn,Waux) W, whereW is the ay formula from H
projected on the variables frov,.

The partial reduction operatorow: The definition ofoyw over
abstract heap sets uses a similar operator on abstract Wwhaagls
again, uses a similar operator &DW-domains. The operator
ow (AH,A},) on abstract heap sets takes the jommi(H H'), for
any two |somorph|c abstract healisc Ay andH ¢ Al. Then, let

=(N,S\V,W) € ags(ay) andA’ = (N,SV,W) € ags(aw) be
two isomorphic abstract heaps (we suppose that the nodsedel
by the isomorphism have the same name). We define

ow (H,H") = ((N,sv, o%w(w,w')) , (N,sv, ogwm,w))) .
The procedureinfery: Whenayy is some abstract domain
we obtain an instantiation diferyy, denotedinfery. To define
infery, we have to provide only the definition of the partial reduc-
tion operatoloy : Ay x A — Ay % 4. Thus, leW, respW’, be
an abstract value iny, resp.a};. We defines (W,W') =W A E/,
whereE' is the quantifier-free part &/, ando? (W,W') = W'

In the following, we will describe another instantiation of

inferyy, whenawy is the domain of multiset constraints.

5.2 Combining multiset constraints and universal formulas

LetW € ay andW’ € 2 be two formulas over the set of data word
variablesN. The ay formula oM(W W) is obtained fromW by
adding new constraints on the valuesafn) with n € N based on
the multiset constrain’. The 2y, formulac?; (W, W') is obtained
by adding toW’ an equalitymhd(n) = mhd(n') for any equality
hd(n) = hd(n’) implied by the first output. In the following, we
describe the computation of;, (W,W’).



mhd(n) Cmt1(n) andWCV Wy.yen = ¢ mhd(n) C mhd(n')

y. (W'Y «hd(n))]

hd(n) = hd(r)

Figure 8. Inference rules fool;.

To help the intuition, we start by an example. Mét: Vy.y e
t1(n) = nly] > 5 andW’ : mhd(ny) Umt1(np) = mt1(n).

By an abuse of notation we can rewri@ as vval. val €
mt1(n). val <5, whereval is a variable interpreted as an integer.
Notice thatW’ implies thathd(n;) belongs tant1(n) and conse-
quently we obtain thatlV AW’ implieshd(n;) < 5. This deduction
can be done using the first inference rule in Figure 8.

In general, a multiset constraint induces multiple choiees.
the multisets to which the singletons belong to. For exaniple
W' ::=mhd(n;) Umt1(nz) =mtl(n) Umtl(m) thenW’ implies that
eitherhd(ng) € mtl(n) or hd(ng) € mtl(m). In each case, the
property onhd(n;) added to the formul&V might be different.
However, there are a finite number of choices. For each of them
we construct a strengthening \&f and then we definerllMI (W,W")
as the join of all of these strengthenings.

Formally, the formulasi, (W,W') is built as follows:

1. we deduce the set of all conjunctions of the form

Y :i=mhd(ng) C bty A... Amhd(ny) C b, (M)

whe~rebti is a basic multiset term, for any<d i <k, such that
(1) W' implies the disjunction of all formulag as above (in the
logic obtained fromay; by adding the usual inclusion operator
between multisets) and (2)y contains exactly once all the
terms of the formmhd(n;) from W'. Note that if, for example,
bty = mhd(n') then the conjunction will not contain any other
atomic formula over the termhd(n’).
2. for every such conjunction, we use its atomic formulaspiaya

6.2 Computing procedure summaries

In order to be able to compute procedure summaries paraeetri
by different sets of guard patterns, we modify the definitan
the abstract transformers corresponding to procedure aatl re-
turns as follows. Le@Q1 be a procedure for which a set of patterns
21 has been fixed. Suppose tH@4 calls a procedur®), associ-
ated with the set of patterng,. The transformepost®(call y =
Q2(x),RC), whereR¢ is over the patterng;, computes the local
graphlocal(R%,Q,(x)) (see Section 4) over patterns in and
then appliesonvert(?1,27) to obtain an over-approximation of
the local graph foQ,. Similarly, the transformepost®(ret y =
Q2(x)) is modified by applyingconvert(®,,21) to the combina-
tion between the context of the call and the summanCar

As shown for thejui cksort example, thetrengtheny; oper-
ator allows to increase the precision of the analysis imthe(ay)
domains. For this, the analysis computes two over-appratkams
for the mappingp defining the semantics of a program: a map-
ping p¥ with values inags(ay) and a mappingf; with val-
ues inAays(A4y). The abstract values at the initial control point
of the CFG,cg, are such thapﬁﬂ(co) is an over-approximation in
aps(am) of pfj(co). The recursive equations fof; andpf; re-
main unchanged. The only difference is the definition of the a
stract transformer irys(4y) corresponding to procedure returns.

Consider the edgex, eY=%0), ¢ in the CFG of some

procedureQ;. Also, let ¢ be the call point associated ta
The abstract transformgrost®(ret y = Qx(x),Re), whereRe =
(N, S°, Ve We) ¢ p¥(eq,), is an abstract heap set obtained
composing any relatioi® = (N¢, %, V¢, WC) € p¥i(c) with R®
and a relationRe,, = (NSuy S Vi Wen) € piy(eg,). This
composition is applied only if the three relations correxpdo
the same call. If it is the case, the composition is an alstrac
heapR = (N',S,V",W"), where(N",S,V") is built as in Sec-
tion 4, andW' is built by replacing Combine(W°,W®) with

by

the inference rules in Figure 8 and deduce new facts on the strengtheny(Combine (WS, W®) Wayy).

values ofhd(n) with n € N. These facts are conjunctedwa
3. 0%, (W,W') is the join of all abstract values iay; obtained in
the previous step.

6. Applications

In this section, we describe several applications of thegutare
strengthenyy.

6.1 Changing the set of patterns

To obtain a compositional analysis with the abstract domain
ays(4y), we need to transform an abstract vawein a domain
ﬂHS(ﬂqu) over a set of patterns; into an abstract valué, in a
domainﬂHg(ﬂ%) over a set of patterns, # ;.

Thus, we define an operataronvert(?1, %) : at — aj
parameterized by a pair of pattern setsy, l’g) such that
convert(fPl,sz)(Wl) is an over- apprOX|mat|on aMV, in the do-
main ,qU. Intuitively, convert(fPl,sz)(Wl) returns a formulai,
which contains (1) constraints frovi, using the patterns iy N 7,
and (2) constraints using the patternsein\ 21 implied byW, (in
FO(DWVar,DVar, Q,P)). Thus,

convert (P, P2)(Wh) = strengtheng; (TIU27V~\/1)7
whereTU” is the top element im3.

The extension ofconvert to an operator on theiys(ay)
domains is done in a straightforward manner: the graph istkep
same and only constraints associated to the graph are tedver
This operator is the base ingredient for the following agatibns.

6.3 Assertion checking

Let AL be the abstract value in a domains(a3) computed at
the control point of the statemeassert ¢, where$ describes an
elementd? € aps(a3). If 21 = 2,, checking that\l satisfies is
done using the entailment operator of;s, i.e. fold*(A}) CHS
A,2_|. To improve the precision of this entailment checking, we
can applystrengtheny; (A}, ARX), where A2 is the assertion

synthesized byays (4 ) at the same control point to obtatkil1 in
ays(2}) and then check thato1d™(Ay; ) CHS A2 in apgs(ad).

When 2, # 2, we modify the abstract transformer of

assert ¢ such that, for any abstract heap #4f € aps(ad),
post®(assert ¢,AL) = A} if fold”(convert(eq,2)(AY)) TS
AZ, i.e., the output ofo1d” for the over-approximation oA} in
aps(af) entailsAZ.

6.4 Equivalence checking

Let P, andP, be two procedures having the same input and output
formal parameters. The?; and P, are equivalentif they return
exactly the same heap when they receive the same input. We use
the program in Figure 9 to obtain a sound procedure for equiva
lence checking. In every configuration of this program, teamh
contains two disjoint regions, each region representireg htbap
configuration of one of these procedures. Initially, thegpamn as-
sumes that the heap contains two copies of the same input con-
figuration. For that, we use the predicagualfpiq,fpiz) where

fpi, andfpi, are two copies of the input parameters. We consider
thatequal(fpiq,fpi2) holds for an abstract heap if and only if it is



assumé equal(fpiq, fpiz)) ;
list *yy, *ys
y1=Py(fpi1);

y2=Py(fpiz);

1
2
3
4
5 asseri equalys,y2));

Figure 9. Procedure equivalence checking.

formed of two sub-graph&; and G, s.t. (1) Gy, resp.G,, con-
tains only nodes reachable from pointer variabledpin, resp.
fpio, (2) G1 andG; are isomorphic, and (3) for any two nodes re-
lated by the isomorphism, the integer sequences attachiigno

are equal. Equality of integer sequences can be expressagl us
the universally-quantified formulag, given by the equation (H)
(page 6). The two procedures are called on this input coratigur.
Notice that the procedure, (resp.P,) can modify only the graph
G1 (resp.Gy). The inter-procedural analysis applied to this pro-
gram computes an invariahtdescribing the configurations reach-
able after returning from the two procedures (line 5). Thigri-

ant is formed of a set of abstract heaps. The two proceduees ar
equivalent if for any abstract heap linthe regions reachable from
the output parameters &, y;, and from the output parameters
of Py, y,, are equal. To express this equality we use the predicate
equalyy,y2).

Notice that the program in Figure 9 can be used in the intra-
procedural setting by inlining the procedures. Howeves,ativan-
tage of the compositional inter-procedural analysis isélaah pro-
cedure is analyzed independently (using the local heaprg@sh

7. Experimental results

Implementation details: We have implemented our inter-
procedural analysis in a plugin calle€QA [5] of the FRAMA-C
platform [4] for C program analysis.k&L |A takes as input the ICFG
built by FRAMA-C from the C program. The implementation of
CELIA invokes/adapts (1) the heap abstract domains(ay) and
Ays (An) provided by thecinv tool [2], (2) the numerical domains
of theaprRON platform [17], and (3) the generic module of fixpoint
computation over control-flow graphs due to B. Jeannet [16]s
been carried out by implementing in C the abstract transéosm
including the abstract domain combination/strengthening

Benchmark: We have applied €LIA to a benchmark of C pro-
grams which is available on the web site cfiGA . The benchmark
includes all the basic functions that are used in usualriéseon
singly-linked lists, for example the GTHsl i st library which is
part of the Linux distribution. Table 1 gives a sample of fims

in this benchmark, split in six classes. The clgimcludes C func-
tions performing elementary operations on la&ldng/deleting the
first/last elemeninitializing a list of some length. The classeap
andmap?2 include C functions performing a traversal of one resp.
two lists, without modifying their structures, but modifig their
data. The classe®ld andfold2 include C functions computing
from one resp. two input lists some output parameters ofligper
integer. Finally, thesort class includes sorting algorithms on lists.
The procedures in classegap* and fold* are tail recursive, thus
we consider for them both iterative and recursive versidiee
third column of Table 1 specifies the versions considereztgit
tive/recursive) and the number of nested loops or recucsiile.

Computing procedure summaries: Table 1 describes some of our
experimental results on the synthesis of procedure suramari

Column 5 indicates the set of patterns used for the analy#is w
Ays(4y). These patterns are:

P-(x,X) =Vy1 € t1(x),y2 € t1(X). y1 =Y2,
P1(x) = Vy € t1(x), Po(X) = Vy1,¥2 € t1(X). y1 < ¥

The patternP- is used by default for each analysis since it is
needed to capture the relation of equality between actubicamal
function parameters. The choice®f andP, is made according to

a heuristics that is based on syntactical criteria suchestmber

of nested loops or the number of recursive calls in the bodhef
program. (These numbers are reported in column 3 of Table 1.)
The patternP; is used for programs with at least one loop (resp.
recursive call) and one iteration variable over lists. TaggynP, is
used for nested loops, more than one recursive call, or ratibn
variables.

Column 6 of Table 1 shows samples of procedure summaries
that CELIA can synthesize. (We use the & sign to denote, like in C,
the output parameters.)

Columns 4-5 provide the global running times for the analysi
including calls to theaPRON libraries. All experiments have been
done on an Intel i3-370M with 2.4 GHz and 2 GB of RAM.

All examples in our benchmark corresponding to common func-
tions for list manipulation (classestl—fold2 in Table 1, except the
functionner ge) are analyzed in less than 1 second. During the anal-
ysis of these programs, the manipulated relations are septed
using at most 6 abstract heaps, each of them having at most 16
nodes. For the rest of the examples, these relations havesatll®
abstract heaps. The sorting algorithms are time consumieda
(1) the use of widening operators (we have implemented)atet
more accurate than the standard ones availablerON, and (2)
the frequent use of th& r engt hen operation in examples such as
qui cksort.

Besides dealing with recursion, compositional inter-prhaal
allows to have a much more scalable analysis. For instamee, c
sider a program that calls theit(v) function on 10 different lists.
Our analysis computes once the summary of this function emnskr
it, while the analysis after inlining computes succesgitieé effect
of all the calls. Thus, the inter-procedural analysis igitees faster
for this example than the intra-procedural analysis.

Combination of abstract domains: The use of thest rengt hen

operation is needed in many examples of programs with proeed

calls. For instance, as we have seen throughout the paper, th

analysis of the recursive sorting algorithgqai cksort requires

combining universal formulas with multiset constraintsithbut

this combination, thqui cksort procedure must be transformed to

have two parameters (the first and the last element of thellks

in [24]. Therefore, the pivot is given as a parameter whiclpdie

to recover at the return from the recursive calls the propibrat

all elements are less/greater than the pivot. Actuallytehbniques

of [24] cannot handle the version gfii cksort given in Figure 1,

which is the standard implementation of e cksort .
Non-recursive programs may also need strengthening opera-

tions for their analysis due to the fact that different sdtpat-

terns may be used for different procedure calls. To expenirtiat,

we have considered programs performing multiple calls tz@r

dures given in Table 1, takingP—, P1,P,} as set of patterns for the

The benchmark also contains programs which do several calls analysis of the main procedure. For example, we have carside

of the above functions on lists. For example, we handle same p
grams manipulating chaining hash tables. For that, we use ab
straction techniques (slicing, unfolding fixed-size asegvailable
through the Frama-C platform. Also, the benchmark inclystes
grams allowing to test the applications discussed in theiqus
section and which we detail in the following.

procedure that callsubbl esort on a listx, and then copies it in a
variabley using the procedurd one (the procedurbubbl esort is
analyzed usingP-,P1,P,} and the procedure one using{P-}).
For the call tocl one, we obtain that the two listeandy are equal,
but the sortedness property »fs not transferred ty. However,
this property can be recovered at the returrclofne (using the



class fun nesting Am ay Examples of summaries synthesized
(loop,rec) t(s) | ? t(s)
create 0,—) 0.013 | P_,P, 0.021
addfst - 0.003 | P- 0.002
sll gdﬁlst (0,1) 8881 P_ 8883 p¥ (creatg(&x,¢)) 1 hd(x) = 0Alen(X) = {AVy € t1(X) = X}y] =0
elfst - .001 | P= .001
dellst (0,1) 0.034 | P_ 0.042
init(v) (0,1) 0.024 | P_,P, 0.034 | pf(init(v,x)) : len(x’) =1len(X) Ahd(X) = VAVY € t1(X). X[y] =V
map | initSeq (0,1) 0.024 | P_,P 0.034 | pf(addv,x)): len(x®) =len(X) Ahd(X) =hd(x°) +VA
add(v) (0,1) 0.021 | P- 0.032 Vy1 € t1(X),¥2 € 100). y1 = yo = X[y1] =X°ya] +V
map2 | addyv) (0,1) 0.089 | P- 0517 | pf(addVv,x,2)) : len(X’) = len(x) Alen(Z) = len(z) Aeq,(x,x°)A
copy (0,1) 0.063 | P- 0.078 VY1 € t1(X),Y2 € t1(2). Y1 = Y2 = X[y1] +V = 2z]y»]
delPred (0,1) 0.062 | P_,P 0.145 | pf(split(v,x,&1,&u)) : ms(x) =ms(X’) = ms(lI) Ums(u)
fold max (0,1) 0.031 | P_,P; 0.048 | pf(split(v,x,&1,&U)) : eq,(x,X°) Alen(x) = len(l) +len(u)A
clone (0,1) 0.071 | P 0.315 I0] <vAvyetl(l) =1yl <vA
split (0,1) 0.245 | P_,P; 0.871 ul0] > vAVYyetl(u)=uly] >v
equal (0,1) 0127 | P- 0.261 | pf;(mergéx,z,&r)): ms(X)Ums(z) =ms(r) Ams(X°) =ms(X) A...
fold2 | concat (0,2) 0.217 | P_,P,P,  0.806 | p¥(mergéx,z,&r)): eq,(x,x°) Aeq,(z,2°) Asortedx?) Asorted ) A
merge (0,1) 1014 | P-,P,P, 2306 sortedr) Alen(X) + len(z) = len(r)
bubble 1-) 0.387 | P_,P,P, 2190
sort | insert (1,-) 0.557 | P_,P,P,  3.292 | pf (quicksor(x)): ms(x) =ms(x?) =ms(res)
quick Eag igii E:, El,gz ég:léi p¥ (quicksortx)) : eqy(x,x°) Asortedres)
merge -, . =, PP .

Table 1. Experimental results for functions in our benchmark.

st rengt hen operation) from the fact thatis equal tox and thatx
is sorted.

Equivalence checking: We have experimented this approach
for checking equivalence between sorting algorithms. The
st rengt hen operation plays an essential role. To explain this, con-
sider the example from introduction which considers theivegu
lence checking of two sorting procedurBs and P, working on
two input listsl; andl,, and producing two output®; and O,.
The problem is reduced to checking the validity of the imgiion

(C) (page 3) because, for the template of Figure 9, we hate tha

¢ equally,l2) corresponds to the assume statement at line 1,
e sorted O1) (respms(l1) =ms(01)) is the summary of; in the
Ay (resp.4y;) domain,
e sorted Oz) (respms(lz) =ms(0y)) is the summary o, in the
Ay (resp.4yr) domain,
¢ equalO1,0y) corresponds to the assert statement at line 5.
As explained in Section 6.4, tregualls,l2) annotation is trans-
lated in theay domain into aeq, formula (equation H) and ap-
proximated in theay; domain into theeq,, formula (equation I).
To check the validity of (C), we caflt r engt hen(w”, y™) where:

yv
M
and obtain the universally quantified formu& A eq,(O1,0).

For all experiments, the time needed to check the validity of

(C) is negligible compared with the time to compute the pdoce
summaries.

ed,(l1,12) Asorted O1) A sorted Oo)
ms(l1) =ms(I2) Ams(l1) =ms(01) Ams(l2) =ms(Oy),

8. Related work

Automatic synthesis of assertions about programs with myma
data structures has been addressed using different appmac
cluding abstract interpretation [2, 3, 6, 8, 11-13, 15, 20, 23—
27, 29], constraint solving [1, 14], Craig interpolants 18

In the intra-procedural case, several works consider iawtr
synthesis for programs that manipulate dynamic data strest

The generated invariants are either universally-quadtifiest-
order formulas [2, 13, 15, 20] or multiset constraints [2]. 21

Concerning the approaches based on abstract interpretatio
which can handle procedure calls, most of them [3, 8, 23, &%)
on shape properties and do not consider constraints on &imks
data. The approach in [24] can synthesize procedure sumsnari
that describe data if the instrumentation predicates whigide
the abstraction speak about data. Providing patterns [@eirthan
providing instrumentation predicates on data becauserpatton-
tain only constraints between (universally-quantifiedyipons (in
the left-hand-side of the implication) and no constraintsdata.
For example, in [24] the predicatie(v, u) allows to synthesize the
summary for a procedure that sorts in ascending order, loutota
be used for a procedure that sorts in descending order. Howev
using the patteryl < y2 allows with our approach to synthesize
the summaries for both kind of procedures. The same pattagn m
also allow to discover other properties than sortednestuaily,
patterns are in many cases simple (ordering/equality caings)
and can be discovered using natural heuristics based onrthe p
gram syntax or proposed/guessed by the user, whereasaintsstr
on data can be more complex. Our approach allows to discover
(maybe unpredictable) data constraints for given guarpet. To
establish the fact that a procedure preserves the datasvialtlee
input list, the method used in [24] is based on reachabitiit is,
every cell in the input list remains reachable in the outjstt This
method can be applied only for programs that never modify/pe
mute the contents of data fields. In our approach, using thseiu
domain, we can handle programs that can permute positiaredisf
in the list or modify/permute the contents of their data feld

The approach in [11] considers abstract domains where the el
ements are pairs formed of a graph and a constraint on daga. Th
inter-procedural analysis based on these domains can ntitesy
size constraints in form of universally-quantified formsilas our
analysis can do. In [26], the authors introducace partitioning
abstract domainsvhich start from a partition of the set of traces
and compute an invariant for each class. The partitioning =
static (usually based on the control structure of the prograr
dynamic. From this point of view, the approach in [26] coes&d
mainly statically-defined partitions. The abstract doniaiaur pa-
per, based on the unfolding/folding operations, can be ssesn



instance of a trace partitioning abstract domain with a dyingar-

titioning. The corresponding partitioning puts in the sartass all

the traces for which the number of dereferences ofitx¢ pointer

field is the same modulo some fixed constatwhich is a parame-
ter of the analysis). The approach in [26] considers mainiyer-

ical abstract domains and it is not faced to the difficultased by

a compositional analysis on programs manipulating dynatata

structures. The analysis in [12] combines a humerical abistto-

main with a shape analysis. It is not restricted by the clasat@a

structures but it considers only properties related to baps and
to the size of the memory.

9. Conclusion

We have defined an accurate inter-procedural analysis égrams
with lists and data. The key contribution of this paper ischteque
for combining the analysis in different abstract domaind &s
use in compositional analysis techniques that are ableféo fron
trivial procedure summaries.

The combination mechanism we propose, based on an unfold-

ing/folding technique combined with partial reduction ogiers,

could be applied for other abstract domains than those d@onsi

ered in this paper. In particular, other abstract domairsetban
first-order formulas, e.g., the one defined in [13], can beluse
strengthen the analysis in our domain of universal formulas

Another interesting aspect of our work is that it allows to-ma

nipulate constraints without requirement of decidahildgntrary

to many works based on decision procedures. Our abstract do-

mains allow actually to express verification conditions #ygpear
in pre-post condition reasoning. These conditions areaflyi im-

plications, and then, our entailment checking can be usetdok
safely their validity. Therefore our framework allows tonioine
smoothly pre-post condition reasoning with assertionisssis.

Future work includes the generalization of our framework to [26] X. Rival and L. Mauborgne.

structures such as multi-linked lists, trees, and nestedtstres.
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