
On Inter-Procedural Analysis of Programs with Lists and Data

Ahmed Bouajjani Cezara Drăgoi Constantin Enea Mihaela Sighireanu
LIAFA, University Paris Diderot & CNRS

{abou,cezarad,cenea,sighirea}@liafa.jussieu.fr

Abstract
We address the problem of automatic synthesis of assertionson
sequential programs with singly-linked lists containing data over
infinite domains such as integers or reals. Our approach is based on
an accurate abstract inter-procedural analysis. Program configura-
tions are represented by graphs where nodes represent list segments
without sharing. The data in these list segments are characterized
by constraints in abstract domains. We consider a domain where
constraints are in a universally quantified fragment of the first-order
logic over sequences, as well as a domain constraining the multisets
of data in sequences.

Our analysis computes the effect of each procedure in a local
manner, by considering only the reachable part of the heap from its
actual parameters. In order to avoid losses of information,we intro-
duce a mechanism based on unfolding/folding operations allowing
to strengthen the analysis in the domain of first-order formulas by
the analysis in the multisets domain.

The same mechanism is used for strengthening the sound (but
incomplete) entailment operator of the domain of first-order formu-
las. We have implemented our techniques in a prototype tool and
we have shown that our approach is powerful enough for automatic
(1) generation of non-trivial procedure summaries, (2) pre/post-
condition reasoning, and (3) procedure equivalence checking.

1. Introduction
Automatic synthesis of valid assertions about programs, such as
loop invariants or procedure summaries, is an important andhighly
challenging problem. In this paper, we address this problemfor se-
quential programs manipulating singly-linked lists with unbounded
data such as integers or reals. These programs may contain proce-
dure calls, and actually they are in many cases naturally written
using recursive procedures.

Assertions about these programs typically involve constraints
on the shape of the structures, their sizes, the data values con-
tained in the memory cells, the multisets of their data, etc.Con-
sider for instance the algorithmquicksort in Figure 1 that sorts
the input list pointed to by the variablea (and where the call
split(start,d,&left,&right) copies all the cells of the list
pointed to bystart which have data larger thand in the list
right, and all the other ones in the listleft). The specification
of quicksort includes (1) the sortedness of the output list pointed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’11, June 4–8, 2011, San Jose, California, USA.
Copyright c© 2011 ACM 978-1-4503-0663-8/11/06. . . $10.00

1 typedef struct list {
2 int data;
3 struct list *next;
4 } list ;
5 list * quicksort(list *a){
6 list *left,*right,*pivot,*res,*start;
7 int d;
8 if (a == NULL || a->next == NULL)
9 res = clone(a);

10 else {
11 d = a->data;
12 pivot = create(1); // list of length 1
13 pivot->data = d;
14 start = a->next;
15 split(start,d,&left,&right);
16 left = quicksort(left);
17 right = quicksort(right);
18 res = concat(left,pivot,right); }
19 return res; }

Figure 1. Thequicksort algorithm on singly-linked lists.

to byres, expressed by the formula:

∀y1,y2. 0≤ y1 ≤ y2 < len(res)⇒ data(y1)≤ data(y2) (A)

wherey1 and y2 are interpreted as integers and used to refer to
positions in the list pointed to byres, len(res) denotes the length
of this list, anddata(y1) denotes the integer stored in the element
of res at positiony1, and (2) the preservation property saying that
the multiset of data of the input lista is equal to the multiset of data
of the output listres. This property is expressed by

ms(a0) = ms(res) (B)
where ms(a0) (resp. ms(res)) denotes the multiset of integers
stored in the list pointed to bya at the beginning of the procedure
(resp.res at the end of the procedure).

We propose an approach for automatic assertion synthesis based
on inter-procedural analysis within the framework of abstract in-
terpretation [7], that is, we consider abstract domains forexpress-
ing constraints on relations between program configurations, and
we define compositional techniques for computing proceduresum-
maries concerning various aspects such as shapes, sizes, and data.

We build on the work by Bouajjani et al. in [2] where they define
an accurateintra-procedural abstract analysis for synthesizing in-
variants of programs with lists and without procedure calls. In their
approach, abstract domains are defined where elements are pairs
composed of a heap backbone and an abstract data constraint.The
heap backbone is an abstraction of theheap graph(the graph rep-
resenting the allocated memory) where only a bounded numberof
nodes are kept, including all sharing nodes and all the nodespointed
to by program variables. An edge in the backbone represents apath
(without sharing nodes) relating the source and target nodes in the
original heap. The data constraint is given as an element of some
abstract domain and allows to specify properties of the datase-
quences represented by the edges of the heap backbone. The pro-
vided analysis in that paper is based on (a) unfolding the structures

caller heap

callee input non-local

callee output

ψsum(xin,xout)

ϕ(xin,xgl)

ϕ(xout,xgl)

Figure 2. Relation between caller and callee local heaps.

in order to reveal the properties of some internal nodes in the lists,
which makes necessary to introduce in the structures some nodes,
called simple nodes, others than the sharing nodes or those pointed
to by variables, and then (b) folding the structures by eliminating
the simple nodes and in the same time collecting the informations
on these nodes using a formula that speaks about sequences ofdata.
The analysis is iterated several times, which may lead to additional
unfoldings and foldings. Then, widening techniques on numerical
domains are used in order to force termination. Several abstract do-
mains are defined for the analysis, and in particular, domains where
elements are (1) formulas in a universally quantified fragment of
the first-order logic over data words, or (2) conjunctions ofequal-
ity constraints between unions of multisets of data in words. The
formulas in the first abstract domain contain a (quantified) univer-
sal part which is a conjunction of formulas∀y. (P⇒U), wherey
is a vector of variables interpreted as positions in the words, P is
a constraint on the positions (seen as integers) associatedwith the
y’s, andU is a constraint on the data values at these positions. It is
assumed thatP is obtained from a finite set of fixedpatternscorre-
sponding to, e.g., order constraints or difference constraints. While
the techniques presented in [2] are strong enough to generate com-
plex invariants for iterative programs, they cannot be applied for
compositional computation of procedure summaries.

In this paper, we propose an extension of the approach in [2]
by defining new techniques for accurateinter-procedural abstract
analysis. This extension is not trivial due to many delicateproblems
that appear when addressing the compositionality issue. Indeed, in
the spirit of [23], at each procedure call, the callee has only access
to the part of the heap that is reachable from its actual parameters.
The use of such local heaps is delicate due to the fact that there are
relations between the elements of the local heap of the callee, and
of the heaps of the procedures that are in the call stack. If these
relations are lost during the analysis, this one can be unsound in
some cases, or very imprecise in others. However, it is not feasible
to maintain explicitly these relations during the analysis. Let us
examine this crucial problem.

This problem has been addressed in [23] in a framework where
data are not considered. In this case, the relations inter-local heaps
are due to reachability: nodes in the local heap of the calleecan
be reachable from the other heaps through paths that do not con-
tain nodes pointed to by the parameters of the procedure (theentry
points of the local heap). If during the call these nodes become
locally unreachable and deleted, the analysis becomes unsound.
The solution to this proposed in [23] consists in maintaing along
the calls the points, called cutpoints, where these (inter-local heap)
paths enter local heaps. This is a tricky problem since in general
the number of cutpoints may be unbounded. However, there is a
significant class of programs for which cutpoints are never gener-
ated during the analysis. The class of such cutpoint free programs
[24] includes programs such as sorting algorithms, traversal of lists,
insertion, deletion, etc. In this paper, we consider cutpoint free pro-
grams and focus on the problems induced by data manipulation.

Indeed, even for cutpoint free programs, the problem above
persists when data constraints are considered as we do in our
framework. The reason is that elements in the local heap of a
procedure can be related to elements in the rest of the heap with
data constraints such as equality, ordering, etc. This situation is
depicted in Figure 2. Elements in the local heap of the calleeare
linked at the call point to external elements by some data relation,
ϕ, and the analysis generates a summaryψsum of the procedure
relating the input heap with the output heap. Then, the problem is
whether there is a linkϕ between the elements in the callee output
heap and the external elements in the caller heap. This problem
depends on the accuracy of the used summarization technique.
Consider for instance thequicksort procedure that takes the first
elementd of the input lista as the pivot, splits the tail of the list
a into two listsleft and right where all the elements ofleft
resp.right are smaller resp. greater thand, and then performs two
recursive calls on the listsleft andright, before composing the
results, together withd, into a sorted list. After the recursive call
at line 16 onleft, the information we obtain from the analysis
with the domain of first-order formulas is that the output list left’
is sorted. Since we had already the information that the elements
of the input listleft were all less thand, we must infer after the
return from that call that the elements ofleft’ are also less thand.
But, since the link betweend and the elements ofleft has not been
passed to the recursive call, this information cannot be computed.
This is because the used abstract domain cannot express the fact
that a list is a permutation of another list (which requires formulas
beyond the universally quantified fragment). Again, maintaining
all the relations between the elements of the local heaps andthe
external elements is not feasible. Our solution to this problem is
based on strengthening the analysis in the domain of first-order
formulas with the analysis in the domain of multiset constraints.
Indeed, for thequicksort example, knowing thatleft andleft’
have the same multisets of elements should allow to infer from the
fact that all elements ofleft are less thand, that the same fact also
holds about the elements ofleft’.

Proc P
AU(P)

Proc Q1

AU(P1)

Proc Q2

AU(P2)

call

return

return

call

Figure 3. Compositional analysis with patterns.

Another problem that must be addressed for the design of com-
positional analysis is due to the use of patternsP for left-hand sides
of implications in the first-order formulas. Indeed, the analysis of
different procedures may need the use of different sets of patterns,
and therefore it is important to be able to localize the choice of
these patterns to each procedure. Otherwise, it would be necessary
to use a set of patterns including the union of all the sets that are
used during the whole analysis, and this would obviously make
the analysis inefficient. For instance, the computation of the for-
mula (∀y. 0 ≤ y < len(left) ⇒ data(y) ≤ d) ∧ (∀y. 0 ≤ y <
len(right)⇒ data(y)> d) describing the effect of the procedure
split called byquicksort does not need the use of the pattern
0≤ y1≤ y2 < len(res) that is used for the generation of the sorted-
ness property. Consequently, during the analysis, at procedure calls
and returns, we need to switch from an abstract domain of formulas
parametrized by some set of patterns, sayP , to an abstract domain

parametrized by another set of patternsP1 or P2 as shown in Figure
3 (AU(P) denotes the domain of first-order formulas parametrized
by the set of patternsP).

The two problems exposed above show that in order to define
a compositional and accurate inter-procedural analysis, we need
to define an operation for composing abstract domains (e.g.,first-
order formulas with multiset constraints, or first-order formulas of
different types). We propose in this paper a mechanism whichal-
lows to solve these problems. This mechanism is based on unfold-
ing/folding operations which can be used, at procedure calls and
returns, to (1) compute an over-approximation of the intersection
between a first-order formula and a multiset constraint and (2) to
convert universal formulas defined over a set of patternsP1 to for-
mulas defined over a set of patternsP2.

Beyond compositional summary computation, the operation we
define for combining abstract domains allows to tackle two other
interesting problems. First, it allows to define an entailment opera-
tion on combined constraints of the formφ∧ψ⇒ φ′ whereφ and
φ′ are two universal first-order formulas (potentially over different
sets of patterns), andψ is a multiset constraint. This provides a
lightweight sound (but not complete) decision procedure for such
kind of formulas, which is useful for carrying out pre-post condi-
tion reasoning. Furthermore, our techniques are accurate enough to
be used for automatic procedure equivalence checking. It iseasy to
see that this problem can be reduced to inter-procedural analysis,
provided that it is possible to express equality between structures,
and derive such properties. This is not trivial in general since rea-
soning about combined abstract domains is needed. For instance,
to check that two sorting proceduresP1 and P2 are equivalent, it
is possible to call each of them on two identical input listsI1 and
I2, and then assert that the two outputsO1 andO2 are equal. As-
suming that the summary ofPi is sorted(Oi)∧ms(Ii) = ms(Oi), for
i ∈ {1,2}, this amounts to check the validity of the formula:

(
equal(I1, I2)∧ sorted(O1)∧ms(I1) = ms(O1)

∧ sorted(O2)∧ms(I2) = ms(O2)
)

⇒ equal(O1,O2),
(C)

where the predicatesequalandsortedare expressed by first-order
formulas. Our techniques are able to find that this formula isindeed
valid.

We have implemented our techniques and carried out several
experiments showing the strength of our approach.

2. Programs
Let PVar be a set of variables of type reference to a record type
calledlist defined by a single reference fieldnext and one data
field data of integer type. We consider thatPVar includes the
constantNULL. Also, let DVar be a set of variables interpreted as
integers. The generalization to record types with several data fields
and data fields of different basic types is straightforward.
Syntax: A program is defined by a set of procedures, each of
them represented by itsintra-procedural control flow graph(CFG,
for short). Formally, a procedureP is a tuple (fpi , fpo, loc,G),
where loc ⊆ PVar∪DVar is the vector of local variables,fpi ⊆
loc and fpo ⊆ loc are the vectors of formal input, resp. output,
parameters, andG is its CFG. W.l.o.g., we suppose that the CFG
of P contains a uniqueentry point sP and a uniqueexit point eP.
Its edges are labeled by (1) statements of the formp=new, p=q,
p->next=q, p->data=dt, andy=Q(x), wherep,q ∈ PVar, dt is a
term representing an integer (built over terms of the formd ∈DVar
and p->data using operations overZ), andy,x ⊆ PVar∪DVar,
(2) boolean conditions on data built using predicates overZ, (3)
boolean conditions on pointers of the formp==q wherep,q∈PVar,
or (4) statements of the formassert ϕ andassume ϕ, whereϕ is
a formula (see Section 4 for more details concerning the syntax of

ϕ). The semantics assumes a garbage collector and consequently,
the statementfree is useless. We assume a call-by-value semantics
for the procedure parameters and that each procedure has itsown
set of local variables. We forbid pointers to procedures andpointer
arithmetic.

The inter-procedural control flow graph(ICFG, for short) of a
program is defined as usual by replacing edges labeled by proce-
dure calls with (1) acall to start edge labeled by〈call y=Q(x)〉,
and (2) anexit to returnedge labeled by〈ret y=Q(x)〉.
Semantics: A program configuration is a valuation of the vari-
ables interpreted as integers together with a configurationof the
allocated memory. The latter is represented by a labeled directed
graph where nodes correspond to objects of typelist and edges
correspond to values of the reference fieldnext. The nodes are
labeled by the values of the fielddata and by the program pointer
variables which are pointing to the corresponding objects.The con-
stantNULL is represented by a distinguished node♯. Such a repre-
sentation for a program configuration is called aheap.

DEFINITION 2.1 (Heap). A heap overPVar and DVar is a tuple
H = (N,S,V,L,D) where:

1. N is a finite set of nodes which contains a distinguished node ♯,
2. S: N×N is a set of edges such that S contains at most one edge

(n,n′), for any n∈N, and S does not contain an edge(♯,n) with
n∈ N,

3. V : PVar→ N is a function associating nodes to pointer vari-
ables s.t. V(NULL) = ♯,

4. L : N ⇀ Z is a partial function associating nodes to integers s.t.
only L(♯) is undefined, and

5. D : DVar→ Z is a valuation for the data variables.

DEFINITION 2.2 (Simple/crucial node).A node which is labeled
by a pointer variable or which has at least two predecessors is
called acrucial node. Otherwise, it is called asimple node.

For any procedureP= (fpi , fpo, loc,G) and any control pointc
in P, we consider relations between program configurations at the
entry point ofP and program configurations atc. These relations
can be represented using a double vocabularyloc∪ loc0, where
loc0 = {v0 | v∈ loc} denote the values of the variables inloc at the
entry point ofP. A relation associated toP at c is represented by a
heap overloc∪ loc0 containing a valuation for the integer variables
in (loc∩DVar)∪ (loc∩DVar)0 together with a graph which is the
union of two sub-graphs:G0 represents the heap at the entry point
of P andG represents the heap at the control pointc. For example,
a relation associated toquicksort at line 16 is represented by the
valuation

[
d0 = 0,d = 6

]
and the labeled graph in Figure 4(a) (we

suppose that local integer variables are initialized to 0).The nodes
which correspond to objects pointed to by program variablesare
circled. The subgraph containing only nodes reachable fromthe
node labeled bya0 represents the input configuration while the rest
of the graph represents the heap configuration at line 16.

The concrete semantics defines a mappingρ which associates
to each control pointc in the CFG of a procedureP a set of heaps
over loc∪ loc0. As usual, the mappingρ is defined by a system of
recursive equations [8, 28] of the form:

Rinit ∈ ρ(sP) andρ(c) = ρ(c)∪
⋃

c′
St
−−→c

post(St,ρ(c′)), (D)

where (1)Rinit is a heap containing two copies of the initial con-
figuration of some procedureP= (fpi , fpo, loc,G), one copy over

loc0, and one copy overloc, (2) c′ St
−−→c is an edge from the ICFG

labeled bySt, and (3)post is the postcondition operator.
For any statement, except for procedure calls and returns,post

affects only the part of the heap reachable from nodes labeled by

6

a0

4 9 2 7

6
a

4 9 2 7 ♯

NULL

4left 2

9right 7 6

pivot

6 4 9 2 7a0

6 4 9 2 7a ♯ NULL

4 2left

9 7right 6

pivot

(a) (b)

n0
aa0

naa ♯

NULL

nlleft

nrright np pivot

Universally quantified formula:

ψc : hd(nl)≤ hd(np)∧hd(nr)> hd(np)
∧len(na) = len(nl)+len(nr)+len(np)
∧∀y. y∈ tl(nl)⇒ nl [y] ≤ hd(np)
∧∀y. y∈ tl(nr)⇒ nr [y] > hd(np)
∧d = hd(np)∧eq∀(na,n0

a)∧len(np) = 1,

Multiset formula:

ψ′c : ms(na) = ms(nl)∪ms(nr)∪ms(np)
∧ms(n0

a) = ms(na)

(c)

Figure 4. Relations between program configurations.

variables inloc. For simplicity, we assume that (1) heaps don’t con-
tain garbage, i.e., all the nodes are reachable from nodes labeled
by pointer variables, and (2) each pointer assignmentp->next=q,
resp.p=q, is preceded byp->next=NULL, resp.p=NULL. The se-
mantics of the procedure calls and returns is based onlocal heaps
[23], i.e. heaps containing only objects reachable from theactual
parameters. For example, in Figure 4(a), the local heap for the pro-
cedure callquicksort(left) contains only the nodes reachable
from the node labeled byleft. As we consider only cutpoint-free
programs [24], the definition of this semantics is straightforward.

3. Abstractions of program relations
In this section, we recall the abstract domains defined in [2].

Preliminaries on abstract interpretation: Let C = (C,⊆) and
A = (A,⊑) be two lattices (⊆, resp.⊑, are order relations on
C, resp.A). The latticeA is an abstract domainfor C [7, 10] if
there exists a monotonic functionγ : A→ C. In the following, an
abstract domainA is denoted byA = (A,⊑,⊓,⊔,⊤,⊥), where
⊓ denotes its greatest lower bound (meet) operator,⊔ denotes its
lowest greater bound (join) operator,⊤ its top element and⊥ its
bottom element. Moreover, as usual in the abstract interpretation
framework,∇ represents the widening operator. LetFC be a set
of concrete transformers, that is, of functions fromC into C. If A
is an abstract domain forC , the set of its abstract transformers,
denotedF #

A
, contains a functionf # : A→ A for each f ∈ FC . The

transformerf # is soundif f (γ(a))⊆ γ(f #(a)), for anya∈ A.

3.1 Abstract domains for heaps

The abstraction of a labeled graphH representing (relations be-
tween) program configurations is defined starting from adecompo-
sitionobtained by (1) keeping only some nodes fromH but at least
all the crucial nodes (2) adding an edge between any two nodes
which are reachable in the initial graph, and (3) labeling every node
n with a word overZ which contains the integers on the path from
H betweenn and its successor in the new graph. For example, Fig-
ure 4(b) gives a decomposition for the graph in Figure 4(a).

Abstractions of program relations can be defined by represent-
ing the values of the integer program variables and the wordsover
Z as formulas in some logic. The logics we use capture various
aspects such as constraints on the sizes, the multisets of their let-
ters, or the data at different positions of the words. For example,
the graph and the formulaψc in Figure 4(c) represent an abstrac-
tion of the program relation in Figure 4(a) obtained starting from
the decomposition in Figure 4(b). The same holds for the graph and
the multiset formulaψ′c in Figure 4(c). Such a pair between a graph
and a formula is calledabstract heap. In the formulaψc, n0

a, na,
nl , nr , andnp are variables interpreted as words overZ, hd(nl) de-
notes the first letter of the word denoted bynl , len(na) denotes the
length of the word denoted byna, y is a variable interpreted as a
position in some word (as usual, the positions of a worda0 a1 . . .an
are the integers from 0 ton), y∈ tl(nl) means thaty belongs to the
tail of nl (i.e., the suffix starting with the second letter), andnl [y] is
a term interpreted as the letter at the positiony of nl . The formula
eq∀(na,n0

a) states that the words denoted byna andn0
a are identi-

cal. We distinguish the first letter of a word from its tail because
programs assignments can update only this first letter (the state-
ment p->data=... updates the first letter of the word associated
to the node labeled byp). In the multiset formula,ms(na) denotes
the multiset containing all the letters ofna.

Let Z+ denote the set of non-empty sequences overZ and let
DWVar be a set ofdata word variablesinterpreted as elements
of Z+. A data words logicis a (possibly infinite) set of formulas
from a first order logicFO(DWVar,DVar,O,P) over the variables
DWVar∪DVar, whereO is a set of operation symbols andP is a set
of predicate symbols. In order to express program transformations
we suppose thatO contains at least the concatenation operator·, a
function symbollen :Z+→Z which returns the length of the input
sequence and the equality predicate between wordseq. However,
we do not require that these symbols are used in the set of formulas
belonging to some data words logic.

DEFINITION 3.1 (LDW-domain). A logical data words abstract
domain overDWVarandDVar (LDW-domain, for short) is a lattice
AW =

(
AW,⊑W,⊓W,⊔W,⊤W,⊥W

)
, where AW is a data words

logic, which is an abstract domain for the lattice of sets of pairs
(L,D) with L : DWVar→ Z+ and D: DVar→ Z.

Notice that⊑W is a sound approximation of the logical impli-
cation⇒ between formulas (i.e., ifϕ1 ⊑

W ϕ2 thenϕ1⇒ ϕ2).

DEFINITION 3.2 (Abstract heap). An abstract heap overPVar,
DVar, and anLDW-domainAW is a tupleH̃ = (N,S,V,W̃) where
N,S,V are as in the definition of heaps, and̃W is a formula inAW
over the data word variables N\{♯} (we assume that for each node
in N there exists a data word variable with the same name) and the
data variables DVar. A k-abstract heapis an abstract heap with at
most k simple nodes.

Two abstract heaps areisomorphicif their underlying graphs
are isomorphic. LetCH denote the lattice of sets of heaps. We de-
fine AH(k,AW) an abstract domain forCH whose elements arek-
abstract heaps overAW s.t. (1) for any two isomorphic abstract
heaps, the lattice operators are obtained by applying the corre-
sponding operators between the values fromAW, and (2) the join
and the widening (resp. meet) of two non-isomorphic abstract
heaps is⊤H (resp.⊥H). Notice that∇H is a widening operator be-
cause the heaps generated by the programs which manipulate only
singly-linked lists contain a bounded number of crucial nodes [19].

The domains used in the analysis are finite powerset domains
overAH(k,AW). Their elements are calledk-abstract heap sets.

DEFINITION 3.3 (Abstract heap set).A k-abstract heap set over
PVar, DVar, and anLDW-domain AW is a finite set of non-

isomorphic k-abstract heaps over PVar, DVar, andAW. The ab-
stract domain of k-abstract heap sets is denoted byAHS(k,AW) =(
AHS(k,AW),⊑HS,⊓HS,⊔HS,⊤HS,⊥HS

)
, where AHS(k,AW) is

the set of all k-abstract heap sets over PVar, DVar, andAW.

The operators fromAHS(k,AW) and the widening operator are
obtained from those ofAH(k,AW) as usual [9]. For example, the
join of two abstract heap sets is computed by taking the union
of these sets and by applying the join operator between any two
isomorphic abstract heaps.

3.2 AnLDW-domain with universally quantified formulas

We present the abstract domainAU =
(
AU,⊑U,⊓U,⊔U,⊤U,⊥U

)

whose elements are first-order formulas with free variablesin
DWVar∪DVar. This domain is parametrized by a set of constraints
on position variables (which are interpreted as positions in the
words), calledguard patterns. Guard patterns are conjunctions of:

• formulas that associate vectors of position variables withdata
word variables (y ∈ tl(ω) means that the position variables
from the vectory are interpreted as positions in the tail ofω),

• formulas that impose a total order between the values of the
position variables associated with the same data word variable
(y1≺1 y2 ≺2 . . .≺m ym, where≺i∈ {≤,<,<1} with y<1 y′ iff
y′ = y+1), and

• a linear constraint on the values of the position variables which
are the first in the order constraints considered above.

Let V ⊆ DWVar and letP be a set of guard patterns. Also,
let P (V) be a set of formulas obtained from guard patterns inP
by substituting all data word variables with variables fromV . An
element ofAU is a formula of the form:

W̃(V) ::= E(V)∧
∧

g(y)∈P (V)

∀y. g(y)⇒Ug (E)

whereE(V) is a quantifier-free arithmetical formula overDVar and
termshd(w), len(w) with w∈ V , g(y) is a guard over the vector of
position variablesy, andUg is a quantifier-free arithmetical formula
over the terms inE(V) together withw[y] andy, for anyw∈ V and
y ∈ y. It is assumed that the termw[y] appears inUg only if g(y)
associatesy with w. Also, E andUg represent elements of some
numerical abstract domainAZ =

(
AZ,⊑Z,⊓Z,⊔Z,⊤Z,⊥Z

)
which

is a parameter ofAU.
Lattice operators: The value⊤U (resp.⊥U) is defined by the
formula in whichE and allUg are⊤Z (resp.⊥Z). Let

W̃(V1) = E(V1)∧
∧

g(y)∈P (V 1)
∀y. (g(y)⇒Ug) and

W̃′(V2) = E′(V2)∧
∧

g(y)∈P (V 2)
∀y. (g(y)⇒U ′g).

Before applying any lattice operator we add toW̃ (resp.W̃′) univer-
sally quantified formulas∀y. g(y)⇒⊤Z, for anyg(y) ∈ P (V1) \
P (V2) (resp.g(y) ∈ P (V2)\P (V1)).

Then,W̃ ⊑U W̃′ iff (1) E ⊑Z E′, and (2) for each guardg(y) ∈
P (V1)∪P (V2) which associates the vector of position variablesyi
with the data word variablewi , for all 1≤ i≤ n, the following holds:
if E ⊑Z len(wi)≥ |yi |+1, for all 1≤ i ≤ n, thenE⊓ZUg ⊑

Z U ′g.

Also,W̃⊔UW̃′ is defined by
(

E⊔Z E′
)
∧

∧

g(y)∈P (V 1)∪P (V 2)

∀y. g(y)⇒
(
Ug⊔

ZU ′g
)
.

The operators⊓U and∇U are defined in a similar way.

3.3 AnLDW-domain with multiset formulas

We present the abstract domain AM =(
AM,⊑M,⊓M,⊔M,⊤M,⊥M

)
whose elements are multiset

constraints with free variables inDWVar∪DVar. A basic multiset
termis u ::= mhd(n) | mtl(n) | d, wheren∈DWVarandd∈DVar.
The termmhd(n) (resp.d) represents the singleton containing the
first letter of the word associated ton (resp. the value ofd). The
termmtl(n) represents the multiset containing all the letters of the
word associated ton except for the first one. As a shorthand,ms(n)
denotes the termmhd(n)∪mtl(n).

A multiset constraintis a conjunction of formulas of the form
u1∪u2∪·· ·∪us = v1∪v2∪·· ·∪vt , wheres≥ 1, t ≥ 1, and for all
1≤ i ≤ sand 1≤ j ≤ t, ui andv j are pairwise distinct basic multiset
terms, and∪ is the usual union operator between multisets.

Multiset constraints can be represented by a polyhedron with
a dimension for any basic term: a formulau1 ∪ u2 ∪ ·· · ∪ us =
v1∪ v2∪ ·· · ∪ vt is represented by the linear constraintu1 + u2 +
· · ·+ us = v1 + v2 + · · ·+ vt . The entailment relation between the
multiset constraints is defined by the entailment relation between
the corresponding polyhedra. The lattice of multiset constraints is
finite (for finite DWVar and DVar) and consequently, there is no
need for a widening operator.

4. Abstract semantics
The abstract semantics defines a mappingρ#, which associates to
each control point of the program an abstract heap set. It is defined
by the system of equations obtained from the one defining the
concrete semantics in (D), by replacingpost with asound abstract
transformer post# over abstract heap sets. The termination of
the fixpoint computation is guaranteed by applying the widening
operator at the start of each intra-procedural loop and at the entry
and exit point of each recursive procedure.

The analysis that we have implemented tabulates the input con-
figurations of the computed procedure summaries. In this way, we
avoid to compute twice the same procedure summary. For any label
St of some ICFG edge, we definepost# as follows:

• if St is different from assume, assert, procedure call and
procedure return, we first define the abstract transformerpost#

over abstract heaps. Then,post#(St,HS), whereHS is some
abstract heap set, is the join inAHS of post#(St, H̃), for each
H̃ ∈ HS;

• otherwise, we definepost# directly over abstract heap sets.

The statementp=NULL: The abstract transformer corresponding
to this statement begins by moving the labelp to the node♯. It may
happen that the obtained abstract heap contains more thank simple
nodes. If it is the case, the transformer calls a procedure called
fold# which, for anyH̃ ∈ AH, returns an abstract heap̃H ′ with no
simple nodes which over-approximatesH̃ (i.e., the concretization
of H̃ ′ includes the concretization of̃H).

Let H̃ = (N,S,V,W̃) be an abstract heap and letn1,. . .,nt be all
its simple nodes. For simplicity, suppose that they are on the same
path between two crucial nodesn andm. We definefold#(H̃) =
(N′,S′,V,W̃′), where(N′,S′) are obtained by removing the nodes
n1, . . . ,nt and by adding the edge(n,m) andW̃′ is a formula inAW
which is an over-approximation of the following formula

(
∃n∃n1 . . .∃nt .

(
n= n·n1 · . . . ·nt ∧W̃

))
[n← n] . (F)

The formula in (F) belongs toAW extended with quantification
over data word variables, and a concatenation operation symbol
“ ·”. Intuitively, (F) says that the word associated ton in fold#(H̃)
(denoted in (F) byn) is the concatenation of the words associated
to n,n1, . . . ,nt in H̃.

The transformer concat# from [2] computes an over-
approximation of (F) inAU. It is precise for domainsAU
parametrized byclosed sets of patterns. Roughly, a set of patternsP

is closed if whenever it contains a patternP over the set of position
variablesy it also contains all the projections ofP (in Presburger
arithmetics) on subsets ofy. In AM, an over-approximation of (F)
can be obtained by:

• updating inW̃, mtl(n1) to

mtl(n1)∪mhd(n2)∪mtl(n2)∪·· · ∪mhd(nt)∪mtl(nt)

• removing all the constraints on the variablesn2, . . . ,nt .

Statements involving reference fields:For a statementSt of the
form p->next=NULL (resp.q=p->next), the concretepost mod-
ifies the edge (resp. the target of the edge) starting in the node
labeled byp. The abstract transformerpost#(St, H̃), whereH̃ =
(N,S,V,W̃), can not directly modify this edge because it may cor-
respond to a path of arbitrary length in the concrete heap. Thus,
post#(St, H̃) begins by calling a procedureunfold#(H̃, p) which
returns two abstract heaps̃H1 andH̃2 such that the concretization
of H̃ is included in the union of the concretizations ofH̃1 andH̃2.
The abstract heap̃H1 (resp.H̃2) corresponds to the case when the
length of the word associated to the noden labeled byp in H̃ is
1 (resp. strictly greater than 1). Thus,H̃1 = (N,S,V,W̃′) whereW̃′

is a formula inAW which over-approximatesϕ1 : W̃∧len(n) = 1
(i.e.,ϕ1⇒ W̃′). Then,H̃2 = (N′,S′,V,W̃′′) corresponds to the case
len(n)> 1, where(N′,S′) is obtained by adding a new noden′ be-
tweenn and its successorn′′ in H̃ andW̃′′ is a formula inAW that
over-approximates the following formula (given in an extension of
the logic ofAW with quantification over word variables and with a
concatenation operation symbol “·”):
(
∃n.

(
n= n ·n′ ∧len(n) = 1∧W̃∧len(n)> 1

))
[n← n] (G)

This formula says that the word associated ton in H̃2 is only the
first letter of the word associated ton in H̃ and the word associated
to n′ in H̃2 is the tail of the word associated ton in H̃. The abstract
transformersplit# given in [2] computes this over-approximation
in the domain of universal formulas. If̃W is a multiset constraint in
AM, an over-approximation for (G) can be obtained by substituting
mhd(n) with mhd(n)∪mhd(n′)∪mtl(n′).
The statementsassume andassert: The assertionsϕ we con-
sider for these statements are disjunctions of formulas of the form
ϕG∧ϕW, whereϕG describes a unique graph(N,S,V) as in the def-
inition of heaps andϕW is a formula in the data words logic ofAW
over the data word variablesN. For simplicity, we assume thatϕG is
a separation logic formula [22] defined as a separating conjunction
of atomic formulas of the formls(n,n′), wheren,n′ are variables
interpreted as distinct nodes in the graph. A formulals(n,n′) is
true in some abstract heap iff there exists an edge between the nodes
represented byn andn′ (i.e a path connecting them in the concrete
heap). We require thatϕG (1) contain at most one atomic formula
ls(n,n′), for everyn, and (2) induce a graph that does not contain
simple nodes. Then, letAH be an abstract heap set fromAH(AW)
and letϕ be a formulaϕG∧ϕW that describes an elementA′H from
the same abstract domainAH(AW). Thus,post#(assume ϕ,AH) =
AH ⊓

HS A′H . Also,post#(assert ϕ,AH) = AH if fold#(AH)⊑
HS

A′H andpost#(assert ϕ,AH) =⊥
HS, otherwise. The extension of

this definition to disjunctions of such formulas is straightforward.
Procedure calls: The abstract transformer corresponding to a
call to startedge,call y = P(x), whereP= (fpi , fpo, loc,G), com-
putes abstract heap sets overloc0 ∪ loc. For any abstract heap
R̃c = (Nc,Sc,Vc,W̃c) from the input abstract heap set it returns an
abstract heap̃Rs = (Ns,Ss,Vs,W̃s), where:
• the local heap corresponding to the callP(x), denoted
local(R̃c,P(x)) = (Nx,Sx,Vx,W̃x), is defined by (1)

(Nx,Sx,Vx) is the sub-graph of̃Rc containing only nodes reach-
able from the nodes labeled by variables inx in which actual pa-
rameters are replaced by the corresponding formal parameters
and (2)W̃x is an over-approximation of∃(Nc \Nx). W̃c(where
∃(Nc \Nx) denotes an existential quantification over all the
word variables inNc\Nx).

• the graph(Ns,Ss,Vs) contains two copies of(Nx,Sx,Vx) (the
nodes of one copy are labeled by variables inloc0) andW̃s is an
over-approximation inAW of the formula:

W̃x∧W̃x
[
n← n0 | n∈ Nx

]
∧

∧

n0 ∈ N0, n∈N
n is a copy ofn0

eq(n,n0),

whereeq(n,n0) is expressing the equality between the data of
the words denoted byn andn0. In AU, eq(n,n0) is expressed
precisely by

eq∀(n,n
0) : hd(n) = hd(n0)∧len(n) = len(n0)

∧
(
∀y1,y2. (y1 ∈ tl(n0)∧y2 ∈ tl(n)∧y1 = y2)

⇒ n0[y1] = n[y2]
)
,

(H)

while AM can represent only an over-approximation by

eqm(n,n
0) : mhd(n) = mhd(n0)∧mtl(n) = mtl(n0). (I)

Procedure returns: Consider now anexit to returnedge, labeled
by ret y = P(x), from the exit point ofP = (fpi , fpo, loc,G), de-
notedeP, to some control pointr in the CFG of a procedureQ. Let
c be the call point associated tor andR̃c =(Nc,Sc,Vc,W̃c)∈ ρ#(c).
The abstract transformer forret y = P(x) computes an abstract
heap set whose elements are denoted byR̃r = (Nr ,Sr ,V r ,W̃r). To
this, it uses the (pre) computed summary for this call of the pro-
cedureP, represented by an abstract heap set whose elements are
denotedR̃e= (Ne,Se,Ve,W̃e). The summary must satisfy the prop-
erty that its input configurationRe

in is implied by the constraints
on the actual parameters, i.e.local(R̃c,P(x))⊑H R̃e

in. To compute
R̃r = (Nr ,Sr ,V r ,W̃r):

• we take the union between the call graph(Ne,Se,Ve) and the
exit graph(Nout,Sout,Vout) of the output configuration in the
summaryRe,

• we eliminate the input version of the parameters ofP,

• we defineW̃r by (a) definingCombine(W̃c,W̃e) which applies
the conjunction betweeñWc andW̃e after it ensures that the
nodes inNc belonging to the local heap of this call have the
same name as the corresponding nodes inNe representing the
input configuration and (b) computing an over-approximation
of ∃N0. Combine(W̃c,W̃e), whereN0 is the set of nodes inNe

representing the input configuration.

In AU andAM, over-approximations of existentially quantified for-
mulas can be defined by, roughly, removing sub-formulas contain-
ing the existentially quantified data word variables.

5. Combining abstract domains
Let us take a closer look to the analysis of thequicksort procedure
from Figure 1 with the domain of universally-quantified formulas,
AHS(AU), over the set of guard patterns

y∈ tl(ω), y1,y2 ∈ tl(ω)∧y1 ≤ y2,

y1 ∈ tl(ω1)∧y2 ∈ tl(ω2)∧y1 = y2.

The analysis manipulates universally-quantified implications
where the left part is one of the formulas above, where theω’s

are data word variables. Typically, in the case of recursiveproce-
dures, the analysis starts by computing procedure summaries for
input lists of length 1 and then, for input lists of length 2, and so
on until it reaches a fixpoint (to terminate it applies the widening
operator).

The analysis is able to compute a procedure summaryψU
sum :

sorted(n′o)∧len(nl) ≤ 2 for input lists of length at most 2, where
n′o represents the list pointed to by the output formal parameter
res of quicksort. In the next iteration, the context of the first
recursive call “left=quicksort(left)” is given by the graph
and the formulaψc in Figure 4(c). The abstract transformer for
procedure return computes∃nl . (ψc∧ψU

sum). This projection will
remove all the constraints onnl which is the actual input parameter.
The same holds for the list pointed to byright and the second
recursive call. The relation obtained after the two calls isgiven in
Figure 5. We have lost the property that all the elements ofleft
are less than the pivot. Consequently, after callingconcat, we can’t
obtain that the list pointed to byres is sorted.

n0
aa0

naa ♯

NULL

nlleft

nrright np pivot

ψ : d = hd(np) ∧len(np) = 1∧eq∀(na,n0
a)

∧sorted(nl)∧ len(nl)≤ 3

∧sorted(nr)∧len(nr)≤ 3,

sorted(n) : ∀y. y∈ tl(n)⇒ hd(n)≤ n[y]

∧∀y1,y2. ((y1,y2) ∈ tl(n)∧y1 ≤ y2)

⇒ n[y1]≤ n[y2]

Figure 5. The relation synthesized at line 17 ofquicksort.

Next, we give a solution for this problem based on a combina-
tion of abstract analyses. Thus, at the return from the first recursive
call, the abstract transformer computes

∃nl .
(
strengthenM

(
ψc∧ψU

sum,ψ
M
sum

))
, (J)

whereψM
sum: ms(n′o) = ms(nl) is the summary forquicksort com-

puted inAHS(AM) andstrengthenM : AU×AM→ AU. The op-
eratorstrengthenM returns

ψc∧ψU
sum∧hd(n

′
o)≤ hd(np)∧∀y. y∈ tl(n′o)⇒ n′o[y]≤ hd(np),

and consequently, by eliminating the constraints onnl (due to the
existential quantification), we preserve the fact that the elements of
the list pointed to byleft are smaller than the pivot.

The functionstrengthenM is an instance of a more general
procedure denotedstrengthenW.

Given AW anLDW-domain, the definition ofstrengthenW
uses a procedureinferW which, for any two abstract values̃Win ∈
AU andW̃aux ∈ AW, returns an over-approximation of their con-
junction expressed inAU.

DEFINITION 5.1. Let AW be someLDW-domain andinferW :
AU×AW→ AU such that

(
W̃in∧W̃aux

)
⇒ inferW(W̃in,W̃aux).

The functionstrengthenW : AU×AW→ AU is defined by

strengthenW(W̃in,W̃aux) = W̃in ⊓
U inferW(W̃in,W̃aux).

Before giving the formal definition ofinferW let us consider
two examples, one for computinginferM and one for computing
inferU.

ComputinginferM: Consider the application ofstrengthenM
from (J). From its arguments, we should only remember the multi-

set constraintms(n′o) = ms(nl) and the following formula:

ϕ(nl) : hd(nl)≤ hd(np)∧∀y. y∈ tl(nl)⇒ nl [y]≤ hd(np) (K)

which says that all the elements of the wordnl are less thanhd(np).
The result ofstrengthenM is computed usinginferM applied

on the same inputs. Roughly, to computeinferM (1) we unfold a
bounded length prefixp1, resp.p2, of the wordn′o, resp.nl ; thus,
n′o = p1 · s1 and nl = p2 · s2, where · denotes the concatenation
of words, (2) we infer the properties of the nodes inp1 and p2
implied by the conjunction between the constraint in the domain of
universally-quantified formulas and the constraint in the multiset
domain and (3) we fold the prefixesp1 and p2 and collect the
informations on these nodes using a universally-quantifiedformula.
Then, we continue to apply the same transformations on the words
s1 ands2 until we reach a fixpoint.

This unfolding/folding mechanism reduces the initial problem
(of inferring universally-quantified constraints impliedby the con-
junction of the inputs) to the problem of inferringquantifier-free
constraints implied by the conjunction of the inputs.

{n′o[0],n
′
o[1]}∪ms(s1) = ms(nl) {n′o[0],n

′
o[1]}∪ms(s1) = ms(nl)

n′o :

0 1
s1

2 3 4 . . .

nl :
0 1

s2

2 3 4 . . .

(a)

σM

n′o :

0 1
s1

2 3 4 . . .

nl :
0 1

s2

2 3 4 . . .

(b)fold

n′o : p1

0 1 2 3

s′1

4 5 . . .

nl : p2

0 1 2 3

s′2

4 5 . . .

unfold
n′o : p1

0 1
s1

2 3 4 . . .

nl : p2

0 1
s2

2 3 4 . . .

ms(p1)∪{n′o[2],n
′
o[3]}∪ms(s

′
1) = ms(nl) ms(p1)∪ms(s1) = ms(nl)

(d) (c)

Figure 6. ComputinginferM.

Some steps from the computation ofinferM are given in Fig-
ure 6. The unfolding of a prefix of length 2 is given in Figure 6(a).
Above each sub-word we give the positions from the initial word
it contains. The sub-words are colored if their elements satisfy the
property fromϕ(nl). At this step, only the sub-words ofnl are col-
ored. In the multiset constraint, for anyi ≥ 0, {n′o[i]} denotes the
singleton multiset containing the element ofn′o at positioni. This
syntax is not exactly the one used in the formulas manipulated by
our analysis but we use it for the sake of simplicity. On this unfold-
ing we apply apartial reduction operator[9], denotedσM, which
deduces new properties on the unfolded prefix based on the multiset
constraints. Here, it deduces that, for any 0≤ i ≤ 1,

n′o[i] ∈ ms(nl)∧ϕ(nl) impliesn′o[i]≤ hd(np).

The result of applyingσM is given in Figure 6(b). Now, we can
apply a folding operation in the two abstract domains whose result
is given in Figure 6(c). Then, we continue by unfolding another
prefix of length 2 from the sub-word ofno that starts with position
2 (this is pictured in Figure 6(d)). We repeat these steps until the
fixpoint computation terminates. The result will be:

inferM

(
ψc∧ψU

sum,ψ
M
sum

)
= ψc∧ψU

sum∧ϕ(n′o).

ComputinginferU: Let A 1
U

, resp.A 2
U

, be a domain with uni-
versal formulas parametrized by a set of patternsP1, resp.P2. Us-
ing a similar mechanism, we compute, for anyW̃ ∈ A 1

U
, an over-

approximation ofW̃ in A 2
U

, denotedconvert(P1,P2)(W̃). For ex-

ample, let

P1 = {y∈ tl(ω), y1,y2 ∈ tl(ω)∧y1 ≤ y2}

P2 = {y∈ tl(ω)∧y= 1, y∈ tl(ω)∧y= len(ω)−1,

y1,y2 ∈ tl(ω)∧y1 <1 y2},

and letW̃ be the sortedness propertysorted(n) in Figure 5. Com-
putingconvert(P1,P2)(W̃) allows us to prove that̃W implies

γ(n) : ∀y1,y2. (y1,y2 ∈ tl(n)∧y1 <1 y2)⇒ n[y1]≤ n[y2]

which can not be done using the entailment relation⊑U defined
in A 1

U
or A 2

U
. We start with the formulãW′ : true and we apply a

procedureinferU to strengthen it using the information from̃W.
Again, we unfold a bounded-length prefix ofn. For instance, if we
unfold a prefix of length 3, the formulãW′ remains unchanged and
the formulaW̃ is transformed into a formulãW1 given by:

n[0]≤ n[1]∧n[1] ≤ n[2]∧n[2] ≤ n[3]∧sorted(n[3]),

wheresorted(n[3]) denotes the fact that the formulasortedis true
starting from the third position ofn. Then, we apply a partial
reduction operator,σU, that takes the existential part ofW̃1 and adds
it to W̃′. Afterwards, we apply a folding operation and the wordn is
split into a wordn′ containing only its first 3 elements and a word
n′′ containing all the other elements. The formula inA 2

U
becomes

∀y. (y∈ tl(n′)∧y= 1)⇒ hd(n′)≤ y

∧∀y1,y2. (y1,y2 ∈ tl(n′)∧y1 <1 y2)⇒ n′[y1]≤ n′[y2]

∧∀y. (y∈ tl(n′)∧y= len(n′)−1)⇒ y≤ hd(n′′).

As in the previous case, by iterating these two steps into a fix-
point computation that traverses all the elements ofn, we obtain
convert(P1,P2)(W̃) which is given by

∀y. (y∈ tl(n)∧y= 1)⇒ hd(n)≤ y

∧∀y1,y2. (y1,y2 ∈ tl(n)∧y1 <1 y2)⇒ n[y1]≤ n[y2].

Clearly,convert(P1,P2)(W̃)⊑U γ(n) which finishes our proof.

5.1 The procedureinferW
The output ofinferW is defined by the analysis of a program with-
out procedures with an abstract domain which is apartially reduced
product[9] betweenAHS(AU) andAHS(AW). The elements of this
abstract domain are pairs fromAHS(AU)×AHS(AW). The analy-
sis computes an invariant for the reachable program configurations
at each control point. Almost all the abstract transformersin this
analysis are defined by:

post#(St,(HSin,HSaux))= (post#
U(St,HSin),post

#
W(St,HSaux)),

wherepost#
U(St,HSin) is the abstract transformer inAHS(AU)

and post#
W(St,HSaux) is the abstract transformer inAHS(AW).

The only exception is the statementp=q->next whose ab-
stract transformer calls aa partial reduction operator[9] σW :
AHS(AU) × AHS(AW) → AHS(AU) × AHS(AW). This operator
propagates information between the two abstract domains and its
output should satisfy the following: for anyAH ∈ AHS(AU) and
A′H ∈ AHS(AW),

σ1
W
(AH ,A′H)⊑

HS AH , σ2
W
(AH ,A′H)⊑

HS A′H , and

γ(σ1
W
(AH ,A′H))∪ γ(σ2

W
(AH ,A′H)) = γ(AH)∪ γ(A′H),

where σi
W
(AH ,A′H) is the projection ofσW(AH ,A′H) on the ith

component, for any 1≤ i ≤ 2. If St′: p=q->next then

post#(St′,(HSin,HSaux)) =
σW(post#

U(St′,HSin),post
#
W(St′,HSaux)).

(L)

1 while((zm!=NULL) &&
2 (zn!=NULL))
3 { zm = zm->next;
4 zn = zn->next; }
5 while(zm!=NULL)
6 zm = zm->next;
7 while(zn!=NULL)
8 zn = zn->next;

Figure 7. A program for computinginferW.

Let M denote the set of data word variables inW̃aux. The pro-
gram that computesinferW depends onM. In practice, we can
heuristically choose to consider only some of the data word vari-
ables inW̃aux. The result ofinferW is still sound.

For example, letM = {m,n}. The program used ininferW is
given in Figure 7 and consists inwhile loops that traverse the lists
represented by the nodes inM.

The initial configuration of the program is a pair of abstract
heaps(H̃in, H̃aux) which contain the same graph(N,S,V) such that
(1) the graphs contain one node for each data word variable inW̃in
or W̃aux with an edge towards♯, (2) each noden∈ N is labeled by
at least two variables, one beingzn, (3) H̃in = (N,S,V,W̃in) and
H̃aux = (N,S,V,W̃aux). The first loop traverses simultaneously the
two list segments. At each iteration, the pointer variableszm and
zn are advanced to the next element. Since the lists may not have
the same length, we add another twowhile loops to continue the
traversing of the unfinished list starting from where the previous
loop stopped.

Let (AH ,A′H) ∈ AHS(AU)×AHS(AW) be the postcondition of
this program (i.e, the pair of abstract heap sets associatedto the last
control point). Remark thatfold#(AH) = {H̃} andfold#(A′H) =
{H̃ ′}, whereH̃ andH̃ ′ are abstract heaps that contain exactly the
same graph as the abstract heaps from the precondition. We define
inferW(W̃in,W̃aux) = W̃, whereW̃ is the AU formula from H̃
projected on the variables from̃Win.

The partial reduction operatorσW: The definition ofσW over
abstract heap sets uses a similar operator on abstract heapswhich
again, uses a similar operator onLDW-domains. The operator
σW(AH ,A′H) on abstract heap sets takes the join ofσW(H̃, H̃ ′), for
any two isomorphic abstract heapsH̃ ∈ AH andH̃ ∈ A′H . Then, let
H̃ =(N,S,V,W̃)∈ AHS(AU) andH̃ ′ =(N,S,V,W̃′)∈ AHS(AW) be
two isomorphic abstract heaps (we suppose that the nodes related
by the isomorphism have the same name). We define

σW(H̃, H̃ ′) =
((

N,S,V,σ1
W(W̃,W̃′)

)
,
(

N,S,V,σ2
W(W̃,W̃′)

))
.

The procedureinferU: WhenAW is some abstract domainA ′
U

,
we obtain an instantiation ofinferW, denotedinferU. To define
inferU, we have to provide only the definition of the partial reduc-
tion operatorσU : AU×A ′U→ AU×A

′
U

. Thus, letW̃, resp.W̃′, be
an abstract value inAU, resp.A ′

U
. We defineσ1

U
(W̃,W̃′) = W̃∧E′,

whereE′ is the quantifier-free part of̃W′, andσ2
U
(W̃,W̃′) = W̃′.

In the following, we will describe another instantiation of
inferW, whenAW is the domain of multiset constraints.

5.2 Combining multiset constraints and universal formulas

LetW̃∈ AU andW̃′ ∈ AM be two formulas over the set of data word
variablesN. TheAU formula σ1

M
(W̃,W̃′) is obtained fromW̃ by

adding new constraints on the values ofhd(n) with n∈ N based on
the multiset constraint̃W′. TheAM formulaσ2

M
(W̃,W̃′) is obtained

by adding toW̃′ an equalitymhd(n) = mhd(n′) for any equality
hd(n) = hd(n′) implied by the first output. In the following, we
describe the computation ofσ1

M
(W̃,W̃′).

mhd(n)⊆ mtl(n′) andW̃⊑U ∀y. y∈ n′⇒ ϕ

∃y. (ϕ [n′[y]← hd(n))]

mhd(n)⊆ mhd(n′)

hd(n) = hd(n′)

Figure 8. Inference rules forσ1
M

.

To help the intuition, we start by an example. LetW̃ : ∀y. y∈
tl(n)⇒ n[y]> 5 andW̃′ : mhd(n1)∪mtl(n2) = mtl(n).

By an abuse of notation we can rewritẽW as ∀val. val ∈
mtl(n). val < 5, whereval is a variable interpreted as an integer.
Notice thatW̃′ implies thathd(n1) belongs tomtl(n) and conse-
quently we obtain that̃W∧W̃′ implieshd(n1)< 5. This deduction
can be done using the first inference rule in Figure 8.

In general, a multiset constraint induces multiple choicesw.r.t.
the multisets to which the singletons belong to. For exampleif
W̃′ ::= mhd(n1)∪mtl(n2) = mtl(n)∪mtl(m) thenW̃′ implies that
either hd(n1) ∈ mtl(n) or hd(n1) ∈ mtl(m). In each case, the
property onhd(n1) added to the formulãW might be different.
However, there are a finite number of choices. For each of them,
we construct a strengthening of̃W and then we defineσ1

M
(W̃,W̃′)

as the join of all of these strengthenings.
Formally, the formulaσ1

M
(W̃,W̃′) is built as follows:

1. we deduce the set of all conjunctions of the form

ψ ::= mhd(n1)⊆ bt1∧ . . .∧mhd(nk)⊆ btk, (M)

wherebti is a basic multiset term, for any 1≤ i ≤ k, such that
(1)W̃′ implies the disjunction of all formulasψ as above (in the
logic obtained fromAM by adding the usual inclusion operator
between multisets⊆) and (2)ψ contains exactly once all the
terms of the formmhd(ni) from W̃′. Note that if, for example,
bt1 = mhd(n′) then the conjunction will not contain any other
atomic formula over the termmhd(n′).

2. for every such conjunction, we use its atomic formulas to apply
the inference rules in Figure 8 and deduce new facts on the
values ofhd(n) with n∈ N. These facts are conjuncted tõW.

3. σ1
M
(W̃,W̃′) is the join of all abstract values inAU obtained in

the previous step.

6. Applications
In this section, we describe several applications of the procedure
strengthenW.

6.1 Changing the set of patterns

To obtain a compositional analysis with the abstract domain
AHS(AU), we need to transform an abstract valueA1 in a domain
AHS(A

1
U
) over a set of patternsP1 into an abstract valueA2 in a

domainAHS(A
2
U
) over a set of patternsP2 6= P1.

Thus, we define an operatorconvert(P1,P2) : A 1
U
→ A 2

U

parameterized by a pair of pattern sets(P1,P2), such that
convert(P1,P2)(W̃1) is an over-approximation of̃W1 in the do-
mainA 2

U
. Intuitively, convert(P1,P2)(W̃1) returns a formulãW2

which contains (1) constraints from̃W1 using the patterns inP1∩P2
and (2) constraints using the patterns inP2 \P1 implied byW̃1 (in
FO(DWVar,DVar,O,P)). Thus,

convert(P1,P2)(W̃1) = strengthen
U2(⊤U2

,W̃1),

where⊤U2
is the top element inA 2

U
.

The extension ofconvert to an operator on theAHS(AU)
domains is done in a straightforward manner: the graph is kept the
same and only constraints associated to the graph are converted.
This operator is the base ingredient for the following applications.

6.2 Computing procedure summaries

In order to be able to compute procedure summaries parametrized
by different sets of guard patterns, we modify the definitionof
the abstract transformers corresponding to procedure calls and re-
turns as follows. LetQ1 be a procedure for which a set of patterns
P1 has been fixed. Suppose thatQ1 calls a procedureQ2 associ-
ated with the set of patternsP2. The transformerpost#(call y =
Q2(x), R̃c), whereR̃c is over the patternsP1, computes the local
graphlocal(R̃c,Q2(x)) (see Section 4) over patterns inP1 and
then appliesconvert(P1,P2) to obtain an over-approximation of
the local graph forQ2. Similarly, the transformerpost#(ret y =
Q2(x)) is modified by applyingconvert(P2,P1) to the combina-
tion between the context of the call and the summary forQ2.

As shown for thequicksort example, thestrengthenM oper-
ator allows to increase the precision of the analysis in theAHS(AU)
domains. For this, the analysis computes two over-approximations
for the mappingρ defining the semantics of a program: a map-
ping ρ#

U
with values inAHS(AU) and a mappingρ#

M
with val-

ues inAHS(AM). The abstract values at the initial control point
of the CFG,c0, are such thatρ#

M
(c0) is an over-approximation in

AHS(AM) of ρ#
U
(c0). The recursive equations forρ#

U
andρ#

M
re-

main unchanged. The only difference is the definition of the ab-
stract transformer inAHS(AU) corresponding to procedure returns.

Consider the edgeeQ2

ret y=Q2(x)
−−−−−−−−→ r in the CFG of some

procedureQ1. Also, let c be the call point associated tor.
The abstract transformerpost#(ret y = Q2(x), R̃e), whereR̃e =
(Ne,Se,Ve,W̃e) ∈ ρ#

U
(eQ2), is an abstract heap set obtained by

composing any relatioñRc = (Nc,Sc,Vc,W̃c) ∈ ρ#
U
(c) with R̃e

and a relationR̃e
aux = (Ne

aux,S
e
aux,V

e
aux,W̃

e
aux) ∈ ρ#

M
(eQ2). This

composition is applied only if the three relations correspond to
the same call. If it is the case, the composition is an abstract
heapR̃r = (Nr ,Sr ,Vr ,W̃r), where(Nr ,Sr ,V r) is built as in Sec-
tion 4, and W̃r is built by replacingCombine(W̃c,W̃e) with
strengthenM(Combine(W̃c,W̃e),W̃aux).

6.3 Assertion checking

Let A1
H be the abstract value in a domainAHS(A

1
U
) computed at

the control point of the statementassert ϕ, whereϕ describes an
elementA2

H ∈ AHS(A
2
U
). If P1 = P2, checking thatA1

H satisfiesϕ is
done using the entailment operator ofAHS, i.e. fold#(A1

H) ⊑
HS

A2
H . To improve the precision of this entailment checking, we

can applystrengthenM(A1
H ,A

aux
H), whereAaux

H is the assertion
synthesized byAHS(AM) at the same control point, to obtainA′H in
AHS(A

1
U
) and then check thatfold#(A′H)⊑

HS A2
H in AHS(A

1
U
).

When P1 6= P2, we modify the abstract transformer of
assert ϕ such that, for any abstract heap setA1

H ∈ AHS(A
1
U
),

post#(assert ϕ,A1
H)=A1

H if fold#(convert(P1,P2)(A1
H))⊑

HS

A2
H , i.e., the output offold# for the over-approximation ofA1

H in
AHS(A

2
U
) entailsA2

H .

6.4 Equivalence checking

Let P1 andP2 be two procedures having the same input and output
formal parameters. Then,P1 and P2 areequivalentif they return
exactly the same heap when they receive the same input. We use
the program in Figure 9 to obtain a sound procedure for equiva-
lence checking. In every configuration of this program, the heap
contains two disjoint regions, each region representing the heap
configuration of one of these procedures. Initially, the program as-
sumes that the heap contains two copies of the same input con-
figuration. For that, we use the predicateequal(fpi1, fpi2) where
fpi1 andfpi2 are two copies of the input parameters. We consider
thatequal(fpi1, fpi2) holds for an abstract heap if and only if it is

1 assume(equal(fpi1, fpi2));
2 list *y1, *y2;
3 y1=P1(fpi1);
4 y2=P2(fpi2);
5 assert(equal(y1,y2));

Figure 9. Procedure equivalence checking.

formed of two sub-graphsG1 and G2 s.t. (1) G1, resp.G2, con-
tains only nodes reachable from pointer variables infpi1, resp.
fpi2, (2) G1 andG2 are isomorphic, and (3) for any two nodes re-
lated by the isomorphism, the integer sequences attached tothem
are equal. Equality of integer sequences can be expressed using
the universally-quantified formulaeq∀ given by the equation (H)
(page 6). The two procedures are called on this input configuration.
Notice that the procedureP1 (resp.P2) can modify only the graph
G1 (resp.G2). The inter-procedural analysis applied to this pro-
gram computes an invariantI describing the configurations reach-
able after returning from the two procedures (line 5). This invari-
ant is formed of a set of abstract heaps. The two procedures are
equivalent if for any abstract heap inI , the regions reachable from
the output parameters ofP1, y1, and from the output parameters
of P2, y2, are equal. To express this equality we use the predicate
equal(y1,y2).

Notice that the program in Figure 9 can be used in the intra-
procedural setting by inlining the procedures. However, the advan-
tage of the compositional inter-procedural analysis is that each pro-
cedure is analyzed independently (using the local heap semantics).

7. Experimental results
Implementation details: We have implemented our inter-
procedural analysis in a plugin called CELIA [5] of the FRAMA -C
platform [4] for C program analysis. CELIA takes as input the ICFG
built by FRAMA -C from the C program. The implementation of
CELIA invokes/adapts (1) the heap abstract domainsAHS(AU) and
AHS(AM) provided by theCINV tool [2], (2) the numerical domains
of theAPRONplatform [17], and (3) the generic module of fixpoint
computation over control-flow graphs due to B. Jeannet [16].It has
been carried out by implementing in C the abstract transformers
including the abstract domain combination/strengthening.

Benchmark: We have applied CELIA to a benchmark of C pro-
grams which is available on the web site of CELIA . The benchmark
includes all the basic functions that are used in usual libraries on
singly-linked lists, for example the GTKgslist library which is
part of the Linux distribution. Table 1 gives a sample of functions
in this benchmark, split in six classes. The classsll includes C func-
tions performing elementary operations on list:adding/deleting the
f irst/last element,init ializing a list of some length. The classesmap
andmap2 include C functions performing a traversal of one resp.
two lists, without modifying their structures, but modifying their
data. The classesfold and fold2 include C functions computing
from one resp. two input lists some output parameters of typelist or
integer. Finally, thesort class includes sorting algorithms on lists.
The procedures in classesmap* and fold* are tail recursive, thus
we consider for them both iterative and recursive versions.The
third column of Table 1 specifies the versions considered (itera-
tive/recursive) and the number of nested loops or recursivecalls.

The benchmark also contains programs which do several calls
of the above functions on lists. For example, we handle some pro-
grams manipulating chaining hash tables. For that, we use ab-
straction techniques (slicing, unfolding fixed-size arrays) available
through the Frama-C platform. Also, the benchmark includespro-
grams allowing to test the applications discussed in the previous
section and which we detail in the following.

Computing procedure summaries:Table 1 describes some of our
experimental results on the synthesis of procedure summaries.

Column 5 indicates the set of patterns used for the analysis with
AHS(AU). These patterns are:

P=(x,x′)≡ ∀y1 ∈ tl(x),y2 ∈ tl(x′). y1 = y2,

P1(x)≡ ∀y∈ tl(x), P2(x)≡ ∀y1,y2 ∈ tl(x). y1 ≤ y2

The patternP= is used by default for each analysis since it is
needed to capture the relation of equality between actual and formal
function parameters. The choice ofP1 andP2 is made according to
a heuristics that is based on syntactical criteria such as the number
of nested loops or the number of recursive calls in the body ofthe
program. (These numbers are reported in column 3 of Table 1.)
The patternP1 is used for programs with at least one loop (resp.
recursive call) and one iteration variable over lists. The patternP2 is
used for nested loops, more than one recursive call, or two iteration
variables.

Column 6 of Table 1 shows samples of procedure summaries
that CELIA can synthesize. (We use the & sign to denote, like in C,
the output parameters.)

Columns 4–5 provide the global running times for the analysis,
including calls to theAPRON libraries. All experiments have been
done on an Intel i3-370M with 2.4 GHz and 2 GB of RAM.

All examples in our benchmark corresponding to common func-
tions for list manipulation (classessll–fold2 in Table 1, except the
functionmerge) are analyzed in less than 1 second. During the anal-
ysis of these programs, the manipulated relations are represented
using at most 6 abstract heaps, each of them having at most 16
nodes. For the rest of the examples, these relations have at most 18
abstract heaps. The sorting algorithms are time consuming due to
(1) the use of widening operators (we have implemented) thatare
more accurate than the standard ones available inAPRON, and (2)
the frequent use of thestrengthen operation in examples such as
quicksort.

Besides dealing with recursion, compositional inter-procedural
allows to have a much more scalable analysis. For instance, con-
sider a program that calls theinit(v) function on 10 different lists.
Our analysis computes once the summary of this function and reuse
it, while the analysis after inlining computes successively the effect
of all the calls. Thus, the inter-procedural analysis is tentimes faster
for this example than the intra-procedural analysis.

Combination of abstract domains: The use of thestrengthen
operation is needed in many examples of programs with procedure
calls. For instance, as we have seen throughout the paper, the
analysis of the recursive sorting algorithmquicksort requires
combining universal formulas with multiset constraints. Without
this combination, thequicksort procedure must be transformed to
have two parameters (the first and the last element of the list), like
in [24]. Therefore, the pivot is given as a parameter which helps
to recover at the return from the recursive calls the property that
all elements are less/greater than the pivot. Actually, thetechniques
of [24] cannot handle the version ofquicksort given in Figure 1,
which is the standard implementation of thequicksort.

Non-recursive programs may also need strengthening opera-
tions for their analysis due to the fact that different sets of pat-
terns may be used for different procedure calls. To experiment that,
we have considered programs performing multiple calls to proce-
dures given in Table 1, taking{P=,P1,P2} as set of patterns for the
analysis of the main procedure. For example, we have considered a
procedure that callsbubblesort on a listx, and then copies it in a
variabley using the procedureclone (the procedurebubblesort is
analyzed using{P=,P1,P2} and the procedureclone using{P=}).
For the call toclone, we obtain that the two listsx andy are equal,
but the sortedness property ofx is not transferred toy. However,
this property can be recovered at the return ofclone (using the

class fun nesting AM AU Examples of summaries synthesized
(loop,rec) t (s) P t (s)

create (0,−) 0.013 P=,P1 0.021
addfst – 0.003 P= 0.002

sll addlst (0,1) 0.031 P= 0.033 ρ#
U
(create(&x,ℓ)) : hd(x) = 0∧len(x) = ℓ∧∀y∈ tl(x)⇒ x[y] = 0

delfst – 0.001 P= 0.001
dellst (0,1) 0.034 P= 0.042

init(v) (0,1) 0.024 P=,P1 0.034 ρ#
U
(init(v,x)) : len(x0) = len(x)∧hd(x) = v∧∀y∈ tl(x). x[y] = v

map initSeq (0,1) 0.024 P=,P1 0.034 ρ#
U
(add(v,x)) : len(x0) = len(x)∧hd(x) = hd(x0)+v∧

add(v) (0,1) 0.021 P= 0.032 ∀y1 ∈ tl(x),y2 ∈ tl(x0). y1 = y2⇒ x[y1] = x0[y2]+v
map2 add(v) (0,1) 0.089 P= 0.517 ρ#

U
(add(v,x,z)) : len(x0) = len(x)∧len(z0) = len(z)∧eq∀(x,x

0)∧
copy (0,1) 0.063 P= 0.078 ∀y1 ∈ tl(x),y2 ∈ tl(z). y1 = y2⇒ x[y1]+v= z[y2]

delPred (0,1) 0.062 P=,P1 0.145 ρ#
M
(split(v,x,& l ,&u)) : ms(x) = ms(x0) = ms(l)∪ms(u)

fold max (0,1) 0.031 P=,P1 0.048 ρ#
U
(split(v,x,& l ,&u)) : eq∀(x,x

0)∧len(x) = len(l)+len(u)∧
clone (0,1) 0.071 P= 0.315 l [0] ≤ v∧∀y∈ tl(l)⇒ l [y] ≤ v∧
split (0,1) 0.245 P=,P1 0.871 u[0] > v∧∀y∈ tl(u)⇒ u[y] > v
equal (0,1) 0.127 P= 0.261 ρ#

M
(merge(x,z,& r)) : ms(x)∪ms(z) = ms(r)∧ms(x0) = ms(x)∧ . . .

fold2 concat (0,1) 0.217 P=,P1,P2 0.806 ρ#
U
(merge(x,z,& r)) : eq∀(x,x

0)∧eq∀(z,z
0)∧sorted(x0)∧sorted(z0)∧

merge (0,1) 1.014 P=,P1,P2 2.306 sorted(r)∧len(x)+len(z) = len(r)
bubble (1,−) 0.387 P=,P1,P2 2.190

sort insert (1,−) 0.557 P=,P1,P2 3.292 ρ#
M
(quicksort(x)) : ms(x) = ms(x0) = ms(res)

quick (−,2) 1.541 P=,P1,P2 121.1 ρ#
U
(quicksort(x)) : eq∀(x,x

0)∧sorted(res)
merge (−,2) 1.547 P=,P1,P2 95.94

Table 1. Experimental results for functions in our benchmark.

strengthen operation) from the fact thaty is equal tox and thatx
is sorted.

Equivalence checking: We have experimented this approach
for checking equivalence between sorting algorithms. The
strengthen operation plays an essential role. To explain this, con-
sider the example from introduction which considers the equiva-
lence checking of two sorting proceduresP1 and P2 working on
two input listsI1 and I2, and producing two outputsO1 and O2.
The problem is reduced to checking the validity of the implication
(C) (page 3) because, for the template of Figure 9, we have that:

• equal(I1, I2) corresponds to the assume statement at line 1,

• sorted(O1) (resp.ms(I1) = ms(O1)) is the summary ofP1 in the
AU (resp.AM) domain,

• sorted(O2) (resp.ms(I2) = ms(O2)) is the summary ofP2 in the
AU (resp.AM) domain,

• equal(O1,O2) corresponds to the assert statement at line 5.

As explained in Section 6.4, theequal(I1, I2) annotation is trans-
lated in theAU domain into aeq∀ formula (equation H) and ap-
proximated in theAM domain into theeqm formula (equation I).
To check the validity of (C), we callstrengthen(ψU,ψM) where:

ψU : eq∀(I1, I2)∧sorted(O1)∧sorted(O2)

ψM : ms(I1) = ms(I2)∧ms(I1) = ms(O1)∧ms(I2) = ms(O2),

and obtain the universally quantified formulaψU∧eq∀(O1,O2).
For all experiments, the time needed to check the validity of

(C) is negligible compared with the time to compute the procedure
summaries.

8. Related work
Automatic synthesis of assertions about programs with dynamic
data structures has been addressed using different approaches in-
cluding abstract interpretation [2, 3, 6, 8, 11–13, 15, 20, 21, 23–
27, 29], constraint solving [1, 14], Craig interpolants [18].

In the intra-procedural case, several works consider invariant
synthesis for programs that manipulate dynamic data structures.

The generated invariants are either universally-quantified first-
order formulas [2, 13, 15, 20] or multiset constraints [2, 21].

Concerning the approaches based on abstract interpretation
which can handle procedure calls, most of them [3, 8, 23, 25] focus
on shape properties and do not consider constraints on sizesand
data. The approach in [24] can synthesize procedure summaries
that describe data if the instrumentation predicates whichguide
the abstraction speak about data. Providing patterns is simpler than
providing instrumentation predicates on data because patterns con-
tain only constraints between (universally-quantified) positions (in
the left-hand-side of the implication) and no constraints on data.
For example, in [24] the predicatedle(v,u) allows to synthesize the
summary for a procedure that sorts in ascending order, but cannot
be used for a procedure that sorts in descending order. However,
using the patterny1≤ y2 allows with our approach to synthesize
the summaries for both kind of procedures. The same pattern may
also allow to discover other properties than sortedness. Actually,
patterns are in many cases simple (ordering/equality constraints)
and can be discovered using natural heuristics based on the pro-
gram syntax or proposed/guessed by the user, whereas constraints
on data can be more complex. Our approach allows to discover
(maybe unpredictable) data constraints for given guard patterns. To
establish the fact that a procedure preserves the data values in the
input list, the method used in [24] is based on reachability,that is,
every cell in the input list remains reachable in the output list. This
method can be applied only for programs that never modify/per-
mute the contents of data fields. In our approach, using the multiset
domain, we can handle programs that can permute positions ofcells
in the list or modify/permute the contents of their data fields.

The approach in [11] considers abstract domains where the el-
ements are pairs formed of a graph and a constraint on data. The
inter-procedural analysis based on these domains can not synthe-
size constraints in form of universally-quantified formulas as our
analysis can do. In [26], the authors introducetrace partitioning
abstract domainswhich start from a partition of the set of traces
and compute an invariant for each class. The partitioning can be
static (usually based on the control structure of the program) or
dynamic. From this point of view, the approach in [26] considers
mainly statically-defined partitions. The abstract domainin our pa-
per, based on the unfolding/folding operations, can be seenas an

instance of a trace partitioning abstract domain with a dynamic par-
titioning. The corresponding partitioning puts in the sameclass all
the traces for which the number of dereferences of thenext pointer
field is the same modulo some fixed constantk (which is a parame-
ter of the analysis). The approach in [26] considers mainly numer-
ical abstract domains and it is not faced to the difficulties raised by
a compositional analysis on programs manipulating dynamicdata
structures. The analysis in [12] combines a numerical abstract do-
main with a shape analysis. It is not restricted by the class of data
structures but it considers only properties related to the shape and
to the size of the memory.

9. Conclusion
We have defined an accurate inter-procedural analysis for programs
with lists and data. The key contribution of this paper is a technique
for combining the analysis in different abstract domains and its
use in compositional analysis techniques that are able to infer non
trivial procedure summaries.

The combination mechanism we propose, based on an unfold-
ing/folding technique combined with partial reduction operators,
could be applied for other abstract domains than those consid-
ered in this paper. In particular, other abstract domains based on
first-order formulas, e.g., the one defined in [13], can be used to
strengthen the analysis in our domain of universal formulas.

Another interesting aspect of our work is that it allows to ma-
nipulate constraints without requirement of decidability, contrary
to many works based on decision procedures. Our abstract do-
mains allow actually to express verification conditions that appear
in pre-post condition reasoning. These conditions are typically im-
plications, and then, our entailment checking can be used tocheck
safely their validity. Therefore our framework allows to combine
smoothly pre-post condition reasoning with assertion synthesis.

Future work includes the generalization of our framework to
structures such as multi-linked lists, trees, and nested structures.

References
[1] D. Beyer, T.A. Henzinger, R. Majumdar, and A. Rybalchenko. In-

variant synthesis for combined theories. InVMCAI, volume 4349 of
LNCS, pages 378–394. Springer, 2007.

[2] A. Bouajjani, C. Drăgoi, C. Enea, A. Rezine, and M. Sighireanu.
Invariant synthesis for programs manipulating lists with unbounded
data. InCAV, volume 6174 ofLNCS, pages 72–88. Springer, 2010.

[3] C. Calcagno, D. Distefano, P.W. O’Hearn, and H. Yang. Composi-
tional shape analysis by means of bi-abduction. InPOPL, pages 289–
300. ACM, 2009.

[4] CEA. Frama-C Platform. htp://frama-c.com.

[5] Celia plugin.http://www.liafa.jussieu.fr/celia.

[6] B.-Y.E. Chang and X. Rival. Relational inductive shape analysis. In
POPL, pages 247–260. ACM, 2008.

[7] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approxima-
tion of fixpoints. InPOPL, pages 238–252. ACM, 1977.

[8] P. Cousot and R. Cousot. Static determination of dynamicproperties
of recursive procedures. InIFIP Conf. on Formal Description of
Programming Concepts, pages 237–277. North-Holland Publishing
Company, 1977.

[9] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. InPOPL, pages 269–282. ACM, 1979.

[10] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal
of Logic and Computation, 2(4):511–547, 1992.

[11] A. Deutsch. On determining lifetime and aliasing of dynamically
allocated data in higher-order functional specifications.In POPL,
pages 157–168. ACM, 1990.

[12] S. Gulwani, T. Lev-Ami, and S. Sagiv. A combination framework for
tracking partition sizes. InPOPL, pages 239–251. ACM, 2009.

[13] S. Gulwani, B. McCloskey, and A. Tiwari. Lifting abstract interpreters
to quantified logical domains. InPOPL, pages 235–246. ACM, 2008.

[14] A. Gupta, R. Majumdar, and A. Rybalchenko. From tests toproofs. In
TACAS, volume 5505 ofLNCS, pages 262–276. Springer, 2009.

[15] N. Halbwachs and M. Péron. Discovering properties about arrays in
simple programs. InPLDI, pages 339–348. ACM, 2008.

[16] B. Jeannet.Fixpoint. http://gforge.inria.fr/.

[17] B. Jeannet and A. Miné. Apron: A library of numerical abstract
domains for static analysis. InCAV, volume 5643 ofLNCS, pages
661–667. Springer, 2009.

[18] R. Jhala and K.L. McMillan. Array abstractions from proofs. InCAV,
volume 4590 ofLNCS, pages 193–206. Springer, 2007.

[19] R. Manevich, E. Yahav, G. Ramalingam, and S. Sagiv. Predicate ab-
straction and canonical abstraction for singly-linked lists. In VMCAI,
volume 3385 ofLNCS, pages 181–198. Springer, 2005.

[20] B. McCloskey, T.W. Reps, and S. Sagiv. Statically inferring complex
heap, array, and numeric invariants. InSAS, volume 6337 ofLNCS,
pages 71–99. Springer, 2010.

[21] V. Perrelle and N. Halbwachs. An analysis of permutations in arrays.
In VMCAI, volume 5944 ofLNCS, pages 279–294, 2010.

[22] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. InLICS, pages 55–74. IEEE Computer Society, 2002.

[23] N. Rinetzky, J. Bauer, T.W. Reps, S. Sagiv, and R. Wilhelm. A
semantics for procedure local heaps and its abstractions. In POPL,
pages 296–309. ACM, 2005.

[24] N. Rinetzky, S. Sagiv, and E. Yahav. Interprocedural shape analysis
for cutpoint-free programs. InSAS, volume 3672 ofLNCS, pages 284–
302. Springer, 2005.

[25] X. Rival and B.-Y.E. Chang. Calling context abstraction with shapes.
In POPL, pages 173–186. ACM, 2011.

[26] X. Rival and L. Mauborgne. The trace partitioning abstract do-
main. ACM Transactions on Programming Languages and Systems,
29, 2007.

[27] S. Sagiv, T.W. Reps, and R. Wilhelm. Parametric shape analysis via
3-valued logic. ACM Transactions on Programming Languages and
Systems, 24(3):217–298, 2002.

[28] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow
analysis. InProgram Flow Analysis: Theory and Applications, pages
189–234. New York University, 1981.

[29] V. Vafeiadis. Shape-value abstraction for verifying linearizability. In
VMCAI, volume 5403 ofLNCS, pages 335–348. Springer, 2009.

