g W N

© o N o

Scenario-based Proofs for Concurrent Objects

CONSTANTIN ENEA, Ecole Polytechnique, France
ERIC KOSKINEN, Stevens Institute of Technology, US

Concurrent objects form the foundation of many applications that exploit multicore architectures and their
importance has lead to informal correctness arguments, as well as formal proof systems. Correctness arguments
(as found in the distributed computing literature) give intuitive descriptions of a few canonical executions
or “scenarios” often each with only a few threads, yet it remains unknown as to whether these intuitive
arguments have a formal grounding and extend to arbitrary interleavings over unboundedly many threads.

We present a novel proof technique for concurrent objects, based around identifying a small set of scenarios
(representative, canonical interleavings), formalized as the commutativity quotient of a concurrent object.
We next give an expression language for defining abstractions of the quotient in the form of regular or
context-free languages that enable simple proofs of linearizability. These quotient expressions organize
unbounded interleavings into a form more amenable to reasoning and make explicit the relationship between
implementation-level contention/interference and ADT-level transitions.

We evaluate our work on numerous non-trivial concurrent objects from the literature (including the
Michael-Scott queue, Elimination stack, SLS reservation queue, RDCSS and Herlihy-Wing queue). We show that
quotients capture the diverse features/complexities of these algorithms, can be used even when linearization
points are not straight-forward, correspond to original authors’ correctness arguments, and provide some new
scenario-based arguments. Finally, we show that discovery of some object’s quotients reduces to two-thread
reasoning and give an implementation that can derive candidate quotients expressions from source code.

1 INTRODUCTION

Efficient multithreaded programs typically rely on optimized implementations of common abstract
data types (aDTs) like stacks, queues, and sets, whose operations execute in parallel to maximize
efficiency. Synchronization between operations must be minimized to increase throughput [Herlihy
and Shavit 2008a]. Yet this minimal amount of synchronization must also be adequate to ensure
that operations behave as if they were executed atomically, so that client programs can rely on their
(sequential) ADT specification; this de-facto correctness criterion is known as linearizability [Herlihy
and Wing 1990]. These opposing requirements, along with the general challenge in reasoning about
interleavings, make concurrent data structures a ripe source of insidious programming errors.

Algorithm designers (e.g., researchers defining new concurrent objects) argue about correctness
by considering some number of “scenarios”, i.e., interesting ways of interleaving steps of different
operations, and showing for instance, that each one satisfies some suitable invariant (which is not
necessarily inductive). For example, a scenario of the Michael and Scott [1996a] queue is described
as: many threads concurrently reading, one enqueuer thread taking a specific read path finding a tail
pointer to be outdated, and then succeeding a compare-and-swap (CAS) operation, causing others
to fail their compare-and-swap (paraphrasing from Herlihy and Shavit [2008b]). Such scenario
descriptions are powerful because they describe unboundedly many threads and often generalize
to cover many executions that are equivalent due to commutative re-orderings. Consequentially,
informal correctness arguments need only consider a few representative scenarios. Furthermore,
another critical benefit of scenario-based reasoning is that scenarios are more readily explainable
to software developers, who need not have a background in formal logic.

Despite the intuitive benefit of these operational, scenario-based proofs—which continue to be
widely used in the concurrent algorithms literature—it remains unknown as to whether they have
a formal grounding. This has lead to cases where objects thought to be linearizable [?] where later
determined to contain bugs in unconsidered scenarios [?].

Authors’ addresses: Constantin Enea, Ecole Polytechnique, France; Eric Koskinen, Stevens Institute of Technology, US.




50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

1:2 Constantin Enea and Eric Koskinen

1.1 Formalizing Scenarios with Quotients

In this paper, we show that operational, scenario-based correctness arguments can be formally
grounded. To that end, we propose a new proof methodology that is based on formal arguments
while keeping the intuition of scenario-based reasoning. This methodology relies on a reduction to
reasoning about a subset of representative interleavings (i.e. a formal version of informal scenarios),
which cover the whole space of interleavings modulo repeatedly swapping adjacent commutative
steps. The latter corresponds to the standard equivalence up to commutativity between the executions
of an object (e.g., Mazurkiewicz traces [Mazurkiewicz 1986]).

Reductions based on commutativity arguments have been formalized in previous work, e.g., Lip-
ton’s reduction theory [Lipton 1975], QED [Elmas et al. 2009], CIVL [Hawblitzel et al. 2015], and
they generally focus on identifying atomic sections, i.e., sequences of statements in a single thread
that can be assumed to execute without interruption (without sacrificing completeness). Relying on
atomic sections for reducing the space of interleavings has its limitations, especially in the context
of concurrent objects. These objects rely on intricate algorithms where almost every step is an
access to the shared memory that does not commute with respect to other steps.

Our reduction argument reasons about a quotient of the set of object executions, which is a subset
of executions that contains a representative from each equivalence class. In general, an execution
of an object interleaves an unbounded number of invocations to the object’s methods, each from a
different thread!. These executions can be seen as a word over an infinite alphabet, each symbol of
the alphabet representing a statement in the code and the thread executing that statement?. We show
that when abstracting away thread ids from executions, carefully chosen quotients become regular
or context-free languages. This is not true for any quotient since representatives of equivalence
classes can be chosen in an adversarial manner to make the language more complex.

The principal benefit of quotients is that reasoning about correctness can be done by considering
only a few representative execution interleavings, yet those conclusions generalize to all executions.
For some kinds of concurrent object implementations (defined later), deriving representative traces
can be reduced via induction to two-thread reasoning.

Proofs with program logics. Our work is inspired by the success of many prior works on proofs for
concurrent objects based on program logics such as Owicki and Gries [1976], Rely/Guarantee [Jones
1983], Concurrent separation logic [O’Hearn 2007; ?], RGSep [?], Deny-Guarantee [?], Views [?],
Iris [Jung et al. 2018, 2015] and interactive proof tools such as Iris.

The goal of this paper is orthogonal and focuses on finding a formal grounding for the operational,
scenario-based correctness arguments present in the algorithms literature. To this end, our method-
ology is based on taking representative interleaved traces upfront and using commutativity-based
equivalence classes for modularity/generalization rather than exploiting the program structure and
invariants for modularity/generalization. Achieving this alternative reasoning strategy nonetheless
requires careful formalization of what is meant by “representative traces”, as well as how those
classes of traces can be expressed abstractly, which we outline below. Our results show that (i)
scenario-based reasoning can be done formally through quotients, (ii) quotients can be given for
a variety of concurrent objects with subtle differences including non-fixed linearization points,
(iii) quotients improve the correctness arguments from the literature, and (iv) for some cases,
quotients—which represent interleavings of unboundedly many threads—can be automatically
discovered through a reduction to two-thread reasoning.

I Typically, it can be assumed w.l.o.g. that each thread performs a single invocation in an execution.
2Such a sequence will be called a trace in the formalization we give later in the paper.



99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

137
138
139
140
141
142
143
144
145
146
147

Scenario-based Proofs for Concurrent Objects 1:3

1.2 Example: Scenario-based proofs of the Michael-Scott Queue

For the sake of concreteness, we now show how quotients make concurrent reasoning simpler, using
the canonical Michael-Scott Queue (MSQ) as an example. Ultimately the theory and algorithms
in this paper lead to an implementation that is able to automatically derive the representation
discussed below, from the object’s source code. The MSQ is implemented as a linked-list, with head
and tail pointers and a sentinel head node, as depicted to the left below.

Enqueuer i

head tail “' head tail
1

An enqueue (enq) operation, such as Enqueuer i in the diagram above, repeatedly attempts
to enqueue a new element by using an atomic compare-and-swap (CAS) operation on the tail
element’s next pointer, replacing null with the address of the new node (x; in the diagram above).
It is possible that this CAS operation will fail due to a concurrent enqueuer (of which there can
be unboundedly many). Nonetheless, due to the CAS, one enqueuer will succeed. At this point,
although the element is linked, it is not logically in the queue because the tail pointer is lagging.
The enqueuer will thus perform a second CAS operation, as shown on the digram above to the
right, to advance tail to point to x;. To ensure progress, concurrent enqueuers will also check
to see if the tail lags and, if so, attempt to advance the tail before they attempt to enqueue
their elements (i.e. helping). A dequeue (deq) operation repeatedly attempts to unlink x; with a
CAS operation, but also has to check that the queue is non-empty and that other threads have not
recently dequeued. (To achieve all of these cases, deq must begin by reading the head pointer, the
tail pointer and head’s next pointer and validating to see which case applies.)

To verify the correctness of objects like the MSQ, one has to consider all of the ways in which
concurrent invocations of unboundedly many methods could interleave. One strategy to tackle
this problem has been through the aforementioned program logics such as rely-guarantee where,
roughly, one defines state-based invariants and then shows they are preserved and threads don’t
interfere with other threads’ actions. Nevertheless, the correctness arguments laid out by algorithm
designers (e.g., in the distributed computing community) typically are organized in a more opera-
tional manner and instead focus on discussing various “scenarios”. Consider the following excerpt
from The Art of Multiprocessor Programming [Herlihy and Shavit 2008b] regarding the MSQ:

@ Advance the tail

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify that node is indeed last,
it checks whether that node has a successor. If so, the thread attempts to append the new node with CAS. (A CAS is
required because other threads may be trying the same thing.) [Assume that] the CAS succeeds.

Such sentences describe scenarios that involve unboundedly many threads executing some portion
of their programs. They are chosen to highlight tricky situations and describe why those situations
are still acceptable. The above example can be thought of as the sequence:

(1) Unboundedly many threads are reading the data structure.

(2) There is a distinguished thread, let’s call 7.

(3) Tenq reads the tail and the tail’s next pointer.

(4) Teng finds that tail’s next is null.

(5) Tenq atomically updates tail’s next to point to its new node.

(6) The other (unboundedly many) threads fail their CASes on tail’s next and restart.

This scenario has a particular shape about it: unboundedly many threads read, then a single thread
performs a write, then the remaining threads react to that write. This is a common setup in many
non-blocking concurrent algorithms and a useful pattern (although, in general, we will describe
scenarios beyond those of this shape). One might think of it as a regular expression denoted rnext:



148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

171
172
173
174
175
176
177
178
179

181
182
183
184

186
187
188
189
190
191
192
193
194
195
196

1:4 Constantin Enea and Eric Koskinen

Tnext = (7 € T : read + Teng : read)” - (Teng : cas/succeed) - (7 € T : restart)”

where T is the (unbounded) set of all threads excluding epq. Above rnext expresses that some
unboundedly many threads from set T (including z.q) perform only read-path actions, then 7epq
succeeds its cas, then those unboundedly many threads restart. This expression is more powerful
than it may first appear. There are a few important considerations:

e Conciseness. The entirety of MSQ’s concurrent execution behaviors can be represented
with this and only two other similarly concise representative interleavings, along with four
even simpler read-only interleavings. Expressions r¢ai1 and rpeaq are similarly defined and
represent advancing the tail pointer and the head pointer (due to a dequeuer), respectively.

e Unbounded. With these concise descriptions, the interleavings between an unbounded
number of enqueuers and dequeuers can be seen as an unbounded alternation (rpext +
Ttail + Thead)”. (Below we will further refine this approximation with stateful automata.)

This description does not include all possible ways of interleaving steps of enqueuers, e.g., it
does not include interleavings where a thread restarts after two successful CASs since it last read
the shared memory. It includes just a subset of representatives that we call a quotient, which is
succinct enough to correspond to the designer’s intuition and large enough to cover the whole
space of interleavings modulo repeatedly swapping adjacent commutative steps (i.e., the standard
equivalence up to commutativity between executions known as Mazurkiewicz traces [Mazurkiewicz
1986]). For instance, an interleaving where a thread restarts after two successful CASs (since it last
read the shared memory) is equivalent to one where the restart step is reordered to the left to occur
immediately after the first CAS. This is because the restarting condition is fulfilled after this first
CAS as well and the restart step does not perform any writes.

The MSQ falls into a special class of objects for which quotients can be expressed in this inductive
way, as a sequence of what we call “layers” (above rnext, rtail and rheaqd are layers) wherein only
a single shared memory write action occurs per layer, and all other actions are thread-local/read-
only (perhaps restarting due to a failed CAS). Consequently, it is possible via induction to reduce
reasoning to a collection of two-threaded arguments (one writer, one reader). While quotients and
their abstractions are a much broader class, layers are nonetheless an important subclass since they
apply to many lock-free implementations and can be automated, as discussed below.

1.3 Challenges and Contributions

1. Concurrent Object Quotients. How can scenario-based reasoning be done formally? (Sec. 3) We
show that scenario-based reasoning can be made formal through a methodology wherein reasoning
about all executions of a concurrent object is reduced to reasoning only about a smaller set of
representative interleavings. At the technical core is the definition of an object’s execution quotient
which collapses executions that are equivalent up to swapping commutative adjacent actions. A
quotient is parameterized by this equivalence relation and has both a minimality constraint (no
two executions are equivalent) and a completeness constraint (all executions are equivalent to
some execution in the quotient). We prove that linearizability of the quotient is sufficient to show
linearizability of the object. The upshot is that concurrent object correctness is now accomplished
via reasoning about a collection of scenarios (as in typical informal proofs).

2. Expressing Quotients. How can a quotient set be described? (Sec. 4) A next question is how to
finitely express a quotient, which can have unboundedly many interleavings. In Sec. 3, we introduce a
quotient expression language that permits a mixture of regular expressions (e.g., Kleene-star iterations
of subexpressions) and context-free grammars (e.g., unbounded but balanced subexpressions).
We then give an interpretation/semantics for these expressions that maintains the minimality
condition: there will only be one interleaving (with threads organized in a canonical order) for



197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

Scenario-based Proofs for Concurrent Objects 1:5

[Read-Only Layer 1
(deq:2-7-returny”
(adv:1-4-1)m

Legend: Layer Definitions

[Read-Only Layer 2
(adv:1-4-1)r

Dequeue Succeed
Layer

D
Layer

D 1 Layer
(deq:2-10)" (deq:2-5)™
deq:2-10-cas(Q.head)/true
(deq:5-2)" (deq:10-2)*
Advancer Succeed Layer
(enq:2-6)" adv:2-5)m
adv:2-5-cas(Q->tail)/true
(adv:5-2)™ (enq:6-2)"

Enqueue Succeed Layer

Advancer Succeed
Layer

Advancer
1 Layer

Succeed Layer

L3 (enq:2-8)"
R Read-Only Layer 4 Dagueus) Y Advancer enq:2-8-cas(Q.tail->next)
(enq:2-7-2) (enq:2-7-2)" Succeed Succeed
(deq:2-7-2)m - Layer Layer (enq:8-2)"

Fig. 1. Layer automaton for the Michael/Scott Queue.

every unboundedly many unrolling. The MSQ expression (rnext + r'tail + rhead)” above provides an
intuition for the quotient expression for the MSQ. (Technically, the read actions are paths and the
s«-iterations within the ry subexpressions are replaced with a context-free form of iteration.)

As we will show later, quotients and their abstractions are expressive and can capture canonical
concurrent objects as well as more complicated ones such as the Herlihy and Wing [1990] queue and
the elimination stack of ?, each having different kinds of non-fixed linearization points. These are
notoriously hard cases for today’s proof methodologies. We note that, while the idea of reasoning
about execution quotients is generic, identifying precise limits for the applicability of the particular
class of quotients expressions is hard in general. This is similar to using abstract domains in the
context of static analysis: it is hard to determine precisely the class of programs for which interval
or polyhedra abstractions are effective.

3. Layer Quotient Expressions and Automata. (Sec. 5) In addition to broad expressivity,
are there classes of objects whose quotients have a simpler structure? To increase accessibility and
automation, we next describe certain kinds of quotient expressions for which reasoning can actually
be reduced, via induction, to two-thread reasoning. Specifically, for objects whose implementation
can be written as a collection of (possibly restarting) read-only/local paths and paths that have only
a single atomic read-write, we define layer quotients to more conveniently and inductively capture
the quotient. Although this does not apply to all objects, it does apply to canonical examples such as
the MSQ, Treiber’s Stack, and even the Scherer III et al. [2006] synchronous reservation queue. For
these objects, executions can be decompiled into a sequence of layers, each described by context-free
quotient expressions of the form (a; + b1 +...)" - w - (az + by +...)" where a; - a is a read-only
path through the method implementation (possibly restarting), and w is a path with a successful
atomic read-write. The exponents in both expressions indicate the unbounded replication of local
paths (n is not fixed; it ensures prefix/suffix balancing). Then an overall quotient expression can be
made from regular compositions of these context-free layers, leading to an inductive argument.
Furthermore, each layer can be discovered with two-thread reasoning: considering how each write,
treated atomically, impacts each other read-only/local path.

We describe how layer expressions can be conveniently represented as finite-state automata
(and further below also used for automation). The layer automaton for the Michael-Scott Queue is
shown in Fig. 1. We will discuss it in detail in Sec. 6.1 but, roughly, the states track whether the
queue is empty and whether the tail is lagging. The layer-labeled edges define the local/read-only
(unbold) control-flow paths and how they are impacted by the write path (bold). There are also
read-only layers, which we will describe later.



246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

274
275
276
277

279
280
281
282

284
285
286
287
288
289
290
291
292
293
294

1:6 Constantin Enea and Eric Koskinen

4. Evaluation: Verifying Concurrent Objects. (Sec. 6) We consider a broad range of concurrent
objects including Treiber’s stack [Treiber 1986], the Michael and Scott [1996b] queue, the Scherer III
et al. [2006] synchronous reservation queue, the Herlihy and Wing [1990] queue, the ? elimination
stack, and the Restricted Double-Compare Single-Swap (RDCSS) [?]. Each object has its own
subtleties, including complications like multiple CAS steps and non-fixed linearization points. For
each object we (i) show that its behavior and linearizability can be captured through a quotient
and (ii) revisit the object’s authors’ correctness arguments. We find that quotients capture those
intuitive scenarios and make scenarios explicit and comprehensive.

5. Generating Candidate Quotient Expressions. (Sec. 7) Automating quotient-based proofs of
concurrent objects is a rather large question (perhaps warranting new forms of induction) which we
mostly leave to future work. Nonetheless, we present an algorithm and prototype implementation
CioN for generating candidate quotient expressions, directly from a concurrent object’s source code.
We manually confirmed that these expressions are sound abstractions of those objects’ quotients.
We applied C1oN to layer-compatible objects such as Treiber’s Stack and the Michael/Scott Queue,
finding that candidate layer expressions can be discovered in a few minutes. We plan to release
C1oN on GitHub. Benchmark sources and the tool output are in the supplementary materials.

2 PRELIMINARIES

Running example: A simple concurrent counter. Fig. 2 lists a concurrent counter with methods
for incrementing and decrementing. Both methods of the counter return the value of the counter
before modifying it, and the counter is decremented only if it is strictly positive.

Each method consists of a retry-loop that reads the shared vari- 1 int increment() ¢

able ctr representing the counter and tries to update it usinga 2  while (true) {

: 3 int ¢ = ctr;
Compare-And-Swap (CAS). A CAS aForpwally tests whéther.ctr ! Lf (CASCetr.c,e+1))
equals the second argument and if this is the case, then it assigns s return c;
the value specified by the third argument. If the test fails, then the ¢ }

CAS has no effect. The return value of CAS represents the truth 77

value of the equality test. If the CAS is unsuccessful, i.e, it returns ~ ® " decrement () {
9 while (true) {

false, then the method retries the same steps in another iteration. ¢ int ¢ = ctr;
The executions of the concurrent counter are interleavings of an 11 if (c==20)

. . . . 12 return 0;
arbitrary number of increment or decrement invocations from an . if (CAS(ctr,c,c-1))
arbitrary number of threads. Each invocation executes a number 14 return c;
of retry-loop iterations until reaching the return. An iteration 15 }

16 }

corresponds to a control-flow path that starts at the beginning of
the loop and ends with a return or goes back to the beginning.
For instance, the increment method consists of two possible iterations: #1. ¢ = ctr; CAS(ctr, c,
ct1); return c, and #2. ¢ = ctr; assume(ctr != c). Iteration #1 is called successful because it
contains a successful CAS, and the unsuccessful CAS in the iteration #2 is written as an assume
that blocks if the condition is not satisfied.

An invocation can execute more iterations if ctr is modified by another thread in between reading
it at line 3 or 10 and executing the CAS at line 4 or 13, respectively. Fig. 3 pictures an execution
with 3 increments that execute between 1 and 3 retry-loop iterations. The first iteration of threads
2 and 3 contains unsuccessful CASs because thread 1 executed a successful CAS and modified ctr,
and these invocations must retry, execute more iterations. Note that there are unboundedly many
such executions and, even with bounded threads, exponentially many interleavings.

Concurrent Object Syntax We model concurrent objects using Kleene Algebra with Tests [Kozen
1997] (KAT). Intuitively, a KAT represents the code of an object method using regular expressions
over symbols that represent conditionals (tests) or statements (actions).

Fig. 2. A concurrent counter.



295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
334
335
336
337
338
339
340
341
342
343

Scenario-based Proofs for Concurrent Objects 1:7

c'=0 cas—ctr=1

c2=0 » cas fails c2=1 cas—ctr=2

c3=0 “cas fails c3=1 *cas fails c3=2 cas -> ctr=3
L . LT > P -ccccccccccnccccnccnanan > P --- >

Fig. 3. The steps of an execution with three increment-only threads whose actions are aligned horizontally.

For readability, we rename the local variable c in thread i to c’. The curved blue arrows depict data-flow
dependencies between reads/writes of ctr.

Definition 2.1. [Kleene Algebra with Tests] A KAT K is a two-sorted structure (2, B, +, -, *,-0, 1),
where (2,4, -,%,0,1) is a Kleene algebra, (8,+, - ,-0,1) is a Boolean algebra, and the latter is a
subalgebra of the former. There are two sets of symbols: A for primitive actions, and B for primitive
tests. The grammar of boolean test expressions is BExp :==beB|b-b | b+b | b|0]1,and the
grammar of KAT expressions is KExp :==a€ A|be BExp | k-k | k+k | k™| 0] 1. For ki, k; € K,
we write k; < kp if kg + k2 = kp, and we assume K is *-continuous [Kozen 1990].

The primitive actions and tests used in examples in this paper will be along the lines of A = {x :=
v, x.f :=y,..}andB={x = y,x.f = y,x=null,x.f=null...}.

Atomic read-write (ARW). We conservatively extend KAT with a syntactic notation {b-a}), used to
indicate a condition b and action a, between which no other actions can be interleaved. Apart from
restricting interleaving (defined below), this does not impact the semantics so it can be represented
with two special symbols “(” and “)” whose semantics are the identity relation. For example a
compare-and-swap cas(x,Vv,Vv’) can be represented as ({{x=v] - x:=v’) - k) + ([x=v] - k’), where
[x = 0] is a primitive test and the assignment is a primitive action. Overline indicates negation, as
in KAT notation. k is the code to be executed when cas succeeds and k” when it fails.

Methods of a concurrent object. We define a method signature m () /o with a vector of arguments
X and return values 9 (often a singleton v). For a vector X, x; denotes its i-th component. An
implementation of a method m is a KAT expression k,,, whose actions may refer to argument values,
e.g., X := args;. A concurrent object O is a set of methods O = {m1(X1)/0; : km,, ...}, associating
signatures with implementations. The set of method names in an object O is denoted by Meth(O).

Example 2.2. The counter from Sec. 2 is formalized as O, = {inc()/v : kine, dec()/u : kgec}
kine = (c:=ctr- ((({[c:ctr] -ctr:=c+1) - ret(c)) + ([c:ctr])))*
kdgee = (c::ctr-(([c:Q] -ret(0))+([c=0]-{[c=ctr] - ctr:=c-1 ))~ret(c))+([c:ctr])))*

The outer * in kjp,. corresponds to the while (true) loop in the method increment while the inner
+ corresponds to the two branches of the conditional. The KAT expression ki, represents every
control-flow path of increment which goes a number of times through the assignment c:=ctr
and the “false” branch of the conditional before succeeding the atomic read-write and returning
(other sequences represented by this regular expression, e.g., , iterating multiple times through the
atomic read-write and return will be excluded when defining the semantics).

Concurrent Object Semantics. A full semantics for these concurrent objects is given in Apx. A.
In brief, the semantics involves local states o; € 3, shared states o, € %, and nondeterministic
thread-local transition relation oy, o4, k | o7, oé, k’, which optionally involve label ¢ (k and k’ are
KAT expressions representing code to be executed). These labels are taken from the set of possible
labels £ € AU B U call m(9) U ret(d) U {b - a) which includes primitive actions, primitive tests,
call actions, return actions or ARWs. (We here write call m(v) with free variables to refer to the
set of all call actions and similar for returns and ARWs.) Next, a configuration C = (g, T) where
T:7 — (210 x (KU{L})) comprises a shared state g, € 3y and a mapping for each active thread
to its local state and current code. We use 7~ to denote the set of thread ids, which is equipped with



344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
384
385
386
387
388
389
390
391
392

1:8 Constantin Enea and Eric Koskinen

a total order <. Configurations of an object transition according to the relation =: C X (7 X L) X C,
labeled with a thread id and a label. .

An object O is acted on by a finite environment & : 7 — O X Val, specifying which threads
invoke which methods, with which argument values. Val denotes a set of values and Val denotes
the set of tuples of values. We assume that object methods can not access thread identifiers (which
is true for concurrent objects defined in the literature) and therefore, each invocation is assumed
to be executed by a different thread. An execution of O in the environment & is a sequence of
labeled transitions between configurations Cy = ... = C, that starts in the initial configuration C
w.rt. & and ends in configuration Cy,. A configuration Cy = (ogf, 1) is final iff TS (t) = (07, 1),
for some oy, for all t € dom(TY). An execution is completed if it ends in a final configuration.
[O ® &] denotes the set of completed executions of O in the environment &. A trace t € Traces
is a sequence of 7 X L pairs, i.e,, thread-indexed labels #y: ¥4, . .., t, :f,. A trace of an execution p
denoted 7, is a projection of the thread-indexed labels out of the transitions in the execution.

The semantics [O] of a concurrent object O is defined as the set of traces under all possible

environments (i.e., for any number of threads invoking any methods with any inputs). Formally,
[0] = {7, | p € [O® &], for some environment E}.
Linearizability For an object O, an operation symbol (or operation for short) o = m(i)/w
represents an invocation of a method m € Meth(O) with signature m(X)/d, where # is a vector of
values for the corresponding arguments ¥, and w is a vector of values for the corresponding returns
7. A sequential specification S for an object O is a set of sequences over operation symbols.
For instance, the sequential specification for the counter object includes sequences of increments
and decrements corresponding to executions where each invocation executes in isolation, e.g.,
inc()/0-inc()/1-inc()/2 or inc()/0 - dec()/1 - dec()/0.

A trace 7 of an object O is linearizable w.r.t. a specification S if there exists a (linearization-point)
mapping Ip(7) : T — N where the label at position (index) Ip(7) in 7 is considered to be the
so-called linearization point of t’s invocation, and must satisfy the following:

(1) the position Ip(7) is after ¢’s invocation label and before ¢’s return,
(2) the (linearization) sequence lin(z, Ip) of operation symbols m(ii)/w, where the i-th symbol
represents the invocation of the i-th thread t w.r.t. the positions Ip(z, t), belongs to S.

For example, Fig. 3 pictures a trace which is linearizable w.r.t. the counter specification described
above because there exists a linearization-point mapping Ip which associates each thread i with
the position of the i-th successful CAS. The linearization inc()/0 - inc()/1 - inc()/2 induced by
this mapping is admitted by the specification.

For simplicity, we omit invocation labels from traces and consider the first instruction in an
invocation to play the same role. Object O is linearizable wrt a spec. S if all traces in [O] are
linearizable wrt S.

3 OBJECT QUOTIENTS

To formalize scenarios, we introduce the concept of a quotient of an object which is a subset of its
traces that represents every other trace modulo reordering of commutative steps or renaming thread
ids. For an expert reader, the quotient is a partial order reduction [?] composed with a symmetry
reduction [?] of its set of traces. In general, an object may admit multiple quotients, but as we show
later, there exist quotients which can be finitely-represented using regular expressions or extensions
thereof. We interpret scenarios as components (sub-expressions) of these finite representations.
Two executions p; and p, are equivalent up to commutativity, denoted as p; = p, if p, can be
obtained from p; (or vice-versa) by repeatedly swapping adjacent commutative steps. An execution
p2 is obtained from p; through one swap of adjacent commutative steps, denoted as p; =1 pa, if



393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

Scenario-based Proofs for Concurrent Objects 1:9

(#:0) (t":0)

pr=CE Y oy L 0y Gy and py = €8 A

t:f
L or ey

(p2 is obtained from p; by re-ordering the steps labeled by t : £ and ¢’ : ¢’). When there exist
executions p; and p, as above, we say that the re-ordered labels £ and ¢’ are possibly commutative.

Definition 3.1. The equivalence relation =C & X & between executions is the least reflexive-
transitive relation that includes =;.

The relation = is extended to traces as expected: 71 = 1, if 7; and 7 are traces of executions p; and
p2, respectively, and p; = p,.
For example, the Counter executions below are equivalent up to commutativity (related by =,):

p=Co--Cy Gy C3---andp'=Co---C1MC§MCg~-

assuming that ctr > 0 at configuration C; (recall that [c,=ctr] represents an unsuccessful CAS).

Definition 3.2. Two traces 7; and 7, are equivalent up to thread renaming, denoted as 1; = 7y, if
there is a bijection « between thread ids in 7; and 7, resp., s.t. 7 is the trace obtained from 7; by
replacing every thread id label ¢ with a(t).

For example, CO ) Ci iﬁm% Cy and G W o w C, are equivalent up to thread renaming.

We define a quotient of an object as a subset of its traces that is complete in the sense that
it represents every other trace up to commutative reorderings or thread renaming, and that is
optimal in that sense that it does not contain two traces that are equivalent up to commutativity.
Optimality does not include equivalence up to thread renaming (symmetry reduction) because the
finite representations we define later abstract away thread ids.

Definition 3.3 (Quotient). A quotient of object O is a set of traces ( O]) C [O] such that:

e Ve [O]. I, t"t =’ AT =1 A" € ({O)) (completeness), and
o V7,7’ € (O)). T # 7’ (optimality)

Note that an object admits multiple quotients since representatives of equivalence classes w.r.t.
= can be chosen arbitrarily.

Example 3.4 (Quotient and representative/canonical traces for the Counter). The trace of three
increment-only threads from Fig. 3 represents many other traces of the Counter modulo commuta-
tive reorderings or thread renaming. It can be thought of as a sequence of three canonical phases,
depicted with stacked parallelograms as follows:

c‘—O _cas—ctr=1

c2=0 /\ \—. cas fails c2=1_ cas—ctr=2

c3=0— cas falls c3— / \‘
—_

casfails | c3=2  cas->ctr=3

Each phase above groups together the retry-loop iterations that interact with each other: a single
successful CAS instruction causes the other attempts to fail. For instance, it represents another
trace where the first “cas fails” step occurs after the second successful CAS:

c'=0 cas—ctr=1

—_— >
c2=0 // \_, cas fails N =
c3=0 - cas fails




442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478

480
481
482
483
484
485
486
487
488
489
490

1:10 Constantin Enea and Eric Koskinen

This “late” CAS failure would also fail if moved to the left as shown above. Similarly, it also
represents traces where the action ¢ = 0 is swapped with ¢® = 0 and even ¢! = 0, or traces where
thread ids change from 1, 2, 3 to 4, 5, 6 for instance.

One can define a quotient { O |y of Counter which includes representative traces of this form.
The representative traces only differ in the number of incrementers/decrementers and the order in
which they succeed their CASs. (| O.;, |y will contain similar canonical traces for, say, an environment
with 4 incrementers, 2 decrementers acting in the sequence incr; decr; decr; incr; incr; incr
(wherein the second decr does nothing). See Example 4.3 for a more precise description.

Preserving Linearizability Through Commutative Reorderings. Our goal is to reduce the
problem of proving linearizability for all traces of an object to proving linearizability only for
traces in a quotient. Therefore, given two traces 7 and 7’ that are equivalent up to commutativity
(r = 1’), where for instance, r would be part of a quotient, an important question is whether
the linearizability of r implies the linearizability of /. We show that this holds provided that the
reordering allowed by the equivalence = is consistent with a commutativity relation between
operations in the specification.

Given a specification S, two operations 0; and o0, are S-commutative when n; - 01 - 02 - 2 € Siff
N1 020112 €S, for every 11, 172 sequences of operations. A linearization point mapping Ip(z) of
a trace t is robust against reorderings if for every two threads t; and f,, if the linearization points
of t; and t, are possibly commutative labels, then the operations of #; and t, are S-commutative.

THEOREM 3.5. Let 7 = 1’ be two equivalent traces. If T is linearizable w.r.t. some specification S via
a linearization point mapping Ip(t) that is robust against reorderings, then t’ is linearizable w.r.t. S.

The above holds by defining Ip(z”) by Ip(z”)(t) = the index in 7’ of the label Ip(7)(t), for every t.

Theorem 3.5 implies that proving linearizability for an object O reduces to proving linearizability
only for the traces in a quotient of O, provided that the used linearization point mappings are
robust against reorderings (thread renaming does not affect this reduction because specifications
are agnostic to thread ids).

4 FINITE ABSTRACT REPRESENTATIONS OF QUOTIENTS

We define finite representations of sets of traces, quotients in particular, which resemble regular
expressions and which denote context-free languages over a finite alphabet. The finite alphabet
is obtained by projecting out thread ids from labels in a trace. As we show in the evaluation
section, scenarios in previous informal proofs correspond to components of these expressions, and
linearization points can be identified directly within such expressions.

Let Abs be the set of expressions expr defined by the following grammar

expr = w | Wy - expr- wj | expr® | expr+expr | expr - expr

such that w, w1, w; € (AUBU(b-a))* are finite sequences of labels, and for every application of the
production rule w{ - expr - w}, n is a fresh variable not occurring in expr (this ensures context-free
abstractions). Therefore, for every expression in Abs, a variable n is used exactly twice.

Such expressions have a natural interpretation as context-free languages by interpreting *, +,
and - as the Kleene star, union, and concatenation in regular expressions, and interpreting every
] - expr - wy as sequences ws, ..., w; - [expr] - @2, ..., w; where the number of w; repetitions on
the left of expr’s interpretation, denoted as [expr]), equals the number of w; repetitions on the right.

We define an interpretation [expr] of expressions expr as sets of traces, which differs from the
above only in the interpretation of w, w*, and w7 - expr - wy, for finite sequences of labels w, w1, w;.

Definition 4.1 (Interpretation of an expression). For an expression expr,



491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Scenario-based Proofs for Concurrent Objects 1:11

Laerg ((c:=ctr)ine)" - LaVenS i ((ch=cro) M (ctecrr s
Read-Only Layer 1 (c:=ctr) - ([c=ctr] - ctr:=c+1)) - ret(c) - (c:=ctr) - ([c=ctr] - ctr:=c+1)) - ret(c) -
(Cc:=ctr) - [c=0] - ret(0))" ([C=Ctr]ln(‘)" /\ ([c=ctr]dm:)m . ([c=ctr]mc)n

RE

V' ((ermctmhme)” - (cmctr)una)™

(See definition of Layer 4 to the right)
Layer 4

(c:=ctr) - ([c=ctr] - ctr:=c-1)) - ret(c) -

Layer 4

Fig. 4. An expression representing a quotient of the Counter. For readability we present it as four sub-
expressions called “layers” whose composition with regular expression operators (concatenation, union, star)
is represented using an automaton (all states are accepting). We subscript the primitives to indicate whether
they were from increment-vs-decrement. Layer 1 represents decrements acting alone and finding the counter
to be 0, Layer 2 corresponds to the first successful increment, Layer 3 and Layer 4 represent successful
increments and decrements. For Layers 2 — 4, some number x of threads begin to read then a single different
thread performs its complete write path, and then all x threads fail their CAS instructions.

[w] ={t:w |t e T} wheret : @ means that all the labels in w are associated with the

same thread id t,

o [w] ={to: @....tx : @ | k € NJty < ... < tr}, sequences of labels associated with
increasing thread ids,

o [wl -expr-wi] = {ty: w1,...,tk : oy, [expr],tx : Wz, ... tg w2 | k €Nty < ... < ti},

sequences of labels where the same sequence of increasing thread ids is associated to w;

and w, repetitions (in reverse order), respectively.

o [expr] = [expr],..., [expr], sequences of repetitions of [expr]
e [expr, + expr,] = [expr,] U [expr,], union of interpretations
e [expr, - expr,] = [expr,]. [expr,], concatenation of interpretations

For example, in the first case of Def. 4.1, {(t : x:=v), (t : x++)} € [x:=v - x++]. For an expression
(x:=r".y:=s™.skip-s:=y+1™ . r:=x+1"), its interpretation includes traces such as

(ty : x:=r), (t5 : x:=r), (3 : y:=8), (t4 : skip), (t3 : s:=y+1), (t3 : r:=x+1), (t; : r:=x+1)

Definition 4.2 (Abstractions of quotients). An expression expr € Abs is called an abstraction of
an object quotient ( OJ) if (O]) € [expr].

Example 4.3 (Abstraction of a quotient of the Counter). An expression representing a quotient of
the counter is given in Figure 4. The following trace is in the interpretation of this expression (for
readability, we split the trace across lines, with segments labeled by layer names):

Layer2: ty:(c:=ctr)-t3:(c:=ctr)-(t1:(c:=ctr)-t1:{[c=ctr] -ctr:=c+1)-t;:ret(0))-
t3:[c =ctr]-ty:[c =ctr]-

Layer3: #3:(c:=ctr) -ta:(c:=ctr) -ty:{[c=ctr] -ctr:=c+1) - ty:ret(1) - ts:[c = ctr]-

Layer3: f3:(c:=ctr) - t3:{[c=ctr] -ctr:=c+1) - t3:ret(2)

Linearizability. Each layer corresponds to linearizing a single effectful invocation, i.e., an increment
invocation or a decrement invocation when the counter is non-zero, or an arbitrary number of
read-only invocations, i.e., decrement invocations when the counter is zero.

5 LAYERS: AN INDUCTIVE QUOTIENT LANGUAGE

We show that, for a broad class of objects, we can provide a subclass of quotient abstraction
expressions—that we will call layer expressions—which, via an inductive argument, reduce reasoning



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

1:12 Constantin Enea and Eric Koskinen

to two-threads. This applies to numerous canonical examples such as Treiber Stack, the Michael-
Scott Queue, a linked-list Set, and even the SLS Reservation Queue. For illustrative purposes, we
will continue to use the concurrent Counter, whose quotient can also be expressed with layers.

Many lock-free® objects rely on a form of optimistic concurrency control where an operation
repeatedly reads the shared-memory state in order to prepare an update that reflects the specification
and tries to apply a possible update using an atomic read-write. The condition of the atomic read-
write checks for possible interference from other threads since reading the shared-memory state.
The executions of such objects can be seen as sequences of what we call “layers,” each one being
a triple consisting of (i) many threads all performing commutative local (e.g., read) actions, (ii) a
single non-commutative atomic read-write ARW on the shared state, and (iii) those same initial
threads reacting to the ARW with more local commutative actions. For example, incrementing the
counter involves a successful cas operation on the shared variable, which leads to other threads’
old reads to go down a failure/restart path. In fact, with this layer language one can consider an
arbitrary number of control-flow paths executed by an arbitrary number of threads where at most
one can contain an atomic read-write. In the remainder of this section we discuss this in detail and
then discuss automated discover of layers in Sec. 7.

5.1 Local-vs-Write Paths

For an implementation call m(¥) - k,, € K of a method m(x)/9, a full (control-flow) path of k,
is a KAT expression k such that k < kj, and k contains only primitive actions, tests or ARWs,
composed together with - (k contains no + or * constructor). In a representation with control-flow
graphs of m’s code, k corresponds to a path from the entry point to the exit point. A path is
any contiguous subsequence k’ of a full path k, i.e., there exists (possibly empty) k; and k; such
that k = ky - k" - k. The set of paths of method m is denoted by II(m), and as a straightforward
extension, the set of paths of an object O defined by a set of methods m; with 1 < i < n is defined
as I1(0) = U; <j<, I(m;). II£(O) denotes the subset of full paths in I1(O).

A primitive action is called local when it cannot affect actions or tests executed by another thread
(atomic read-writes included), e.g., it represents a read of a shared variable or it reads/writes a
memory region that has been allocated but not yet connected to a shared data structure (this region
is still owned by the thread). Formally, let [a] : (21, X 2g1) — (210 X Zg7) and [b] : (g0 X Zg1) —
{true, false} denote the functions defining the semantics of actions a € A and tests b € B. Then,
an action a € A is local iff for every (o}, 0,) = [a] (o1, 04) and every s € A U B that occurs in some
method implementation, [s](c,’, 04) = [s](c]’, O'g’), for every local state o}".

A path is called local if it contains only local actions, and a write path, otherwise. Given a KAT
expression k’ that represents a path, we use first(k’) and last(k’) to denote the first and the last
action or test in k', respectively.

Example 5.1. Returning to the counter object O, the full paths are as follows:
(c:=ctr) - [c=ctr] (c:=ctr) - [c=0] - ret(0)
(c:=ctr) -{[c=ctr] - ctr:=c+1)-ret(c) (c:=ctr) - [c=ctr]
(c:=ctr) -{[c=ctr]-ctr:=c-1)-ret(c)
The first two paths are from k;,. and the last three are from k... Paths without ARWs consist of
only local actions, that may read global ctr, but they do not mutate any global variables.
5.2 The Language of Layers

We now define layer expressions and discuss how they represent an object’s quotient.

3Lock-freedom requires that at least one thread makes progress, if threads are run sufficiently long. A slow/halted thread
may not block others, unlike when using locks.



589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

Scenario-based Proofs for Concurrent Objects 1:13

Definition 5.2 (Basic Layer Expressions). A basic layer expression A has one of two forms:
o local layer: (k;)* where k; is a local path in I1(O).
— — — — — —
o write layer: (( ) p)m - (kN)"N) e - (( K n)™N (K o)™t (K 1)nl), where
(1) k,, is a write path in I1(O),
— -
(2) foreach j € [1,N], k ;- k jis a local path in II(O) and the prefix and suffix are each
repeated n; times,

(3) last(<k_j) and ﬁrst(_k>j) do not commute with respect to the ARW in k,,.

The first type, local layers, represent unboundedly many threads executing a local path k;. Since
each instance of the path is local, they all commute with each other, so the interpretation puts them
into a single, canonical order which follows the increasing order between their thread ids (by the
interpretation of * in quotient expressions; see Def. 4.1).

The second type, write layers, represents an interleaving where threads execute n; read-only

—
prefix k ; of paths (in a canonical, serial order), then a different thread executes a non-local path

k., and then n; corresponding suffixes _k> j occur, finishing their iteration reacting to the write of
k.. Again, the interpretation [A] of a write layer associates these KAT action labels with increasing
thread ids. Prefixes and suffixes of local paths can be assumed to execute serially as in the first
type of layer. The non-commutativity constraint ensures that such an interleaving is “meaningful”,
i.e., it is not equivalent to one in which complete paths are executed serially.

A layer expression is a collection of basic layer expressions, combined in a regular way via -, +,
or * (defined in Sec. 4). That is, a layer expression represents complete traces as sequences of layers.

Example 5.3. The expression given in Fig. 4 representing a quotient of the Counter is a layer
expression. It combines a single read-only layer with other three write layers.

Support of a layer. The support of a basic layer expression A, denoted by supp(2), is defined as a
set of KAT expressions where a single prefix/suffix local path is concretized to a single occurrence,
and interleaved with the write path. Intuitively, the support of a write layer characterizes all of the
pair-wise interference by representing interleavings of two paths executed by different threads.
Definition 5.4. For basic layer expression A, supp(A) is defined as:
o If Ais alocal layer A = (k;)*, then supp(1) = {k;}.

— «— — — — —
e If)is awritelayerA = (( k 1)n1 ( kz)nz C ( kN)nN)'kw'(( kN)nN.(kN_l)nN—l . ( k 1)n1),
then supp(1) = {k ;- kw - k1| j € [Ln]}.

Example 5.5. For Layer 3 in Fig. 4 involving the increment write path k,, = (c:=ctr) - {[c=ctr] -
ctr:=c+1)- ret(c), supp(Layer 3) = {(c:=Cctr)inc - ki - [c=Ctr] e, (C:=Ctr)gec - K - [c=Ctr] gec )}
Here there are only two elements of the support, the first being a local path through increment and
the second being a local path through decrement.

The paths II(1) of a basic layer expression A are defined from its support: (1) if A is a local layer,
then IT(A) = supp(A), and (2) if A is a write layer, then {k,,, (k_j -_k>j} C II(A) iff (k_j -k -_k)j is
included in supp(A). The paths II(expr) of a layer expression expr is obtained as the union of II(1)
for every basic layer expression A in expr.

5.3 Proof Methodology with Two-Thread Reasoning

Recall that layer expressions represent languages of traces so we now ask whether a given expression
is an abstraction of an object’s quotient (Def. 4.2). That is: whether each execution p of an object is
equivalent to some execution p’ = p, where the trace of p’ is in the interpretation of the expression.



638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

1:14 Constantin Enea and Eric Koskinen

Interestingly, this can be done by considering only two threads at a time, since local paths do
not affect the feasibility of a trace. Therefore, it is sufficient to focus on interleavings between
a single local or write path k (on a first thread) and a sequence Izw of (possibly different) write
paths (on a second thread), and show that they can be reordered as a sequence of layers, i.e., k
executes in isolation if it is a write path, and interleaved with at most one other write path in l_éw,
otherwise (it is a local path). Applying such a reordering for each path k while ignoring other
local paths makes it possible to group paths into layers. The reordering must preserve a stronger
notion of equivalence defined as follows: two executions p and p’ are strongly equivalent if they
are =-equivalent, they start and resp., end in the same configuration, and they go through the same
sequence of shared states modulo stuttering. This notion of equivalence guarantees that any local
path enabled in the context of an arbitrary interleaving between k and l:w remains enabled in the
context of an interleaving where for instance, k executes in isolation. A more detailed proof for the
following theorem is given in Apx. B.

THEOREM 5.6. Let O be an object defined by a set of methods m; with implementations call m;(X) -
km, € K. A layer expression expr = (A1 + ...+ A,)* is an abstraction of a quotient of O if

o the layers cover all statements in the implementation: I1(expr) C I1(O) and for each primitive
action, test or ARW ky, in ky,, for some i, there exists a path in II(expr) which contains kp,

o for every path k € I1(expr) and every execution p of O starting in a reachable configuration
that represents® an interleaving k || Ew, where EW is a sequence of write paths in I1(expr),

— Write Path Condition (WPC): if k is a write path, there is an exec. p’ of O s.t. p’ is strongly
equivalent to p, and p’ represents a write path sequence k., - k - k2, where k., = k., - k2,
— Local Path Condition (LPC): if k is a local path, there exists an execution p’ of O such that

p’ is strongly equivalent to p and
« p’ represents a path sequence k., -k - k2, where k,, = k., - k2, (k executes in isolation)

and k is the support of a local layer A;,1 < j < n, or

« a sequence kL, - k- ky - k7 k2, where ky, = kL, - ky, - K2, and k., is a write path (k
interleaves with a single write path k., ), and kl1 kyy kl2 € supp(A;) for some write
layer Aj,1 < j < n.

Example 5.7 (Counter layers via two-thread reasoning). We now proceed to show that the starred
union of the basic layer expressions defined in Fig. 4 is an abstraction of a quotient. Concerning
WPC, a write path is of the form (c:=ctr) - {[c=ctr] - ctr:=c+1) - ret(c). Such paths can be
reordered to execute in isolation because the ARW is enabled only if the counter did not change
its value since the read, and therefore, the read c:=ctr can be reordered after any step of another
thread that may occur until the ARW. Also, the return action is local and can be reordered to occur
immediately after the ARW. LPC holds because any “late” CAS failure (that occurs after more than
one successful CAS) would also fail if moved to the left (as explained in Example 3.4).

Layer Automata. The “simple” starred union composition of layers in Theorem 5.6 can be refined
further using standard reachability analyses. For instance, as shown in Figure 4 for the Counter,
the read-only “decrement returning 0” layer cannot occur after one successful increment layer. We
represent such constraints on the order in which layers can occur using automata. Another example
of such an automaton was seen for the Michael-Scott queue in Fig. 1 in Sec. 1. A formalization of these

4 An execution p represents an interleaving k || I;W if it interleaves two sequences of steps labeled with symbols in k and
kv, respectively (in the same order). An execution p represents a path sequence k when it is a sequence of steps labeled
with symbols in k (in the same order).



687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
7

w

3
734
735

Scenario-based Proofs for Concurrent Objects 1:15

layer automata can be found in Apx. C. Briefly, the control states correspond to the configurations
of the objects (e.g., , whether the MSQ is empty, tail is lagged, etc.), and the transitions are labeled
by basic layer expressions (e.g., , the “Dequeue Succeed Layer” from Fig. 1, in which one thread
succeeds a CAS on the head pointer and other threads fail their CAS). Sec. 7 presents a prototype
implementation capable of generating candidate layer quotients, represented as layer automata.

6 EVALUATION: VERIFYING CONCURRENT OBJECTS

As discussed in Sec. 1, our goal is to provide a formal foundation for the scenario-based linearizability
correctness arguments found in the distributed computing literature. To evaluate whether quotients
serve that purpose, we examined several diverse and challenging concurrent objects, listed below.

Concurrent Object Quotient | Features

Atomic counter Sec. 2 simple cas loop

Michael and Scott [1996a] queue | Sec. 6.1 | many cas, cleanup helping

Scherer III et al. [2006] queue Sec. 6.2 synchronous, mult. writes, LP helping

[Treiber 1986]’s stack Apx. 1 simple cas loop

? stack Sec. 6.3 elimination, submodule, LP helping
? RDCSS Sec. 6.4 mult. cas steps, phases

Herlihy and Wing [1990] queue | Sec. 6.5 | future-dependent LPs

O’Hearn et al. [2010] set Apx. L lock-free traversal

For each object, we (i) determine whether quotients can be used for verification and (ii) revisit the
scenario-based correctness arguments given by the object’s authors and compare those arguments
to the quotient. We discuss the quotients of many in this section (with bold Sec 6._ in the Quotient
column), with further detail in Apx. G-N.

Results summary. As we show, all above algorithms can be captured with quotient expressions.
These expressions (i) capture the diverse features/complexities of these algorithms (per the Features
column), (ii) provide a succinct, formal foundation for the scenario-based arguments used by those
objects’ authors, (iii) organize unbounded interleavings into a form more amenable to reasoning,
(iv) make explicit the relationship between implementation-level contention/interference and
ADT-level transitions, and (v) provide a scenario proof for HWQ which did not have scenario
arguments.

6.1 The Michael/Scott Queue

Recall the implementation of MSQ, stored as a linked list from global pointers Q.head and Q. tail,
and manipulated as follows. (Some local variable definitions omitted for lack of space.)

1int deq(){ loop { Factored out
i . tail advancement:
int pval;

tes bel
head=Q.head; tail=Q.tail; (see notes below)
next=head->next;

1int eng(int v){ loop { 2

node_t *node=...; 3

node->val=v; 4

tail=Q.tail; 5 if (Q.head==head) { Ladv(){ loop {
6
7
8

2
3
4
5 next=tail->next; if (head==tail) { 2 tail=Q.tail;
6 if (Q.tail==tail) { if (next==null) ret 0; 3 next=tail->next;
7 if (next==null) { } else { 4 if (next!=null){
8 if (CAS(&tail->next, 9 pval=next->val; 5 if (CAS(&Q->tail,
9 next,node)) 10 if (CAS(&Q->head, 6 tail,next))
10 ret 1; 11 head, next)) 7 ret o;
13} 333 12 ret pval; 8 %}

33313 913

Values are stored in the nodes between Q.head and Q. tail, with enq adding new elements
to the Q.tail, and deq removing elements from Q.head. During a successful CAS in enq, the
Q.tail->next pointer is changed from null to the new node. However, this new item cannot be



736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

1:16 Constantin Enea and Eric Koskinen

dequeued until adv advances Q. tail forward to point to the new node. A deq on an empty list
(when Q.head=Q. tail) returns immediately. Otherwise, deq attempts to advance Q.head and, if
success, returns the value in the now-omitted node. The original MSQ implementation includes the
adv CAS inside enq and deq iterations. We have done this for expository purposes and it is not
necessary. As we will see in Sec. 6.2, the SLS queue performs this tail (and head) advancing directly
in the enqueue/dequeue method implementation.

The layer automaton that abstracts a quotient of MSQ is shown in Fig. 1 (details in Apx. G). The
states track whether Q.tail=Q.head and whether Q. tail->next=null, in rounded dark boxes.
Edges are labeled with layers, defined to the right in Fig. 1. These three layers characterize three
forms of interference: The Dequeue Succeed layer occurs when a dequeue thread successfully
advances the Q. head pointer, causing concurrent dequeue CAS attempts to fail, as well as dequeue
threads checking on Line 5 whether Q. head has changed. (We abbreviate local paths using line
numbers rather than KAT expressions.) The Advancer Succeed layer occurs when an advancer
moves forward the Q. tail pointer, causing concurrent advancer CAS attempts to fail, and causing
concurrent enq threads to find Q. tail changed on Line 6. The Enqueue Succeed layer occurs when
an enq thread successfully advances the Q. tail pointer, causing concurrent enq threads to fail.

THEOREM 6.1. The Michael-Scott Queue is linearizable.

Proof: Linearization points (LPs) are the successful CAS operations in the {Dequeue,Advancer,Enqueue}
Succeed Layers (also in bold in the Fig. 1 layer definitions), as well as the the first (or any) action in
the Read-Only layers. Per Thm. G.1, the quotient expression (layer automaton) is an abstraction of
the quotient and thus we have given LPs for all executions of the MSQ.

Comparison with the authors’ proof. We evaluated the quotient by comparing with the cor-
rectness arguments from Herlihy and Shavit [2008b]. For lack of space, the following table gives
example elements of the correctness argument/proof from Herlihy and Shavit [2008b], and identifies
where they occur in the quotient proof (see Apx. N for more details).

’ Proof Element \ Herlihy and Shavit [2008b] \ Quotient Proof ‘
ADT states “queue is nonempty,” “tail is lagged” ADT states, e.g. (Q.tail=Q.head
A Q.tail->next # null)
Concurrent threads | “some other thread” Superscripting (...)"
Event order “only then” Arcs in the quo automaton

Thread-local step seq. | “reads tail, and finds the node that appears | Layer paths, e.g., enq:2-6
to be last (Lines 12-13)”

Linearization pts. “If this method returns a value, then its lin- | The successful CAS in the De-

earization point occurs when it completes queue Succeed Layer or Read-Only
a successful [CAS] call at Line 38, and oth- Layer 1

erwise it is linearized at Line 33
The layer quotient and, especially, the layer automaton helps make the Herlihy and Shavit [2008b]
proof more explicit, without sacrificing the organization of the proof, for a few reasons. First, all of
the important ADT states are explicitly identified. Second, it can be determined, from each of them,
which layers are enabled as well as the target ADT states that are reached after each such layer
transition. This ensures that all cases are considered. Finally, linearization points are explicit in the
layer quotient, occurring once with each layer transition.

6.2 The SLS Synchronous Reservation Queue

The Scherer [l et al. [2006] (SLS) queue builds on MSQ, but has some complications: queue operations
are synchronous (blocking), a single invocation can involve multiple sequentially composed write
paths that necessitate different layers, and linearization points must account for dequeuers arriving
before their corresponding enqueuer.



785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

Scenario-based Proofs for Concurrent Objects

Layer When the queue is a list of reservations When the queue is a list of items
Automaton: (deq appends resv at tail, eng removes resv at head) (enq appends items at tail, deq removes items at head)
>0 reservs >0 items
head stale head stale
tail good tail good
[Dapp] a2 [Dsvap | |Eapp]
] headtei
m
>0 ressrvs >0 reservs Dapp —» >0 items >0 items
head stale head good head good head stale
tail stale tail stale tail stale tail stale
Lay _er . Tail advance (TA) Head reap (HR) Eng swap res for item (Eswap)
Definitions: with (3 fail paths)x wwith (9 fail paths)x !ﬁw)! with (2 fail paths)x*

with (3 fail paths)* with (9 fail paths)x*

with (9 fail paths)*

Enq append item node (Eapp) Deq append reservation (Dapp)

!m!with (1 fail path)* mmth (1 fail path)x

Deq swap item for null (Dswap)
!ﬁw,! with (2 fail paths)x*

Fig. 5. Layer automaton for the synchronous SLS queue. Layers’ acronyms and their definitions are given in
the lower half of the figure. For conciseness, layer definitions do not split the prefix/suffix of the read paths.

Implementation. Like MSQ, SLS has paths that read the head or tail pointer and subsequent
pointers, perform read validations and then attempt a CAS. Also like MSQ, enqueuers arriving
at an empty list (or list of items), attempt to append item nodes (and then try to advance the tail
pointer). Dequeuers arriving at a list of items, attempt to swap item node contents for null (and
then try to advance the head pointer).

SLS then has some further complexities. Dequeuers arriving at an empty list (or list of reservation
nodes) attempt to append reservation nodes (and attempt to advance tail). Enqueuers arriving at a
list of reservations, attempt to fulfill those reservations by swapping null for an item (and attempt to
advance head). The list never contains both items and reservations; when the list becomes empty it
can then transition from an item list to a reservation list (or vice-versa). Finally, SLS is synchronous:
dequeuers with reservations block until those reservations have been fulfilled and enqueuers
with items block until those items have been consumed. (For the sake of comprehensiveness, the
implementation is in Apx. D, but not necessary for a general understanding.) As noted, unlike
MSQ where paths have at most 1 write operation, a single SLS invocation can perform multiple
write operations (e.g., a dequeue path inserting a reservation, advancing tail, awaiting fulfillment,
advancing head). Despite conceptual simplicity, the implementation is non-trivial with many restart
paths when validations or CAS operations fail.

Quotient. The quotient expression for the SLS queue is depicted as a layer automaton in Fig. 5.
In the upper portion, the automaton states differentiate between whether the queue is empty or
whether the queue consists of reservations (left hand region) or of items (right hand region). In
each of those regions, it is relevant as to whether the head pointer is stale or not, as well as whether
the tail pointer is stale or not. When the queue is a list of reservations, the head or tail could be
stale (hence four states) and similar when the queue is a list of items.

The basic layers of the quotient expression are defined at the bottom of Fig. 5. The black circles
(e.g., Ol SNI) represent a write path in which a Dequeuer or Enqueuer has successfully per-
formed a CAS at some program location . Along with the write path, we simply summarize the
number of competing read-only paths, which are star-iterated. Two layers are enq/deq-agnostic:
advancing the tail pointer in TA and advancing the head pointer (and “reaping” the head node) in
HR. These helping operations happen in many places in the code, with corresponding read-only



834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882

1:18 Constantin Enea and Eric Koskinen

“_f” failure paths. Enqueue can either append an item node (Eapp) when in the RHS states of the
automaton or else swap an item into a reservation node (Eswap) in the LHS. These layers have a
single CAS operation (e.g., GIYXI®) along with read-only paths where concurrent competing
threads fail. The dequeue layers Dapp and Dswap are similar.

Finally, these (context-free) basic layer expressions are connected into an overall expression,
represented here as an automaton or (below) as a star-/plus-/or-combination of layer expressions.

THEOREM 6.2. The SLS queue is linearizable.

Proof: We associate linearization points with layers: Dswap is an LP for dequeue, Eapp is an LP
for enqueue, and Eswap is an LP for a combination of an enqueue followed by a dequeue. Next, we
project the linearization points out of the quotient to obtain simply (E-D)* - (E*+D*). Combining
this with a lemma that this expression is an abstraction of the quotient, we obtain that all executions
meet the sequential spec. of a queue. (Detail in Apx. D, Thm. H.1.)

Comparison with the authors’ proof. We evaluated the SLS quotient expression by revisiting
the authors’ proof in Scherer III et al. [2006]. Line numbers in the authors’ quotes below refer to a
reproduction of the source code given in Apx. D. For lack of space, some discussion of the authors’
quotes can be found in Apx. N.4.

The authors split the enqueue operation into two linearization points: a “reservation linearization
point” and a later “follow up linearization point,” so that synchronous, blocking enqueue implemen-
tations are a single reservation LP and then repeated follow-up LPs (as if the client is repeatedly
checking whether the operation has completed).

[Regarding enqueue,] the reservation linearization point for this code path occurs at line 10 when we successfully insert
our offering into the queue — Scherer III et al. [2006]

This prose describes a scenario, (i) identifying an alleged linearization point at (GFSEXEYA®. involving
a specific change to shared memory (a CAS on the tail’s next pointer), and (ii) identifying the
important ADT state transition (inserting an offer node into the queue). This scenario is formalized
by the Eapp layer in the quotient expression. The successful CAS in Eapp is the
linearization point, with competing concurrent threads abstracted away by the starred fail path
expression, and the state transition is given in the automaton as the downward Eapp-labeled arcs
in the righthand region of the automaton. The scenario and LP for dequeue on a list of reservation
nodes is symmetric, and represented in the quotient expression as layer Dapp involving
and competing fail path.

The quotient expression makes the interaction between LPs and ADT states more explicit
(e.g., through LP-marked layers) and comprehensive (e.g., the authors do not discuss the 9 different
automaton ADT states and which transitions are possible from each). The quotient expression can
be seen as an abstract view of an implementation of the sequential specification.

Head Tail
The other case occurs when the queue consists of reservations

(requests for data), and is depicted [to the right]. In this case, @
after originally reading the head node (step A), we read its

successor (line 21/step B) and verify consistency (line 22). Then,  |oummy Reserv. Cancel Reserv.
|_ —

we attempt to supply our data to the head-most reservation i\
(line 25/C). If this succeeds, we dequeue the former dummy node
(26/D) and return @ @

This prose again indicates important mutations (e.g., swapping the node’s contents pointer), ADT
state changes (e.g., supplying data) and that the head dummy node needs to be advanced. These
memory mutations and state changes are explicit in the quotient expression. For example, Eswap
performs a memory CAS and makes a ADT state transition. The staleness of the head is also




883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904

906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924

926
927
928
929
930
931

Scenario-based Proofs for Concurrent Objects 1:19

1void push/pop(descriptor p){ while(1) { Quotient for Treiber’s Stack
2 one iteration of Treiber stack RO Layer 1 ||Layer 2 Layer 2
. . o (pop path pop: cas(top)/true (See definition of Layer 2
3 location[mytid] = p; retemp)* | | with (push/pop fail path)* Ao the lef)
4 pos = nondet();
5 do { him = collision[pos] m\
6 } while (!CAS(&collision[pos], him, mytid)) Layer 3 Layer 4
7 if him !'= NULL { push: cas(top)/true push: cas(top)/true
3 q = location[him] with (push fail path)* with (push/pop fail path)*
9 if ( g !'= NULL & q.id = him & p.op != qg.op ) { Quotientfor the Elimination Stack
10 if (CAS(&location[mytid],p,NULL)) { Treiber's
11 if ( CAS (&location[him], g, p/NULL) ) stack
12 return NULL/q.input
13 else continue pop/push:8-22 return val Publish
14 } else { + pop/push:8-10-22 return val descriptors
15 val = NULL/location[mytid].input; + pop/push:8-17 return val
16 location[mytid] = NULL;
17 return val
18 333 Publish (push/pop:6)*
19 if (1CAS(&location[mytid] NULL)) collision (push/pop:6-7- cas(collision[pos])/true)
! y Py intent (push/pop:7-6)"
20 val = NULL/location[mytid].data; D Bop:
21 location[mytid] = NULL; Active (push/pop:8-11- cas(location[mypid])/true)?
22 return val collider push/pop: 8-13- cas(location[him])/true
23} ) finished (push/pop:14-2)"
(a) Elimination Stack source code (b) Stack Quotients

Fig. 6. Elimination Stack

captured directly in the ADT states and the HR layers’ transitions. The authors’ prose also discusses
failure paths (see Apx. N.4) and retry, which are also captured in the layer definitions.

Summary. The layer quotient expression/automaton provides a succinct formal foundation for
the correctness arguments of Scherer III et al. [2006], capturing the authors’ discussions of LPs,
ADTs, impacts of writes, CAS contention, etc.

6.3 The Hendler et al. Elimination Stack

The Elimination Stack of ? is difficult because the linearization point of some invocation can
happen in another (threads can awake to find they were linearized earlier) and it uses a submodule:
Treiber’s stack [Treiber 1986].

We first show the Treiber’s stack quotient, and then build elimination on top. Since Treiber’s
stack is simple, we explain only the basics here, with more detail in Apx. I. The implementation of
push prepares a new node and then attempts a CAS to swing the top pointer, while pop attempts
to advance the top pointer and return the removed node’s value. The quotient for Treiber’s stack
is shown in the upper right of Fig. 6 and is similar to the counter, but with ADT states tracking
emptiness (rather than non-zeroness) and CAS contention on the top pointer (rather than the
counter cell). There is one read-only layer for a pop and an empty stack, and other layers involve
one successful CAS with failed competing CAS attempts. See Apx. I for more detail, as well as
Lemma .1 proving that this layer automaton is an abstraction of the quotient.

The Elimination Stack, listed in Fig. 6(a), augments Treiber’s stack with a protocol for “colliding”
push and pop invocations so that the push passes its input directly to the pop without affecting
the underlying data structure. An invocation starts this protocol after performing a loop iteration
in Treiber’s stack and failing (due to contention on top). The protocol uses two arrays: (1) a
location array indexed by thread ids where a push or pop invocation publishes a descriptor tuple
(op, id, input) with fields op for the type of invocation (push or pop), id for the id of the invoking



932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973

975
976
977
978
979
980

1:20 Constantin Enea and Eric Koskinen

thread, and input for the input of a push operation, and (2) a collision array indexed by arbitrary
integers which stores ids of threads announcing their availability to collide.

Each invocation starts by publishing their descriptor in the location array (line 3). Then, it
reads a random cell of the collision array while also trying to publish their id at the same index
using a CAS (lines 4-6). If it reads a non-NULL thread id, then it tries to collide with that thread. A
successful collision requires 2 successful CASs on the location cells of the two threads (we require
CASs because other threads may compete to collide with one of these two threads): the initiator of
the collision needs to clear its cell (line 10) and modify the cell of the other thread (line 11) to pass
its input if the other thread is a pop. The first CAS failing means that a third thread successfully
collided with the initiator and the initiator can simply return (lines 15-17). Failing the second CAS
leads to a restart (line 13). Succeeding the second CAS means there has been a successful collision
and the thread returns, returning null for a push and otherwise using the descriptor to obtain the
popped value (line 11). If the invocation reads a NULL thread id from collision, then it tries to
clear its cell before restarting (line 19). If it fails, then as in the previous case, a collision happened
with a third thread and the current thread can simply return (line 20-22).

We use the automaton in the lower right of Fig. 6 to describe a sound abstraction of the quotient.
Layers of Treiber’s stack interleave with layers of the collision protocol (some components are not
exactly layers as in Definition 5.2, but quite similar). Executions in the quotient serialize collisions
and proceed as follows: (1) some number of threads publish their descriptor and choose a cell in
the collision array, (2) some number of threads publish their id in the collision array (there
may be more than one such thread — note the self-loop on the “Publish collision intent” state), (3)
some number of threads succeed the CAS to clear their location cell but only one succeeds to
also CAS the location cell of some arbitrary but fixed thread him and return, and (4) the thread
him returns after possibly passing the tests at line 7 or 9. (Note that, for succinctness, we have
combined push/pop into the same method, which also makes the automaton succinct. The code
and corresponding automaton could also have been written in a more verbose way where the
bottommost layer is replaced with two layers: (1) a layer where a push’s successful CAS takes with it
a corresponding pop, and (2) a layer where a pop’s successful CAS takes with it a corresponding push.
For succinctness, we have combined those layers using the “push/pop” notation.) We emphasize
that collisions happen in a serial order, i.e., at any point there is exactly one thread that succeeds
on both CASs required for a collision and immediately after the collided thread returns (publishing
descriptors or collision intent interleaves arbitrarily with collisions).

THEOREM 6.3. The Elimination Stack is linearizable.

Proof: Follows from the fact that the above expression is an abstraction of the quotient (Thm. J.1),
with the bold actions in the layers being the LPs.

Comparison with the authors’ proof. A proof is given by ? in that paper’s Section 5. It is a
lengthy proof so, for lack of space, the full review is in Apx. N.2 and summarized here. Overall, the
correctness argument requires numerous lemmas in the ? proof, mostly focused on establishing a
bijection between the active thread and its correspondingly collided passive thread. The authors
lay out a few definitions, which are also captured by the quotient. For example, the authors’ prose
includes:

[A] colliding operation op is active if it executes a successful CAS in lines C2 or C7. We say that a colliding operation is
passive if op fails in the CAS of line S10 or S19. [underlines added] — ?

Above the authors’ intuitive concept of “active” is captured by the paths in a layer that succeed their
CAS, denoted in bold in the quotient automaton above. Likewise for “passive” and CAS failure.
As mentioned above, the active thread is captured as the bold thread that succeeds its CAS in the



981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

Scenario-based Proofs for Concurrent Objects 1:21

bottommost layer; the passive thread is the thread that finds itself collided with in the layers on
arcs exiting the bottommost layer.

we show that push and pop operations are paired correctly during collisions. Lemma 5.7. Every passive collider collides
with exactly one active collider.

The bottommost layer in the bold action, a single push or pop succeeds, colliding with another
operation of the oppose type, and passing the element from the push to the pop.

Authors’ LPs are given for “active” threads as the time when the second CAS succeeds, and
linearization points for “passive” threads “the time of linearization of the matching active-collider
operation, and the push colliding-operation is linearized before the pop colliding-operation.” The
linearization points in the quotient correspond to the bold successful CAS in the bottommost layer
in the quotient automaton (this linearizes both a push and a pop). Importantly, every run of the
quotient automaton gives a serial linearization order that is a repetition of pairs of active/passive
threads. All other executions are equivalent to one such serialized run, upto commutativity.

In summary, as detailed in Apx. N.2, the quotient naturally and succinctly captures the key
concept of the Elimination stack: that a single successful CAS of one type of operation is the LP
for that operation as well as the corresponding matched operation. The quotient captures “active”
versus “passive” threads (in the automaton layers/states/transitions), as well as this bijection through
the runs of the automaton: every run in the automaton contains some number of active/passive
pairs and provides a representative serialization order (in each pair the push is serialized before
the pop). Linearization points and other logistics of threads preparing/completing are similarly
captured by the quotient automaton.

6.4 The Harris et al. Restricted Double-Compare Single-Swap (RDCSS)

RDCSS [?] is a restricted version of a double-word CAS which modifies a so-called data address
provided that this address and another so-called control address have some given expected values
(the tests and the write happen atomically). RDCSS attempts a standard CAS on the data address to
change the old value into a pointer to a descriptor structure that stores the inputs of the operation.
This fails if the data address does not have the expected value. A second standard CAS on the data
address is used to write the new value if the control address has the expected value or the old value,
otherwise. Faster threads can help complete the operations of slower threads using the information
stored in the descriptor.

The traces in the quotient of RDCSS interleave successful attempts at modifying the data address
with unsuccessful ones. A successful attempt consists of a thread succeeding the first CAS combined
with competing threads that fail, followed by another thread succeeding the second CAS (this
can be different from the first one in the case of helping) combined with other threads that fail.
An unsuccessful attempt may contain just a thread failing the first CAS, or it can contain two
successful CASs like a successful attempt (when the data address has the expected value but the
control address does not). Proving linearizability of quotient traces is obvious because they make
explicit the “evolution” of a data address, oscillating between storing values and descriptors, and
which CAS is enabled depending on the value of the control address. See App. K for more details.

6.5 The Herlihy-Wing Queue

The quotients of some data structures cannot be represented using layer automata. The Herlihy-
Wing Queue [Herlihy and Wing 1990] is one such example and it is notorious for linearization points
that depend on the future and that can not be associated to fixed statements, see e.g. [Schellhorn
et al. 2012]! The queue is implemented as an array of slots for items, with a shared variable back
that indicates the last possibly non-empty slot. An enq atomically reads and increments back and



1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

1:22 Constantin Enea and Eric Koskinen

Table 1. Evaluation of C1on discovering candidate layers from source code.

States # Paths # Trans. # Layers Time # Solver
Example Q|  #ki #ky |81 |A(O) | (s) Queries
evenodd. c 2 2 2 6 3 50.8 32
counter.c 2 3 2 6 4 63.3 36
descriptor.c 4 6 2 6 5 155.2 74
treiber.c 2 3 2 6 4 70.3 37
msq.c 4 9 3 17 7 437.6 314
listset.c 7 6 2 77 8 466.9 532

then later stores a value at that location. A deq repeatedly scans the array looking for the first
non-empty slot in a doubly-nested loop. We show that the Herlihy-Wing queue quotient can be
abstracted by an expression (degF* - (enqI)* - engW* - deqT*)”, where degF captures dequeue scans
that need to restart, deqT scans succeed, engI reads/increments back and engW writes to the slot.
For lack of space, a detailed discussion about how this expression abstracts the quotient is given in
Apx. M. Importantly, linearization points in executions represented by this expression are fixed,
drastically simplifying reasoning from the general case where they are non-fixed.

THEOREM 6.4. The Herlihy-Wing Queue is linearizable. (see Thm. M.2)

Comparison with the authors’ proof. Herlihy and Wing [1990] give intuitions of scenarios:

Engq execution occurs in two steps, which may be interleaved with steps of other concurrent operations: an array slot is
reserved by atomically incrementing back, and the new item is stored in items. — Sec 4.1 of Herlihy and Wing [1990]

This describes a scenario with unboundedly many threads, though is not yet an argument for
why that scenarios is correct. This scenario appears in the quotient as the fact that enqI and engW
are distinct. To cope with non-fixed LPs (in this and other objects), the authors introduce a proof
methodology based on tracking all possible linearizations that could happen in the future. This
general methododology complicates the proof. The quotient, by contrast, allows one to consider
scenarios along the lines of “one or more enqueuers increment back, possibly some of them
write to the array, and then some dequeuers succeed,” following the quotient’s regular expression.
In summary, the quotient here provides the first scenario-based proof of correctness, through
representative executions that allow the linearization order to be fixed and all other executions are
equivalent to one such representative execution up to commutativity.

7 GENERATING CANDIDATE QUOTIENT EXPRESSIONS

In Sec. 6 we showed quotients can be defined for a wide range of concurrent objects, including
notoriously difficult ones. We leave the (rather large) question of automated quotient proofs for the
general case as future work. Here we take a first step asking, Can candidate quotient expressions can
be generated algorithmically?

This section answers this question with an algorithm, implementation and experiments showing
that, from the source code of concurrent data-structures such as Treiber’s stack and the MSQ,
candidate quotients expressions (equivalent to those in Sec. 6) can be automatically discovered. We
manually confirmed that these generated candidates are indeed sound abstractions of the quotient,
a process that can also be automated (perhaps through new forms of induction) in future work.

The algorithm exploits our reduction to two-thread reasoning and automaton representation of
layer quotients (Apx. C). The algorithm is in Apx. C.2 but, briefly, involves (i) computing automaton
states using weakest preconditions, (ii) computing the possible post-states of write paths k,,, and
which local paths are feasible interleavings with those write paths (exploiting pair-wise reasoning
about paths), and (iii) computing which automaton self-loops are possible via local-only layers.

We built a proof-of-concept implementation of our algorithm, called Cion in ~1,000 lines of
OCaml code, using CIL and Ultimate [Heizmann et al. 2018]. C1oN will soon be released publicly on



1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Scenario-based Proofs for Concurrent Objects 1:23

GitHub, with an artifact of the experiments also available. We applied Cron® to some of the Sec. 6
objects that were amenable to layers. Benchmarks are available in the supplemental materials. The
results are summarized in Table 1 and the C1oN output is in tooloutput.pdf in the supplement.
For each benchmark, we report the number of automaton States | Q|, the number of local Paths
#k; and number of write paths #k,,. We then report the number of Transitions | §| in the automata
constructed by Cion and the number of Layers, as well as the wall-clock Time in seconds, and the
number of Queries made to the solver (Ultimate). The results show that C1on is able to efficiently
generate candidate layer automata for some important and challenging concurrent objects.

8 RELATED WORK
Linearizability proofs. Program logics for compositional reasoning about concurrent programs
and data structures have been studied extensively, as mentioned in Sec. 1.1. Improving on the
classical Owicki and Gries [1976] and Rely-Guarantee [Jones 1983] logics, numerous extensions of
Concurrent Separation Logic [Bornat et al. 2005; Brookes 2004; O’Hearn 2004; Parkinson et al. 2007]
have been proposed in order to reason compositionally about different instances of fine-grained
concurrency, e.g. [da Rocha Pinto et al. 2014; Dragoi et al. 2013; Jung et al. 2018, 2020; Krishna et al.
2018; Ley-Wild and Nanevski 2013; Nanevski et al. 2019; Raad et al. 2015; Sergey et al. 2015; Turon
et al. 2013; Vafeiadis 2008, 2009]. We build on the success of such program logics toward improving
the confidence in the correctness of concurrent objects. In the current paper we alternatively focus
on the scenario-based reasoning found in the distributed computing literature, and have aimed to
capture those scenarios as formally-defined representative executions. In future work it could be
interesting to combine the benefits of program logics with those of quotients. Other more distantly
related works include: ?, 2,2, ?, ?, and ?.

Reduction. The reduction theory of Lipton [1975] introduced the concept of movers to define
a program transformation that creates atomic blocks of code. QED [Elmas et al. 2009] expanded
Lipton’s theory by introducing iterated application of reduction and abstraction over gated atomic
actions. CIVL [Hawblitzel et al. 2015] builds upon the foundation of QED, adding invariant reasoning
and refinement layers [Kragl and Qadeer 2018; Kragl et al. 2018]. Reasoning via simplifying program
transformations has also been adopted in the context of mechanized proofs, e.g., [Chajed et al. 2018].
Inductive sequentialization [Kragl et al. 2020] builds upon this prior work, and introduces a new
scheme for reasoning inductively over unbounded concurrent executions. The main focus of these
works is to define generic proof rules to prove soundness of such program transformations, whose
application does however require carefully-crafted artifacts such as abstractions of program code
or invariants. Our work takes a different approach and tries to distill common syntactic patterns
of concurrent objects into a simpler reduction argument. Our reduction is not a form of program
transformation since quotient executions are interleavings of actions in the implementation.

9 CONCLUSION

We have shown that scenario-based reasoning about concurrent objects has a formal grounding,
answering an open question. The key insight is the concept of a quotient, defined so that it admits
only representative traces and all other traces are merely equivalent to one of those representatives,
up to commutativity. Our results show that quotients provide a succinct formal foundation for
scenario-based reasoning, are capable of capturing a wide range of tricky objects, enhance original
authors’ correctness arguments, and that discovery of candidate quotient expressions can be
automated. In the future will explore further mechanization and other application domains.

5Run on Ubuntu 18, Parallels, Macbook Pro M1, 16GB RAM.



1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

1:24 Constantin Enea and Eric Koskinen

REFERENCES

Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen, Cole Schlesinger, and David Walker.
2014. NetkAT: semantic foundations for networks. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, Suresh Jagannathan and Peter Sewell
(Eds.). ACM, 113-126. https://doi.org/10.1145/2535838.2535862

Timos Antonopoulos, Eric Koskinen, and Ton Chanh Le. 2019. Specification and inference of trace refinement relations.
Proc. ACM Program. Lang. 3, OOPSLA (2019), 178:1-178:30. https://doi.org/10.1145/3360604

Richard Bornat, Cristiano Calcagno, Peter W. O’Hearn, and Matthew J. Parkinson. 2005. Permission accounting in separation
logic. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2005,
Long Beach, California, USA, January 12-14, 2005. 259-270. https://doi.org/10.1145/1040305.1040327

Stephen D. Brookes. 2004. A Semantics for Concurrent Separation Logic. In CONCUR 2004 - Concurrency Theory, 15th
International Conference, London, UK, August 31 - September 3, 2004, Proceedings. 16-34. https://doi.org/10.1007/978-3-
540-28644-8_2

Tej Chajed, M. Frans Kaashoek, Butler W. Lampson, and Nickolai Zeldovich. 2018. Verifying concurrent software using
movers in CSPEC. In OSDL  https://www.usenix.org/conference/osdi18/presentation/chajed

Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. 2014. TaDA: A Logic for Time and Data Abstraction.
In ECOOP 2014 - Object-Oriented Programming - 28th European Conference, Uppsala, Sweden, July 28 - August 1, 2014.
Proceedings. 207-231. https://doi.org/10.1007/978-3-662-44202-9_9

Cezara Dragoi, Ashutosh Gupta, and Thomas A. Henzinger. 2013. Automatic Linearizability Proofs of Concurrent Objects
with Cooperating Updates. In CAV ’13 (LNCS, Vol. 8044). Springer, 174-190.

Loris D’Antoni and Margus Veanes. 2017. The power of symbolic automata and transducers. In International Conference on
Computer Aided Verification. Springer, 47-67.

Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. 2009. A calculus of atomic actions. In POPL. https://doi.org/10.1145/
1480881.1480885

Yotam M. Y. Feldman, Constantin Enea, Adam Morrison, Noam Rinetzky, and Sharon Shoham. 2018. Order out of Chaos:
Proving Linearizability Using Local Views. In DISC 2018.

Yotam M. Y. Feldman, Artem Khyzha, Constantin Enea, Adam Morrison, Aleksandar Nanevski, Noam Rinetzky, and Sharon
Shoham. 2020. Proving highly-concurrent traversals correct. Proc. ACM Program. Lang. 4, OOPSLA (2020), 128:1-128:29.
https://doi.org/10.1145/3428196

Michael Greenberg, Ryan Beckett, and Eric Hayden Campbell. 2022. Kleene algebra modulo theories: a framework for concrete
KATs. In PLDI "22: 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation, San
Diego, CA, USA, June 13 - 17, 2022, Ranjit Jhala and Isil Dillig (Eds.). ACM, 594-608. https://doi.org/10.1145/3519939.3523722

Chris Hawblitzel, Erez Petrank, Shaz Qadeer, and Serdar Tasiran. 2015. Automated and Modular Refinement Reasoning for
Concurrent Programs. In CAV. https://doi.org/10.1007/978-3-319-21668-3_26

Matthias Heizmann, Yu-Fang Chen, Daniel Dietsch, Marius Greitschus, Jochen Hoenicke, Yong Li, Alexander Nutz, Betim
Musa, Christian Schilling, Tanja Schindler, and Andreas Podelski. 2018. Ultimate Automizer and the Search for Perfect
Interpolants - (Competition Contribution). In Tools and Algorithms for the Construction and Analysis of Systems - 24th
International Conference, TACAS 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 10806),
Dirk Beyer and Marieke Huisman (Eds.). Springer, 447-451. https://doi.org/10.1007/978-3-319-89963-3_30

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, George C. Necula, Grégoire Sutre, and Westley Weimer. 2002. Temporal-
Safety Proofs for Systems Code. In Computer Aided Verification, 14th International Conference, CAV 2002,Copenhagen,
Denmark, July 27-31, 2002, Proceedings. 526-538.

Maurice Herlihy and Nir Shavit. 2008a. The art of multiprocessor programming. Morgan Kaufmann.

Maurice Herlihy and Nir Shavit. 2008b. The Art of Multiprocessor Programming. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness Condition for Concurrent Objects. ACM Trans.
Program. Lang. Syst. 12, 3 (1990), 463-492. https://doi.org/10.1145/78969.78972

Cliff B. Jones. 1983. Specification and Design of (Parallel) Programs. In IFIP Congress. 321-332.

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the
ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.
https://doi.org/10.1017/50956796818000151

Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek Dreyer, and Bart Jacobs.
2020. The future is ours: prophecy variables in separation logic. Proc. ACM Program. Lang. 4, POPL (2020), 45:1-45:32.
https://doi.org/10.1145/3371113

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:
Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual ACM


https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1145/3360604
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1007/978-3-540-28644-8_2
https://doi.org/10.1007/978-3-540-28644-8_2
https://www.usenix.org/conference/osdi18/presentation/chajed
https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1145/1480881.1480885
https://doi.org/10.1145/1480881.1480885
https://doi.org/10.1145/3428196
https://doi.org/10.1145/3519939.3523722
https://doi.org/10.1007/978-3-319-21668-3_26
https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1145/78969.78972
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3371113

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

Scenario-based Proofs for Concurrent Objects 1:25

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015.
637-650. https://doi.org/10.1145/2676726.2676980

Dexter Kozen. 1990. On Kleene Algebras and Closed Semirings. In Mathematical Foundations of Computer Science 1990,
MEFCS’90, Banska Bystrica, Czechoslovakia, August 27-31, 1990, Proceedings (Lecture Notes in Computer Science, Vol. 452),
Branislav Rovan (Ed.). Springer, 26-47. https://doi.org/10.1007/BFb0029594

Dexter Kozen. 1997. Kleene Algebra with Tests. ACM Trans. Program. Lang. Syst. 19, 3 (1997), 427-443. https://doi.org/10.
1145/256167.256195

Bernhard Kragl, Constantin Enea, Thomas A. Henzinger, Suha Orhun Mutluergil, and Shaz Qadeer. 2020. Inductive
sequentialization of asynchronous programs. In Proceedings of the 41st ACM SIGPLAN International Conference on
Programming Language Design and Implementation, PLDI 2020, London, UK, June 15-20, 2020, Alastair F. Donaldson and
Emina Torlak (Eds.). ACM, 227-242. https://doi.org/10.1145/3385412.3385980

Bernhard Kragl and Shaz Qadeer. 2018. Layered Concurrent Programs. In CAV. https://doi.org/10.1007/978-3-319-96145-3_5

Bernhard Kragl, Shaz Qadeer, and Thomas A. Henzinger. 2018. Synchronizing the Asynchronous. In CONCUR. https:
//doi.org/10.4230/LIPIcs. CONCUR.2018.21

Siddharth Krishna, Dennis E. Shasha, and Thomas Wies. 2018. Go with the flow: compositional abstractions for concurrent
data structures. PACMPL 2, POPL (2018), 37:1-37:31. https://doi.org/10.1145/3158125

Ruy Ley-Wild and Aleksandar Nanevski. 2013. Subjective auxiliary state for coarse-grained concurrency. In The 40th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 13, Rome, Italy - January 23 - 25, 2013.
561-574. https://doi.org/10.1145/2429069.2429134

Richard J. Lipton. 1975. Reduction: A Method of Proving Properties of Parallel Programs. Commun. ACM 18, 12 (1975).
https://doi.org/10.1145/361227.361234

Antoni W. Mazurkiewicz. 1986. Trace Theory. In Petri Nets: Central Models and Their Properties, Advances in Petri Nets 1986,
Part II, Proceedings of an Advanced Course, Bad Honnef, Germany, 8-19 September 1986 (Lecture Notes in Computer Science,
Vol. 255), Wilfried Brauer, Wolfgang Reisig, and Grzegorz Rozenberg (Eds.). Springer, 279-324. https://doi.org/10.1007/3-
540-17906-2_30

M.M. Michael and M.L. Scott. 1996a. Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue Algorithms.
In PODC.

Maged M. Michael. 2004. ABA Prevention Using Single-Word Instructions. Technical Report RC 23089. IBM Thomas J. Watson
Research Center.

Maged M. Michael and Michael L. Scott. 1996b. Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue
Algorithms. In PODC *96. ACM, 267-275.

Mark Moir and Nir Shavit. 2004. Concurrent Data Structures. In Handbook of Data Structures and Applications., Dinesh P.
Mehta and Sartaj Sahni (Eds.). Chapman and Hall/CRC. https://doi.org/10.1201/9781420035179.ch47

Aleksandar Nanevski, Anindya Banerjee, German Andrés Delbianco, and Ignacio Fabregas. 2019. Specifying concurrent
programs in separation logic: morphisms and simulations. Proc. ACM Program. Lang. 3, OOPSLA (2019), 161:1-161:30.
https://doi.org/10.1145/3360587

Peter W. O’Hearn. 2004. Resources, Concurrency and Local Reasoning. In CONCUR 2004 - Concurrency Theory, 15th
International Conference, London, UK, August 31 - September 3, 2004, Proceedings. 49-67. https://doi.org/10.1007/978-3-
540-28644-8_4

Peter W. O’'Hearn. 2007. Resources, concurrency, and local reasoning. Theor. Comput. Sci. 375, 1-3 (2007). https://doi.org/10.
1016/j.tcs.2006.12.035

Peter W. O’Hearn, Noam Rinetzky, Martin T. Vechev, Eran Yahav, and Greta Yorsh. 2010. Verifying linearizability with
hindsight. In Proceedings of the 29th Annual ACM Symposium on Principles of Distributed Computing, PODC 2010, Zurich,
Switzerland, July 25-28, 2010, Andréa W. Richa and Rachid Guerraoui (Eds.). ACM, 85-94. https://doi.org/10.1145/
1835698.1835722

Susan S. Owicki and David Gries. 1976. Verifying Properties of Parallel Programs: An Axiomatic Approach. Commun. ACM
19, 5 (1976), 279-285. https://doi.org/10.1145/360051.360224

Matthew J. Parkinson, Richard Bornat, and Peter W. O’Hearn. 2007. Modular verification of a non-blocking stack. In
Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2007, Nice,
France, January 17-19, 2007. 297-302. https://doi.org/10.1145/1190216.1190261

Damien Pous. 2015. Symbolic algorithms for language equivalence and Kleene algebra with tests. In Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 357-368.

Azalea Raad, Jules Villard, and Philippa Gardner. 2015. CoLoSL: Concurrent Local Subjective Logic. In Programming
Languages and Systems - 24th European Symposium on Programming, ESOP 2015, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings. 710-735. https:
//doi.org/10.1007/978-3-662-46669-8_29


https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1007/BFb0029594
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/3385412.3385980
https://doi.org/10.1007/978-3-319-96145-3_5
https://doi.org/10.4230/LIPIcs.CONCUR.2018.21
https://doi.org/10.4230/LIPIcs.CONCUR.2018.21
https://doi.org/10.1145/3158125
https://doi.org/10.1145/2429069.2429134
https://doi.org/10.1145/361227.361234
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1201/9781420035179.ch47
https://doi.org/10.1145/3360587
https://doi.org/10.1007/978-3-540-28644-8_4
https://doi.org/10.1007/978-3-540-28644-8_4
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1145/1835698.1835722
https://doi.org/10.1145/1835698.1835722
https://doi.org/10.1145/360051.360224
https://doi.org/10.1145/1190216.1190261
https://doi.org/10.1007/978-3-662-46669-8_29
https://doi.org/10.1007/978-3-662-46669-8_29

1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

1:26 Constantin Enea and Eric Koskinen

Gerhard Schellhorn, Heike Wehrheim, and John Derrick. 2012. How to Prove Algorithms Linearisable. In Computer Aided
Verification - 24th International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings. 243-259.

William N Scherer III, Doug Lea, and Michael L Scott. 2006. Scalable synchronous queues. In Proceedings of the eleventh
ACM SIGPLAN symposium on Principles and practice of parallel programming. 147-156.

Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015. Specifying and Verifying Concurrent Algorithms with
Histories and Subjectivity. In Programming Languages and Systems - 24th European Symposium on Programming, ESOP
2015, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April
11-18, 2015. Proceedings. 333-358. https://doi.org/10.1007/978-3-662-46669-8 14

R. K. Treiber. 1986. Systems Programming: Coping with Parallelism. Technical Report RJ 5118. IBM Almaden Research
Center.

Aaron Turon, Derek Dreyer, and Lars Birkedal. 2013. Unifying refinement and hoare-style reasoning in a logic for higher-
order concurrency. In ACM SIGPLAN International Conference on Functional Programming, ICFP’13, Boston, MA, USA -
September 25 - 27, 2013. 377-390. https://doi.org/10.1145/2500365.2500600

V. Vafeiadis. 2008. Modular fine-grained concurrency verification. Ph.D. Dissertation. University of Cambridge.

Viktor Vafeiadis. 2009. Shape-Value Abstraction for Verifying Linearizability. In VMCAI °09: Proc. 10th Intl. Conf. on
Verification, Model Checking, and Abstract Interpretation (LNCS, Vol. 5403). Springer, 335-348.


https://doi.org/10.1007/978-3-662-46669-8_14
https://doi.org/10.1145/2500365.2500600

1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323

Scenario-based Proofs for Concurrent Objects 1:27

Scenario-based Proofs for Concurrent Objects
Appendix

A UNABRIDGED CONCURRENT OBJECT SEMANTICS

We define an operational semantics for concurrent objects as sets of executions that interleave
steps of a number of method invocations executed by different threads. For simplicity, we assume
that every thread invokes a single method, which is without loss of generality provided that thread
ids are modeled as additional inputs. Method implementations are assumed to be given as KAT
expressions, as described in Section 2.

Client environments. An object O is acted on by a finite environment & : 7 — O X W,
specifying which threads invoke which methods, with which argument values. We use 7 to denote
the set of thread ids, and Val an unspecified set of values (Val denotes the set of tuples of values).
We assume that 7 is equipped with a total order < that will be used to define representatives of
equivalence classes up to symmetry (renaming of thread ids).

States. We assume that each test or action in a method implementation acts on a local state,
whose content can be accessed only by the thread executing that test/action, and possibly a shared
state which can be read or modified by any thread in the environment. As expected, we assume
that each local state contains a valuation for the arguments of an invocation X and, once a thread
has finished its execution, its local state contains the return values 3. A precise formalization of
local/shared states is irrelevant to our development and we omit it for readability. Let X, and Xy
denote the set of local and shared states, respectively.

A thread executes an implementation given by a KAT expression k, according to the rules below.
We assume that semantics of tests [b] : (2}, X Zg) — B and actions [a] : (£;0 X Zg1) = (S0 X Zg1)
is provided (or generated from the language/program).

Non-deterministic single-thread execution. Given an environment &, a step of a single thread
t is a relation on X, X Xy X (K U {L}) where L indicates that a thread has completed. We denote
this relation as oy, oy, k |, GI’ , G!;, k’, which optionally involve label ¢. Labels are taken from the
set of possible labels £ € AU B U call m(3) U ret(d) U {b - a) which includes primitive actions,
primitive tests, invocations, returns or ARWs. (We here write call m (%) with free variables to refer
to the set of all invocations and similar for returns and ARWs.) The labeled single-step semantics
are now defined inductively on k as follows:

E(t) = (m(%)/6 : km,0) v = 01(7)

0'?, 0, € Leall m(3) Gf[argsi = 0i], 04, km a1, oy, ret(o) lret(;j) 01,04, L

01,04,k | 0], 051

01,05k +k" | 01,04k 01,05k +k" | 01,00k’ 0,05k -k | o], crg’, k’

01,05,k™ | 01,04,k - K* 01,04, k™ | 01,041
a#{ (0],0,) =a](o1, ) [b] (o1, 04) = true

01,04, 4 la Gl’

,0g 1 01,04, b |p 01,041
[6] (o1, O'g) (o], Ué) = [a] (o1, O'g)
01,04, (b - a) L(b-ay 0, 0';, 1
The first rule is for invocation, assuming that the environment for this thread specifies that m should
be invoked with arguments d. These arguments are recorded in the local state, and an invocation




1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372

1:28 Constantin Enea and Eric Koskinen

label is generated; 0'? is a fixed initial local state. The second rule applies when execution reaches a
return statement and a label is generated with the values provided in the local state variables 7. Note
that invocation/return labels are not invocation/return actions because they contain values rather
than arguments. The subsequent 5 rules are built atop the standard non-deterministic semantics
of KAT expressions, without any labels being generated. The last 3 rules are for atomic actions a,
atomic tests b, and ARWs (b - a), with the respective labels generated. When a test b does not hold,
the successor is undefined (and similar when atomic test b in {b-a) does not hold). We further define
01,04,k ¢ o', 07, k", relating triples from a sequence (o7, 95, k) | (G 0'1 YL Lo (o7, 04, k")
where only the final | transition produces a label. (i.e., the mtermedlate label free nondeterminism
has been resolved.)

The rules above give a semantics to steps of a thread assuming a certain shared state oy, and
can be extended to sequences of steps assuming that the shared state can be changed arbitrarily in
between every two steps. Formally, given a KAT expression k, an execution of k starting from a
local state o7 and global state oy is deﬁned as a sequence of triples o, 0';, k* with 0 < i < n such that:
(1) G = oy, 60 =04,k =k, (2) g cr K, 0'1”1, G;“, k™! for all i even, (3) crli = 0'1"+1 and k¥ = k!
for all i odd, and (4) k™ =1. Note that 0, is unconstrained in (3).

Example A.1. Consider k;,. as defined in Example 2.2 and o-l0 = [c + undef] and 0';) =[ctr > 0].
Here is one execution of k;,.:

Step 0 : (0;), 0'_3, (c:=ctr---)%),

Step1: (0] 0y, (c:=ctr---)-(c:=ctr---)"), Unfold * via |

Step2: (o, cr’ (c:=ctr---)-(c:=ctr---)%), Global state changed arbitrarily
Step 3 : (o [c = og(ctr)], o1 (c:=ctr---)*),... Reduce an action via |c:=ctr

A.1 Executions, Traces, Linearizability

The set of executions of a concurrent object O in the context of an environment & are defined as
interleavings of single-thread executions, acting on the shared state and their local states, with
nondeterministic scheduling.

A configuration C € (o, T) where T : 7 — (£}, X (KU {L1})) comprises a shared state o, € 3y
and a mapping for each active thread to its local state and current code. The initial configuration is
defined by Cy = ( ,0) where ag is a fixed initial shared state. Let C denote the set of configurations.

An execution of O is a sequence of configurations and labeled transitions over the threads

specified by an environment &. The transition relation =: C X (7 X £) X C is defined as:
E() = (m(xX)/v: kym,0v) T(t) undefined

(04, T) M 5 Tt (olo[argsi — 0], km)])

T(t) = (o1,k) 01,04,k ¢ 0,00, K’

(05 T) 5 (o1, T[t > (0], K))])

A transition - is possible for any thread whose k is not L. The first rule models a new thread
invoking a method according to the environment. In the second, the thread ¢ takes a |J; step,
producing label ¢, and the configuration is updated with the new global state and the new (o7, k”)
for thread ¢.

B PROOF OF THEOREM 5.6

We reason by induction on the number of paths in II(expr) in a completed execution p of O that
are either (1) write paths but they are interleaved with actions of other threads, or (2) local paths



1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421

Scenario-based Proofs for Concurrent Objects 1:29

but they are interleaved with more than two write paths in IT(expr), or with a single write path in
II(expr) but together with this path, it does not form a support of a layer in expr.

The base case of the induction is trivial: since every label of a transition in p belongs to some
path in II(expr), and all paths are interleaved as prescribed by the layers, then clearly, the trace of
p is in the interpretation of expr.

For the induction step, consider first a write path that is interleaved with actions of other threads.
Let p’ be the minimal subsequence of p that contains only steps of that path and all the other
write paths that interleave with it. By the induction hypothesis, the latter write paths execute
without interruption. This execution is feasible starting from the first configuration of p’, because
we removed only local actions that do not affect enabled-ness of other concurrently executing
steps. Applying the WPC condition, there exists an execution p’’ strongly equivalent to p” where
all paths execute without interruption. Since p”’ passes through the same sequence of shared states
(modulo stuttering) it can “replace” p’ in p. The trace of the obtained execution is a sequence of
layers which ends the proof.

Second, consider a local path that is interleaved with more than two write paths. Similarly to the
previous case, one can extract only the steps of that path and all the other write paths with which
it interleaves, apply the LPC condition to produce an equivalent sub-execution where that path
interleaves with at most one other write path, and then, re-insert the obtained sub-execution into
the original execution.

C LAYER AUTOMATA
C.1 Automaton Representation of Layer Quotients

We now show that layer quotients can be represented as automata, as mentioned at the end of
Sec. 5. These layer automata are a convenient representation of the quotient and, as shown in Sec. 7,
can be automatically derived from source code. In general, objects can reach unboundedly many
configurations and different layers are enabled/disabled from different configurations, e.g., the layer
Adeco Of Ogyr in Example 5.3 is enabled only when ctr is 0. A layer expression comprised simply
of a starred union of basic layer expressions is not always appealing since some layers are not
enabled from some configurations. We therefore describe a more convenient representation as a
layer automaton, in which the states represent abstractions (sets) of concrete configurations in
executions (as defined in Section 2) and the transitions are labeled by basic layer expressions.
Definition C.1 (Layer automaton). Given an object O, a layer automatonis atuple A = (Q, Qo, A, )
where Q is a finite set of states representing abstractions (sets) of configurations of O, @y C Q is
the set of initial states, and § € Q x 2" X Q is a set of transitions labeled with basic layer expressions
(elements of A) with the constraint that an edge g 5 q’ can only be one of two types:
(1) Unique self-loop: @ = A; - - - A, is a sequence of n > 1 local layers, ¢’ = g, and there are no

other self-loops ¢ SN q.
(2) Single write layer edges: @ = A is a single write layer.
The interpretation of the automaton, denoted by [A], as a layer expression is defined as
expected, except that the label of a self-loop is not starred. For instance, the interpretation of an

automaton consisting of a single state ¢ and self-loop g 5 q is defined as « instead of a™.

TueoREM C.2. Given an object O and a layer automaton A = (Q, Qo, A, ), the layer expression

[A] is an abstraction of a quotient of O if
e the starred union of the basic layer expressions labeling transitions of A is an abstraction of a

quotient of O (Theorem 5.6),
o every initial configuration of O is represented by some abstract state in Qy, and every reachable
configuration is represented by some abstract state in Q,



1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470

1:30 Constantin Enea and Eric Koskinen

o for every layer A in [A], if there exists an execution p representing A from a reachable

configuration C to a configuration C’, then A contains a transition q 5 q where q is an
abstraction of C and q’ is an abstraction of C'.

The automaton in Fig. 1 is a layer automaton for the MSQ (see Section 6.1 for more details).

Cororrary C.3. (To Thm. 3.5) If a layer expression expr is an abstraction of a quotient and there
is a linearization point mapping for every trace in [expr] that is robust against re-ordering, then the
object is linearizable.

C.2 Computing Layer Automata

In Sec. 7 we discuss how candidate layer automata can be computed for some canonical examples.
This section explains the algorithm in detail. Given a set of layers A;,. . .,A,, whose starred union is
an abstraction of an object quotient (cf. Theorem 5.6), a layer automaton satisfying Theorem C.2
can be computed automatically. For lack of space we only sketch the procedure. The algorithm
consists of the following steps:
(1) States: Compute the automaton abstract states as boolean conjunctions of the weakest
pre-conditions (and their negations) of traces in the support of a layer A; with 1 < i < n.
We assume that the initial state can be determined from the object spec.
(2) Edges: Whenever a state q implies the precondition of a write layer A; with write path k,,,

compute every post-state ¢’ that can hold, and add an edge q LN q’. This can be encoded as
an assertion violation in a program that assumes g; k,, and asserts the negation of ¢’.

(3) Self-Loops: For every state g collect every local layer that is enabled from q and create a
single self-loop consisting of a concatenation of all these layers.

D SLS QUEUE SOURCE CODE

Below is the implementation of the Scherer et al. [Scherer III et al. 2006] queue. Path labels such
as or are included to indicate which paths from Sec. 6.2 correspond to those program
locations, where possible. (We have slightly refactored the second portion of the implementation in
our path graph.)

1 public void enq(T e) {

2 Node offer = new Node(e, NodeType.ITEM);

3  while (true) {

4 Node t = tail.get(), h = head.get();

5 if (h ==t || t.type == NodeType.ITEM) {
6 Node n = t.next.get();

7 if (t == tail.get()) {

8 if (n != null) {

9 tail.compareAndSet(t, n); @3,

10 } else if (t.next.compareAndSet(n, offer) ) {

11 (3t

12 tail.compareAndSet(t, offer); €, G

13 while (offer.item.get() == e);

14 h = head.get();

15 if (offer == h.next.get()) {

16 head.compareAndSet (h, offer); return; EEED,G"ad)
17 } else { return; 3

18 } else { restart 3}

19 } else { restart @ }

20 } else {

21 Node n = h.next.get();

22 if (t != tail.get() || h !'= head.get() || n == null @) {
23 continue;

24 3}

25 boolean success = n.item.compareAndSet(null, e); @,GD



1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519

Scenario-based Proofs for Concurrent Objects 1:31

¥ Entry / Loop header
O
A

/Pé{h 1tor 1f Path 2 Path 3f or 3t Path 4 Path 5t or 5f

1}
1}
1}

I'. l/t::tail; t:=tail; ti=tail; N lti=tail; ti=tail;

‘I‘ / 'hi=head; h:=head; h:=head; ‘\ h:=head; h:=head;

v/ [{h==tV {h==t Vv {h==t Vv 1{h!=t} {h!=t}

\ t.ty=ITEM} t.ty=ITEM} t.ty=ITEM} /{t.ty=RES} {t.ty=RES}

'-|l n:=t.next; n:=t.next; n:=t.next; /|ni=h.next; n:=h.next;

',\\ {t==tail} {t!=tail} {t==tail} < |{n==null} {n!=null}

Vo [{nt=null {n==null} cas(n.item,null,e)

\cas(tall t,n) cas(t.next,n,of) N false  true

]

)

)

! \
[ fakée trye !
v |
\

\

Path 6a Path 6bt or 6bf
Path 3t or 31) - h:=head; | h:=head;
skip o {h!=head} {h==head}
cas(tall x, of) cas(head, h,n)

ue
Path 3”at or 3”af Path3b
h:=head; h:=head;

{of=h.next} {of!=h.next};

Path 7a Path 7bt or 7bf
Path 3” ; h:=head; | h:=head;

cas(head, h, of)/? return while(of.item==e); Y {h!=head}; |{h==head}
return / return cas(head, h, n)/?
/ return
(3'b) 7 fals‘é thue
/ 7bf

Fig. 7. (Reproduction of Fig. 11: The implementation of a synchronous queue due to Scherer 11l et al. [2006].)

26 head.compareAndSet(h, n); C(IRLY,({6,73}bf

27 if (success)

28 return; (Za),@X,TbP)
29 else

30 restart (6a), @Y, TbD)
31 }

32}

33}

D.1 SLS queue implementation graph

We describe the implementation in Fig. 11, beginning with the cloud-surrounded area in upper
left-hand half of the diagram which is, essentially, the Michael-Scott queue. In this region the queue
is a list of items (with a dummy head node), whereas the new portions of the implementation apply
when the queue is a list of reservations. Paths and attempt to advance the tail pointer. Path
@ is interrupted by a recently changed tail pointer. Paths and attempt to swap tail’s next
to their new item offer node. If successful, paths and attempt to advance the tail pointer.

Path is the synchronous part of the algorithm: waiting for an enqueued item to be consumed
by a dequeuer. At that point, the head pointer may be stale, and paths CHED, and try
to advance the head pointer.

Alternatively the queue may be a list of reservations, again with a dummy head node. Paths
and attempt to fulfill a dequeuer’s reservation by swapping null for an element. Path is
doomed to restart, while path will soon return. In either case, the enqueue first attempts to
advance the head pointer (paths 6a), 6bf), @, 7a), 7b), @XI).

The implementation of dequeue is a sort of dual operation. When the queue is a non-empty list
of items, dequeue tries to take the first item by swapping the head’s next value for null (and then



1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568

1:32 Constantin Enea and Eric Koskinen

cl=0 cas—ctr=1
—_—
c2=0 /\/ \» cas fail c2=1_ cas — ctr=2

el ey >

r\ » »

cas fails

Fig. 8. An increment-only execution for which there is an equivalent representative execution (as suggested
by the large wavy arrow) that is in the layer quotient.

cl=0 cas—ctr=1

oy
c2=0 // \ cas fails_ c2=1 cas—ctr=0

decrement

»

A

[s)
(4]
1i
(=)
A=
/‘

Fig. 9. An execution where the second thread executes a decrement, which is equivalent to the representative
execution suggested by the wavy arrow.

tries to advance the head pointer). When the queue is empty or a list of reservations, dequeue
redirects the tail’s next to its new reservation node (and then tries to advance the tail pointer). After
appending the reservation, dequeue spins until a value is swapped in, and then tries to advance the
head pointer before returning.

E DETAILED EXPLANATION FOR COUNTER

To explain the equivalence between arbitrary interleavings of increment invocations and represen-
tative executions in quotient (O ]), we consider the execution pictured in Figure 8. This execution
is not in {{ O]) because the unsuccessful iteration of thread 3 is interleaved with two successful
CASs: it reads ctr before the first successful CAS (in thread 1) and after the second successful CAS
(in thread 2). Yet, as explained above, a layer interleaves an unsuccessful iteration with a single
successful CAS.

However, the second read of ctr, corresponding to the unsuccessful CAS in thread 3, is enabled
even if executed earlier just after the first successful CAS. Moreover, since retry-loop iterations
are “forgetful”, i.e, there is no flow of data from one iteration to the next (the value of ctr is read
anew in the next iteration), executing the unsuccessful CAS earlier would not affect the future
behavior of this thread (and any other thread because it is a read) even if this reordering makes
this unsuccessful CAS read a different value of ctr (value 1 instead of 2). This reasoning extends
even when the iteration of thread 3 is interleaved with more than two other iterations.

The case of increment-only executions is simpler because it does not include the so-called ABA
scenarios in which ctr is changed to a new value and later restored to a previous value. Every
successful CAS will write a new value to ctr and will make all the other invocations that read ctr
just before to restart.

Interleavings of increment and decrement invocations can exhibit the ABA scenario described
above, as exemplified in Figure 9. The value 0 read by thread 3 before the first successful CAS
is restored by the second successful CAS (performed in a decrement invocation). This execution
is not a representative execution in ( OJ) because the successful retry-loop iteration in thread 3
interleaves with other two successful iterations while in ({ O |) executions, every successful iteration
is executed in isolation w.r.t. other successful iterations. However, the equality test in the successful
CAS of thread 3 (ctr == 0) is enough to conclude that the previous read can be commuted to the
right and just before the CAS. This allows to group together the actions of the third layer and
obtain a representative execution from (O ), extended to include decrements. To this end, we

introduce decrement layers of the form [(c:=ctrj -c:=ctr )-c:=ctr;cas(ctr,c,c-1)/true-



1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617

Scenario-based Proofs for Concurrent Objects 1:33

[Read-Only Layer 1 Layer 2 (inc:3—4)" Layer 3 (inc:3—4)" (dec:1 0-1 3)”‘
(dec:10-11-ret(0))" inc:3-5-cas()/true inc:3-5-cas()/true
(inc:4-3)n / "\ (dec:13-10)™ (inc:4-3)
T

\ Z |
\/ (inc:3-4)" (dec:10-13)m
(See definition of Layer 4 to the right) dec:10-14-cas()/true
Layer4 lLayer4 (dec:13-10)™ (inc:4-8)"

Fig. 10. An automaton representation of layer-serialized executions of the counter.

(cas/false] -cas/falsej, ).In this expression, n concurrent increment threads and m concurrent
decrement threads interleave with a single successful decrement thread (we also subscripted with
inc/dec to indicate where the action came from.). All unsuccessful threads’ operations commute
with each other and are put in a canonical form (later the interpretation of a” will order a’s according
to thread ids). We similarly augment the increment layers with concurrent decrement threads.

Decrement invocations can also be formed exclusively of read-only iterations when they observe
that ctr is 0. The last iteration in such invocations returns 0 and performs no write to the shared
memory. Such loop iterations that read the value of ctr at the same time (after the same number
of successful CASs) are grouped in a layer as well. They can be assumed to execute in isolation
because they execute a single memory access.

F LAYER AUTOMATON FOR COUNTER

Overall, a quotient of the counter contains sequences of layers as described above. The order in
which layers can occur in an execution can be constrained using regular expressions or equivalently,
automata representations as shown in Fig. 10. In this layer automaton, states are properties of the
shared memory that identify preconditions enabling shared-memory writes (successful CASs), and
transitions represent layers.

This automaton consists of two states depicted in dark gray, distinguishing shared-memory
configurations where the precondition of a successful CAS in decrement invocations (ctr >
0) holds. The self-loop on the initial state represents a layer (Layer 1) formed of an arbitrary
number of decrement iterations returning value 0, executed by possibly different threads. “dec:10-
11-ret(0)” refers to the control-flow path of decrement from Line 10 to Line 11 to return. This
is just an abbreviation; formally it is represented with KAT expressions. Layer 2 occurs on the
outgoing transition from the initial state and this layer is formed from a successful increment
iteration interleaved with an arbitrary number of unsuccessful increment iterations executed
by different threads (when ctr equals 0 all decrement retry-loop iterations reach the return
statement). Iterations are represented as control-flow paths in the code of the methods. inc:3-5-
cas()/true summarizes the single successful write path in the layer: an increment control-flow path
that begins on Line 3, proceeds to the CAS, succeeds the CAS and returns. The final expression in
Layer 2 summarizes an arbitrary number of threads failing the test on Line 4 (due to the successful
write path), and loop back to Line 3. The outgoing transitions from the second state represent layers
containing a successful increment (Layer 3) or decrement iteration (Layer 4), each interleaved with
an arbitrary number of unsuccessful increment or decrement iterations. Finally, the transition from
ctr>0 to ctr=0 involves the same Layer 4, despite landing in a new automaton state.

G QUOTIENT FOR MICHAEL-SCOTT QUEUE (FURTHER DETAILS)

The write operations in the layers induce the state changes as shown by the various edges in Fig. 1.
For example, the Dequeue Succeed Layer can move from automaton state g, to automaton state ¢;.



1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666

1:34 Constantin Enea and Eric Koskinen

Naturally, some edges are not enabled. For example, there is no edge from ¢q; to g, because the
latter is not reachable from the former via a single write path/layer. Also, while there are outbound
edges from q;, there is no layer involving a deq write operation (since the queue is empty). Other
layers self-loop, such as the Dequeue Succeed Layer self-loop at qa.

There are also four local layers that self-loop. These involve local paths that return (e.g., Read
Only Layer 1 where deq returns because the queue is empty) or paths that loop while waiting
(e.g., Read Only Layer 3 where enq awaits the advancer thread).

The layer quotient as represented in this layer-automaton is in some sense not optimal because
some pairs of write paths commute, e.g., enq writing to Q. tail and deq writing to Q. head when the
queue is non-empty. However, in these circumstances the overall eng/deq commute in the sequential
semantics of the object. Commuting these write linearization points in the layers corresponds to
commuting the overall methods. Consequently, the layer quotient can be seen as optimal modulo
method-level commutativity.

THEOREM G.1. The above layer automaton is an abstraction of a quotient for Michael-Scott Queue.

Proof by the methodology of Def. 5.6. (WPC) For the deq successful CAS on Q.head and adv
successful CAS on Q. tail, old reads are not possible because every CAS changes those pointers to
fresh values. Thus, if the CAS was successful, the read must be in the current layer (there are no
other successful CASs in between). The eng CAS on Q. tail->next is similar to Treiber’s stack:
Q.tail->next is only written once, so any old value of Q. tail->next will have the same value in
the current layer so an old read can move to the current layer. Furthermore, if there was an old
read of Q.tail, the value of Q. tail could not have changed without Q. tail->next first having
been changed.

(LPC) CAS operations always change the value so it is always possible to move a late “failing”
CAS to the left so that it occurs after the first successful CAS following the previous reads in the
same iteration.

Note that the Advancer Succeed Layer in reality cannot self-loop from g3 because an invariant of
the MSQ is that Q. tail can only lag behind by one link in the list. This happens because weakest
preconditions from a true postcondition are over-approximate and did not include complicated
invariant reasoning to accurately express the single-link lag condition. Consequently this layer
automaton (soundly) over-approximates the executions of the MSQ.

H QUOTIENT FOR THE SLS QUEUE

Implementation. The implementation of the SLS queue is illustrated in Fig. 11 (the source code is
given in Apx. D). This diagram is like a control-flow graph (entry point, loop header, branch/merge
points, etc.), but with some flattening to make paths more explicit. Paths are identified where
they end, with write paths denoted as and local paths as (@. Two paths that share a prefix
and differ only based on a CAS result are denoted with a single box, but with true/false exit arcs,
eg. and (). Later below we will write versus when we are referring specifically
to dequeue versus enqueue. This is the source for enqueue (which appends item nodes or fulfills
reservation nodes) and the source for dequeue is identical (except dequeue appends reservation
nodes or consumes item nodes).

SLS, like MSQ, involves manipulating a list of nodes that are items with a dummy head node.
There is a synchronous blocking on path (3™). However, for SLS, alternatively the queue may be a
list of reservations, and the right-hand paths attempt to fulfill a dequeuer’s reservation by swapping
null for an element. The implementation of dequeue is a sort of dual, omitted for lack of space.
Below we denote paths such as to mean the dequeue dual of enqueue’s @®. Note that, unlike



1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715

Scenario-based Proofs for Concurrent Objects 1:35

¥ Entry / Loop header
O
A

/Pa'{h 1tor 1f Path 2 Path 3f or 3t Path 4 Path 5t or 5f

1}
1}
1}
I'. l/t::tail; t:=tail; ti=tail; N lti=tail; ti=tail;
‘I‘ / 'hi=head; h:=head; h:=head; ‘\ h:=head; h:=head;
v/ [{h==tV {h==t Vv {h==t Vv 1{h!=t} {h!=t}
\ t.ty=ITEM} t.ty=ITEM} t.ty=ITEM} /{t.ty=RES} {t.ty=RES}
'-|l n:=t.next; n:=t.next; n:=t.next; /|ni=h.next; n:=h.next;
',\\ {t==tail} {t!=tail} {t==tail} < |{n==null} {n!=null}
Vo [{nt=null {n==null} cas(n.item,null,e)
i \cas(tall t,n) cas(t.next,n,of) \ fdse  thue
i fakée thye i
H , Path 6a Path 6bt or 6bf
‘: Path 3t or3f) 7 h:=head; h:=head;
:I skip o {h!=head} |{h==head}
! cas(tall +;0f) cas(head, h,n)

Path 3”at or 3”af Path 3"b
h:=head; h:=head;

Path 7a Path 7bt or 7bf

{of=h.next} {of!=h.next}; Path 3” ; h:=head; | h:=head;
cas(head, h, of)/? return while(of.item==e); Y {h!=head}; |{h==head}
return / return cas(head, h, n)/?
77 / return
e
'

Fig. 11. The implementation of a synchronous queue due to Scherer 111 et al. [2006].

Treiber’s stack or the MSQ, in the SLS queue a method invocation could involve a series of paths,
e.g., the sequence €D; €EHD; 37); €MED, that involves multiple write operations.

The cloud-surrounded area in the upper left-hand half of the diagram is essentially MSQ and it
involves manipulating a list of nodes that are items with a dummy head node. There is a synchronous
blocking on path (3”). Alternatively the queue may be a list of reservations, and the right-hand
paths attempt to fulfill a dequeuer’s reservation by swapping null for an element.

The SLS queue demonstrates that a method implementation could consist of sequentially com-
posed paths which define different layers. As we will see, advancing the tail pointer (and the head
pointer) are subpaths of method implementation. Moreover, the synchronous behavior involves
busy-wait/blocking during the implementation, after which point further paths are executed.

Quotient. The quotient for SLS is discussed in Sec. 6.2. In this appendix, we show Fig. 12 which
is similar to the Sec. 6.2 quotient, but with precise CFG locations in the layer definitions.

Technically the states require one further predicate to indicate whether there is currently a
thread at location €, omitted for lack of space. This is needed because the subsequent paths use
the local variable t which is an old read done in the previous path. This is acceptable because
it is only possible that one thread can be at location so the old read is still valid during the
subsequent path. Typically we have found that implementations do not perform such “old reads”
which are only correct as a result of very delicate reasoning.

TueoREM H.1. The SLS queue is linearizable.
Proof: The following expression uses the same layers, some marked E or D for linearization points:

( [Dapp-TA- (Eswapg. - HR - Dapp-TA)" - Eswapg. - HR] // LHS
+ [Eappg - TA- (Dswapp - HR - Eappg - TA)* - Dswap, - HR] // RHS
) - ([Dapp-TAI" + [Eapp;-TAI")



1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764

1:36 Constantin Enea and Eric Koskinen
Layer When the queue is a list of reservations When the queue is a list of items
Automaton: (deq appends resv at tail, eng removes resv at head) (enq appends items at tail, deq removes items at head)

H
|_Eape_|

Lay er Tail advance (TA) Head reap (HR) Enq swap res for item (Eswap)

Definitions: with (1f + 2 + 37f)% with (1f+2+3”af+3” é’mh (4+5F) %

or
with (1f + 2 + 3'f)%

b+4+6a+6bf+7a+7bf)*
Orwith (as above)x Dei swap item for null (Dswap)

mmm (as above)x with (4+5f)*

Enq append item node (Eapp)
with (3f)x

Deq append reservation (Dapp)
& with (3f)x*

Fig. 12. Layer automaton for the synchronous SLS queue. Layers’ acronyms and their definitions are given in
the lower half of the figure. For conciseness, layer definitions do not split the prefix/suffix of the read paths.

This expression captures iterating through the left and righthand sides of the automaton (passing
through the empty ADT state in between), followed by either unmatched appended dequeue
reservations or unmatched appended enqueue items. When the queue consists of reservations, the
Eswap layer provides the linearization point for enqueue, but also the corresponding dequeue. TA
and HR layers are positioned next to a corresponding app and swap (resp.).

We thus prove (#1) This expression is an abstraction of the quotient: by induction on any
execution, feasible actions can be reordered into layers and those layers can be ordered into
the above expression. (#2) For linearizability, we project out the LP operations to obtain simply
(E-D)* - (E*+D"). Thus, combining with #1, all executions meet the sequential spec. of a queue.

pointer top, and manipulated as follows:
1void push(int item){ while(1){

(SN N

6
7

QUOTIENT FOR TREIBER’S STACK
Recall the implementation of Treiber’s stack [Treiber 1986], stored as a linked list from a global

node_t* n = malloc(...);

n->val = item;

node_t*x oldTop = top;

n->next = oldTop;

if (CAS(top,o0ldTop,n) ret;
Y3

1int pop(){ while(1){

2

node_tx oldTop = top;

3 if(oldTop==NULL) { ret @; }

4 newTop = oldTop->next;

5 if (CAS(top,oldTop,newTop) ret oldTop->val;
63} }

The states for the layer-automaton of the Treiber’s Stack (derived from the pre-conditions of
successful push and pop operations) are simply top=null and top#null. The Treiber stack can
thus be decomposed into a layer automaton as follows:



1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813

Scenario-based Proofs for Concurrent Objects 1:37

lRead-Only (Local) Layer 1 Layer 2 (push: 2. 6)” (pop: 2. 5)m ILayer 2
(pop:2-3 return empty)” pop:2-6- cas(top)/true (See definition of Layer 2 to the left)
/\ (pop:5-2)™ (push:6-2)? /\
top=null
(push:2-6)" N2 (push:2-6)" (pop:2-5)™
push:2-6- cas(top)/true push:2-6- cas(top)/true
s (push:6-2)" Lavera  (POP:5-2)™ (push:6-2)?

Above the automaton states are given in rounded dark boxes, and edges are labeled with layers.
We abbreviate local paths using source code line numbers rather than KAT expressions. For example
pop: 2-5 means the path starting at the beginning of Line 2 of pop and proceeding to the beginning
of Line 5. Layer 1 is a local layer, in which the state is top=null. In this layer, there is only one local
path from pop that is enabled for some n threads and it pertains to returning 0 to indicate empty.
Layer 2 occurs from a state where top#null and the pop ARW action for the compare-and-swap
occurs, causing n other pushes’ and m pops’ CAS attempts to fail (on their lines 6 and 5, respectively)
and thus they restart (transition back to their respective Line 2s). The write path is in bold. The
other layers are similar, with a single pop or push ARW invalidating other pop/push attempts.
Layer 2 occurs as a label in two different transitions. Layer 5 self-loops at state top#null, which
abstracts over all non-empty stacks.

LEMMA 1.1. The above layer automaton is an abstraction of a quotient for Treiber’s stack.

Proof: By the methodology of Def. 5.6. Per WPC, we must show that an old read of top and
top->next, with then arbitrarily many write paths interleaved, can be moved to the right just
before the successful CAS (an unsuccessful CAS belongs to a local path, discussed next). The
successful CAS checks that top is unchanged since the old read. Moreover, since top->next is only
written once, if top is unchanged then top->next must also be unchanged®. Therefore both old
reads could be moved to the right just before the successful CAS, and a whole write path can be
assumed to execute without interruption.

Per LPC, requiring that each local path, pops returning 0 or iterations with failed CASs, can be
re-ordered to interleave with at most one write path. Iterations where a pop returns 0 perform
a single access to shared-memory (reading top) and therefore, they can be assumed to execute
without interruption. The failed CAS in an iteration can be re-ordered to occur just after the first
successful CAS that follows the read of top in the same iteration. This holds because in Treiber’s
stack successful CAS operations always mutate top to a fresh value (assuming memory freshness).

J QUOTIENT FOR ELIMINATION STACK

The Elimination Stack [?] augments Treiber’s stack with a protocol for “colliding” push and pop
invocations so that the push passes its input directly to the pop without affecting the underlying
data structure. An invocation starts this protocol after performing a loop iteration in Treiber’s
stack and failing (due to contention on top). The protocol uses two arrays: (1) a location array
indexed by thread ids where a push or pop invocation publishes a descriptor object with fields op
for the type of invocation (push or pop), id for the id of the invoking thread, and input for the
input of a push operation, and (2) a collision array indexed by arbitrary integers which stores
ids of threads announcing their availability to collide.

®We assume a semantics modeling garbage collection where memory cannot be reallocated. Without this assumption, it is
possible that top is unchanged, but top->next has changed. This is known as an ABA bug.



1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862

1:38 Constantin Enea and Eric Koskinen

Each invocation starts by publishing their descriptor in the location array (line 3). Then, it
reads a random cell of the collision array while also trying to publish their id at the same index
using a CAS (lines 4-7). If it reads a non-NULL thread id, then it tries to collide with that thread. A
successful collision requires 2 successful CASs on the location cells of the two threads (we require
CASs because other threads may compete to collide with one of these two threads): the initiator of
the collision needs to clear its cell (line 11) and modify the cell of the other thread (line 12) to pass
its input if the other thread is a pop. The first CAS failing means that a third thread successfully
collided with the initiator and the initiator can simply return (lines 18-20). Failing the second CAS
leads to a restart (line 15). If the invocation reads a NULL thread id from collision, then it tries to
clear its cell before restarting (line 22). If it fails, then as in the previous case, a collision happened
with a third thread and the current thread can simply return (line 23-25).

1 void push/pop(descriptor p){ while(1) {

2 one iteration of Treiber stack

3 location[mytid] = p;

4 pos = nondet();

5 do {

6 him = collision[pos]

7 } while (!CAS(&collision[pos], him, mytid))
8 if him != NULL {

9 q = location[him]

10 if ( g != NULL & g.id = him & p.op != g.op ) {
11 if (CAS(&location[mytid],p,NULL)) {
12 if ( CAS (&location[him], q, p/NULL) )
13 return NULL/q.input

14 else

15 continue

16 }

17 else {

18 val = NULL/location[mytid].input;
19 location[mytid] = NULL;

20 return val

21 Yoy o3

22 if (!CAS(&location[mytid],p,NULL)) {

23 val = NULL/location[mytid].data;

24 location[mytid] = NULL;

25 return val

26} ) 3

We use the automaton below to describe a sound abstraction of the quotient. Layers of Treiber’s
stack (defined in Section I) interleave with layers of the collision protocol (some components are
not exactly layers as in Definition 5.2, but very similar).

(push/pop:6)"
(push/pop:6-7- cas(collision[pos])/true)

(push/pop:7-6)" .
Publish collision
intent

(push/pop:8-11- cas(location[mypid])/true)"
push/pop: 8-13- cas(location[him])/true

(push/pop:14-2)"
Active collider
finished

Executions in the quotient serialize collisions and proceed as follows: (1) some number of threads
publish their descriptor and choose a cell in the collision array, (2) some number of threads
publish their id in the collision array (there may be more than one such thread - note the self-loop
on the top right state), (3) some number of threads succeed the CAS to clear their location cell

Publish
descriptors

(push/pop:3-4)*

Treiber’s
stack

pop/push:8-22 return val
+ pop/push:8-10-22 return val
+ pop/push:8-17 return val




1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911

Scenario-based Proofs for Concurrent Objects 1:39

but only one succeeds to also CAS the location cell of some arbitrary but fixed thread him and
return, and (4) the thread him returns after possibly passing the tests at line 8 or 10. We emphasize
that collisions happen in a serial order, i.e., at any point there is exactly one thread that succeeds
on both CASs required for a collision and immediately after the collided thread returns (publishing
descriptors or collision intent interleaves arbitrarily with such serialized collisions).

THEOREM J.1. The above automaton is an abstraction of a quotient for the Elimination Stack.

Proof: (Sketch) We need to show that every execution of the Elimination stack is equivalent to some
execution represented by this automaton up to reordering of commutative actions. The interactions
in the Treiber’s stack component do not interfere with collisions (they use disjoint addresses in the
shared memory) and therefore every execution can be assumed (up to commutativity) to execute in
phases as follows: some number of invocations executing a sequence of layers as in the Treiber’s
stack layer automaton (competing on the top pointer) followed by some number of invocations
trying to collide with each other, followed again by Treiber’s stack layers, and so on. In the following
we show that the collisions can be reordered to occur serially as in the above automaton.

We proceed by induction on the number of successful CASs at line 12 (the second CAS required
for a successful collision). Consider the first such successful CAS, denoted as CAS, /T and let 7,
be the set of threads whose next step in the execution after this point is a failed CAS on the
same address. As in previous proofs, all these failed CASs can be reordered (to the left) to occur
immediately after the successful one. Then, by the control-flow of an invocation, all threads in %,
executed the successful CAS at line 11 before their failed CAS. All these successful CASs turn the
location cell of those threads to NULL. Since no other thread (besides themselves) can turn it back
to some non-NULL value (see the test at line 10), they can be reordered to occur immediately before
CAS,/T. This leads to an interleaving around CAS;/T that conforms to the expression that labels
the transition leading to “Active collider finished”. Then, looking at other steps before CAS, /T,
for every successful CAS on a collision cell, one can construct a layer as the one labeling the
transitions leading to “Publish collision intent” and also serialize the steps 3—-4 for every thread.
This is possible because all these interactions concern different memory addresses. Finally, CAS, /T
wrote on the location cell of a thread him, and no other thread can modify this value until him
reads it, observes to have been collided and returns (CAS, /T writes either NULL to location[him]
in which case the first conjunct at line 10 will fail in another thread, or a descriptor with an id
field different from him in which case the second conjunct at line 10 will fail). Therefore, all those
steps of him can be reordered to the left to occur immediately after the interaction around CAS, /T,
which completes the handling of this first collision. The subsequent collisions can be handled in a
similar manner.

K QUOTIENT FOR RDCSS

The Restricted Double-Compare Single-Swap (RDCSS) [?] is a restricted version of a double-word
CAS (acting atomically on two addresses) which modifies a so-called data location provided that this
location and another so-called control location have some given expected values. This is an instance
of an atomic read-modify operation, i.e., the tests and the write should happen atomically. It is
assumed that data and control locations are disjoint (i.e., the same address can not be a data address
in some invocation and a control address in another). The code of the main RDCSS operation is
given below (for simplicity, we omit the read operation):



1:40 Constantin Enea and Eric Koskinen

1912 1 void RDCSS(descriptor =*xd){
1913 2 do { 9 | void Complete(descriptor *d) {
3 r = CAS(d->DATA_ADDR, d->exp_data, d); 10 if ( * d->CONTROL_ADDR == d->exp_control )
1914 4 if ( isDescriptor(r) ) Complete(r); 11 CAS(d->DATA_ADDR, d, d->new_data);
1915 5 } while ( isDescriptor(r) ) 12 else
1916 6 if ( r == d->exp_data ) Complete(d) 13 CAS (d->DATA_ADDR, d, d->exp_data)
7 return r; 14 }
1917 83
1918

The inputs of the operation are put inside a descriptor structure: DATA_ADDR and CONTROL_ADDR
are the data and control addresses, respectively, exp_data and exp_control are the expected values
of these addresses, and new_data is the new value to be written to the data address (provided that
the data and control addresses store the expected values).

RDCSS attempts a standard CAS on the data address to change the old value into a pointer to
the descriptor (line 3). This CAS checks that the data address has the expected value, and if it
fails, the operation simply returns. In the context of this implementation, we assume that a CAS
returns the value of the location before any modification (if any) and not just a Boolean. If the CAS
succeeds, then the operation calls Complete in order to check the control location and finalize the
modification if possible (line 6). Complete checks the value of the control location and if it has
the expected value, then it attempts a CAS to change the data address (line 11); note that the data
address currently stores a pointer to a descriptor. Otherwise, it attempts a CAS to revert the data
address to its old value (line 13).

When multiple threads compete to change the same data address, it may happen that the thread
succeeding the first CAS at line 3 (the initiator) is slow and before it executes the call to Complete,
another thread fails its CAS but finds a descriptor at this address (it is assumed that descriptor
pointers can be distinguished from data values). Then, this other thread will try to help the slower
one and call Complete itself (line 4). Note that all the information needed to help the slower thread
is stored in the descriptor.

We use the expression below to describe a sound abstraction of the quotient:

// successful modification
(3-CAS/true - (3-CAS/false-4)" - {4-6-11-CAS/true - (4-11-CAS/false)”
+ 3-CAS/false-4-11-CAS/true- (4-11-CAS/false)” - 4-6-11-CAS/false }

1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940

1941
+

// fail: wrong control value
3-CAS/true - (3-CAS/false-4)" - {4-6-13-CAS/true - (4-13-CAS/false)"

+ 3-CAS/false-4-13-CAS/true- (4-13-CAS/false)” - 4-6-13-CAS/false }

1942
1943
1944

1945
+

// fail: wrong data value
e (3CAS/false) )

1949 Executions in the quotient are iterations (note the outer *) of three types of “phases” (note the
1050 outer union and read expressions from top to bottom): (1) a phase in which the data address is
19s;  modified successfully (without or with help), (2) a phase in which the modification fails because
1052 the control address does not have the expected value (noticed by the initiator of the modification or
1053 @ helper thread), and (3) a phase in which the modification fails because the data address does not
1054 have the expected value.

1955 The first two phases have a common prefix: some initiator thread succeeding the CAS at line 3
10ss and some number n of threads failing the same CAS and reading the descriptor written by the
1057 initiator. Next, for the first phase, there are two cases: (1) the initiator succeeds the second CAS at
1055 line 11 (after calling Complete at line 6), and those n threads will fail the same CAS (after calling
1050 Complete at line 4), or (2) some helping thread which fails the same CAS as the other n threads

1946
1947

1960



1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009

Scenario-based Proofs for Concurrent Objects 1:41

will succeed the CAS at line 11 (after calling Complete at line 4), and the initiator together with the
other n threads fail the same CAS. For the second phase, there are two analogous cases in which
either the initiator or a helping thread observes a wrong value for the control location and succeeds
the CAS at line 13 to revert the value of the data location. The third phase is trivial and consists of
an arbitrary number of failed instances of the CAS at line 3.

THEOREM K.1. The above expression is an abstraction of a quotient for RDCSS.

Proof: (Sketch) Since steps of RDCSS invocations on different data addresses commute (the assump-
tion that data and control addresses are disjoint is important here), we focus on invocations that
act on the same data address. We follow the same strategy as for Elimination Stack, and proceed by
induction on the successful CASs in Complete (line 11 or line 13). Consider the first such CAS and
assume that it is at line 11. This corresponds to the first phase above and the case of line 13 which
corresponds to the second phase can be handled similarly. There are two cases to consider:

o The thread ¢ performing this CAS called Complete at line 6. If there are threads whose next
step in the execution after this point is a failed CAS on the same address and expecting
to find the same descriptor, then all of these steps can be reordered to the left to occur
immediately after the successful one. By control-flow, these other threads arrived there
by calling Complete at line 4 which means that they fail their CAS at line 3 and they read
the same descriptor. All of these failed CASs can be reordered to occur immediately after ¢
succeeding its CAS at line 3. Overall, these reorderings lead to an execution fragment with
the shape described in the first line of the expression above.

o The thread ¢ performing this CAS called Complete at line 4. Following a similar reasoning
while taking into account that another thread ¢’ initiated this modification by succeeding a
CAS at line 3, one can reorder steps to obtain a prefix with the shape given by the second
line of the expression above.

While building serializations of phases of type (1) and (2) above, any failed CASs at line 3 that
return the same value can be reordered to occur one after another, thereby creating phases of type
(3). And these phases of type (3) can occur “outside” of phases of type (1) and (2) since they have no
effect on the shared memory.

L QUOTIENT FOR THE LIST SET

We here consider a List Set Object and describe the layer expressions and proof that they are an
abstraction of the List Set’s quotient. This example is a Set object implemented as a sorted linked
list [O’Hearn et al. 2010], which involves a read-only traversal locate, and then small atomic
sections to link/unlink nodes (for insert/delete, respectively). locate traverses the list from the
head and returns a pair of nodes (x,y) such that y has the key of interest or else x points to the last
node whose key is below k. It is implemented as a loop that may perform an unbounded number of
shared-memory reads. We assume that it is abstracted with the postcondition at line 3 in insert
stating that y is the successor of x, the input k is in between x.key and y.key, and that at some
point between the invocation of the operation and “now”, x resides on a valid search path for k

that starts at the head of the list, denoted as ®head LN x. Recent work [Feldman et al. 2018, 2020]
shows that this postcondition can be derived easily by showing that roughly, list nodes are never
updated once they become unreachable. Therefore, the implementations of insert and delete
are as follows:



2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058

1:42 Constantin Enea and Eric Koskinen

1int insert(int k) { while(1) {

2 struct node_t *z = ...;

3 assume x.next = y Ax.key <k Sy.key/\oheade
4 atomic {

5 if (x->next ==y && x->del == 0) {
6 if (y->key != k) {

7 z->next = y;

8 x->next = z;

9 return 1;

10 } else { return 0; }

11 }

12} 3}

1int delete(int k) { while(1) {

k
assume x.next = y Ax.key <k <y.key A ®head — x

2

3  atomic {

4 if(x->next ==y && x->del == 0) {
5 if (y->key == k) {
[3 y->del = 1;

7 Xx->next = y->next;
8 return 1;

9 } else { return 0; }
10 }

1 3}

123} 3

The insert method will link a node z in between x and y, provided that k wasn’t already in the
list. The delete method returns 0 if the element wasn’t in the list and otherwise, marks node y for
deletion, and then updates x to skip past node y. The delete method marks deleted nodes with a
del flag before they are unlinked. Because delete marks deleted nodes’ del fields, a concurrent
locate that has just found this node, but was then preempted by delete, will return a node that’s
marked as deleted and unlinked, not simply unlinked.

As we discuss below, for List Set the layer expressions based on interleavings of two threads
generalizes to arbitrary threads. We thus define the states of the automaton in terms of the possible
values from the perspective of one reader and one writer. In these states below, x,, denotes the
writer’s X, X, denotes the reader’s x and similar for the other variables. The x and y variables are
existentially-quantified in the pre-conditions because they are method-local variables and not

k
inputs. We omit the sub-formula ¢®head — x because this condition does not affect the enabled
status of a layer.

q' = [3xr.yr. xp—>next=y, A !x,->del A k,=y,->key],

@ = [3xr.yr. xp->next=y, A Ix,->del A x,->key < k, < y,->key],

q3 = [[EXV,yr,xW,yW‘xw—>n-:-zxt=yW A Ixy=>del A x,,—>key < k,, < y,—>key A
Xr=Xw A Xp=>key < k, < y,->key],

q* = [3xrYrXwsYaw- Xaw=>NeXt=y,y A IXy=>del A Xiy=>key < Ky < yy—>key A
Xrp=Xay A kr:yr_>key]]’

@ = [3xrYr XY Xaw=>NeXt=y,y A IXy=>del A Ky=y=>key A X=Xy A

xr=>key < kp < yr->key],
= [3xrYr XY we Xaw=>Next=y,, A IXy,=>del A Ky=yw->key A X =X, A kp=key],
= [3xr.yr. Xp=>next=y, A x,->del A x,->key < k, < y,->key]

_Q Q
=

With these 7 states, 2 write paths (one from insert, one from delete) and 6 read paths, there
are many transitions to consider, although many of them are labeled with the same layer. In fact,
the List Set can be decomposed into 8 layers, enumerated below. For lack of space, we omit the
automaton, but the definitions, including all 77 feasible transitions, can be seen in the output of our



2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107

Scenario-based Proofs for Concurrent Objects 1:43

tool (which we discuss in the next section) shown in Apx. A. Below we refer to example transitions
in Apx A, denoted ;.

(1) A layer with a delete write path that updates x.next to point to y.next, causing one
insert and one delete path to fail when finding x . next#y.(e.g., 92)

(2) Alayer with an insert write path that updates x.next to point to z, causing one insert
and one delete paths to fail when finding x.next=y. (e.g., d9)

(3) Alocal layer consisting of one delete path, when the key is not in the set. (e.g., d31)

(4) Alocal layer consisting of one insert path, when the element is already in the set. (e.g., d47)

(5) Four local layers consisting of insert or delete paths when the node x is already marked
for deletion. (e.g., J¢3)

Note that insert and delete have more than one control-flow path that “fails” because of the
nested conditional inside the atomic read-write.

As in the Michael/Scott queue, here again the layer-quotient is optimal modulo method-level
commutativity. At the method-level, operations such as insertion/deletion of different elements
commute and their corresponding linearizations can be commuted (different orders of write layers)
in the layer quotient.

LEMMA L.1. The above layer automaton is an abstraction of a quotient for the List Set.

Proof by the methodology of Def. 5.6. To prove the lemma we first note that the post-condition
of locate ensures that x was reachable and that y=x->next. In all read and write paths, the ARW
checks that y=x->next still holds. Furthermore, an invariant of the implementation is that if x was
reachable at some point in the past (i.e., when locate executed) and ! x->del holds in the atomic
section, then x is still reachable in the atomic section (this holds because elements are marked
before being unlinked). Therefore, if locate’s postcondition was true in the past, it remains true
when the ARW succeeds and the assume can be reordered to occur just before it. For local paths,
as in previous cases, a failed ARW can be commuted to the left to occur just after the first ARW
that modifies the location x.

M  QUOTIENT FOR THE HERLIHY-WING QUEUE
Recall the queue due to Herlihy and Wing [Herlihy and Wing 1990], reproduced below:

1int deq() { while(1) {

2 assume @ <= range < back; int j = 0; . .
. . 1void enq(int v) {
3  while(j<range) { 9 i iz backit:
4 v := swap(items[j],null); C ’
. 3 items[i] = v;
5 if (v != null) return v; 4
6 jtt; )}
73} %

Enqueue (on the right) reserves the next slot in the array items by atomically reading and in-
crementing the shared variable back, and then assigns the value to that slot in a second write to
the shared state. Meanwhile, dequeue (on the left), in an outer loop reads into range any value
strictly smaller than back and then iterates from 0 to range, looking for a slot containing an item to
atomically dequeue. For every j, it atomically reads items[j] into v and writes null (written as a
swap instruction), and if the read value is not null, it returns it. This is actually a sound abstraction
of the original version which assigns back-1 to range instead of any smaller value. Soundness
follows easily from the fact that reading a smaller value will only make the dequeue restart more
often (perform more traversals in which there is no occupied slot), but not affect safety. In the
reasoning below, we will use the fact that such a non-deterministic read commutes to the right of
any increment of back (it is a right mover).



2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156

1:44 Constantin Enea and Eric Koskinen

We show that the Herlihy-Wing queue quotient can be abstracted by an expression given below.
To this end we first, as below in Apx. M.1, prove that any iteration of the dequeue’s outer while(1)
loop can be considered atomic, modulo commutative re-orderings. Consequently, there exists a
quotient of Herlihy and Wing Queue where outer loop iterations in dequeue are atomic sections.
Since items[i] = v steps in enqueues commute (they write on different slots of the array), there
exists a quotient where additionally, every sequence of items[i] = v steps before a dequeue
iteration that is successful (contains a non null swap) is ordered w.r.t. the array slots that they write.
The following expression is an abstraction of such a quotient: (deqF* - (engI)* - engW* - deqT*)”
where engI and engW denote the statements i:=back++and items[i] = v in enqueue, respectively,
and deqT and deqF represent entire iterations of the outer loop in dequeue that end in a return
and restarting the loop, respectively. The interpretation of engW* is refined to be a set of sequences
of labels items[i] = v (with thread ids) that are ordered w.r.t. the position i that they write to.
Above, we also use straightforward feasibility arguments like “enqueues increment back before
writing to items,” and “a deqT must be preceded by a write to items in an enqueue.

THEOREM M.1. The above expression is an abstraction of the HWQ quotient.
THEOREM M.2. The HWQ is linearizable.

The set of traces represented by this expression admits a “simple” linearization point mapping
which identifies engW and deqT steps with linearization points of enqueues and dequeues, respec-
tively. The restriction to traces in this quotient is instrumental for such a simple linearization point
mapping. For arbitrary traces, the Herlihy and Wing Queue is known for having linearization points
that depend on the future and that can not be associated to fixed statements, see e.g. [Schellhorn
et al. 2012] !

M.1 Proof of atomicity of outer loop

We prove that any iteration of the outer while (1) loop can be considered to be an atomic section,
modulo re-orderings of commutative actions. That is, there exists a quotient of this object formed
of traces where all steps of such an iteration occur consecutively one after another.

We proceed by induction on the number of steps executing the swap at line 4 in dequeue and
that find a non-null value in items[j]. In the base case, i.e., the number of such steps is 0, all
the swaps at line 4 in all dequeue invocations find null values. Therefore, any possible write to
an items slot (in enqueues) can be re-ordered after all swaps. Now all steps in the same outer
loop iteration of a dequeue (the non-deterministic read of back and swaps returning null) can be
re-ordered to occur consecutively one after another. In particular this relies on the fact that the
non-deterministic read of back can return the same value even if executed after more increments
of back. For a trace with n + 1 swaps returning non-null values, we focus on the first such step.
Assume that it is a swap on some position k. All the writes to items slots strictly before k can be
re-ordered to the right of this first non-null swap. This relies on the fact that all the other previous
swaps return a null value and anyway, do not “observe” these writes. Similarly to the base case,
all steps in the same outer loop iteration of a dequeue that completes before this first non-null
swap (including) can be re-ordered to occur consecutively one after another. We are again using
the fact that swaps read null values and there is no more write on the slots that they read. Now,
removing the write to items[k] in enqueue and the dequeue iteration that removes this value
from the current trace, we get another feasible trace that has n non-null swaps, for which one can
apply the induction hypothesis.



2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205

Scenario-based Proofs for Concurrent Objects 1:45

N EVALUATION: ALGORITHM AUTHORS’ CORRECTNESS ARGUMENTS

As discussed in Sec. 1, our goal is to provide a formal foundation for the scenario-based correctness
arguments found in the literature. In this section, we evaluate our work by revisiting various such
arguments in the literature, and comparing them with the quotient-based proofs presented in this
paper. At the high level, our comparison shows that quotients make scenario-based reasoning more
explicit and ensure that all cases are considered.

N.1 Treiber’s Stack

Treiber’s stack is fairly straight-forward. As such, it provided a good starting point for defining
quotients yet the prose correctness arguments are fairly minimal. For example, the following is a
comment on linearizability:

The linearization point of both the push() and the pop() methods is the successful compareAndSet(), or the throwing of
the exception in case of a pop() on an empty stack. — Herlihy and Shavit [2008b]

This prose identifies specific linearization points as (1) the “successful compareAndSet” and (2) the
not-found exception. These LPs correspond to the layers in the quotient shown in Apx. I. Layers 2,
3, 4 are “successful compareAndSet” linearization points, and read-only Layer 1 is the linearization
point for the not-found exception.

Summary. The following table summarizes the various elements of the correctness argumen-
t/proof, and identifies examples of where they occur in the Herlihy and Shavit [2008b] proof, and
where they occur in the quotient proof.

’ Proof Element ‘ Herlihy and Shavit [2008b] Proof ‘ Quotient Proof ‘
ADT states “empty stack” ADT states, e.g. (top=null)
Concurrent threads | (general description) Superscripting (...)"

Thread-local step seq. | “try to swing [top] ... if [] succeeds, | Layer paths, e.g., push:2-6
push() returns, and if not, the []
attempt is repeated”
Linearization pts. “The linearization point of both the | The successful CAS in Layers 2, 3
push() and the pop() methods is the | and 4.

successful compareAndSet(), ..”
(continued) “...or the throwing of the exception | Read-Only Layer 1
in case of a pop() on an empty
stack”

The layer quotient and, especially, the layer automaton (shown in Apx. I) helps make the Herlihy
and Shavit [2008b] proof more explicit. The layer automaton makes the ADT states explicit. From
each ADT state, one can consider which (i.e. all possible) layers are enabled, and which target states
are reached via those layers. Linearization points are explicit in the layer quotient, occurring once
with each layer transition. The layer quotient automaton also has the benefit of explicitly showing
all of the linearizable executions: i.e. all the possible runs of the automaton. This is left as implicit
in the Herlihy and Shavit [2008b] proof.

N.2 Elimination Stack

Section 5 of ? gives a correctness proof for the elimination stack. We now review the proof and
compare it with the quotient given in Apx. J. For reference, the following is a replication of the
quotient automaton:



2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254

1:46 Constantin Enea and Eric Koskinen

(Push/pop:3-4)* Publish Publish collision
descriptors intent

Treiber’s
stack pop/push:8-22 return val ] ] (push/pop:8-11- cas(location[mypid])/true)”
+ pop/push:8-10-22 return val Active collider push/pop: 8-13- cas(location[him])/true

+ pop/push:8-17 return val finished (push/pop:14-2)"

(push/pop:6)"
(push/pop:6-7- cas(collision[pos])/true)
(push/pop:7-6)"

We note that a set is a relaxation of a stack that does not require LIFO ordering. We begin by proving that our algorithm
implements a concurrent set, without considering a linearization order. We then prove that our stack implementation is

linearizable to the sequential stack specification of Definition 5.1. Finally we prove that our implementation is lock-free.
-?

We now prove that our algorithm has correct set semantics, i.e. that pop operations can only pop items that were
previously pushed, and that items pushed by push operations are not duplicated. This is formalized in the following
definition [omitted Set semantics for methods Push/Pop] — ?

? decompose the proof into first Set semantics and then ordering considerations. In the quotient
this is unnecessary because the layers capture the ordering and the elements in them. In the bottom
right layer in the bold action, a single push or pop succeeds, colliding with another operation of the
oppose type, and passing the element from the push to the pop. (Note that the quotient automaton
could also have been written in a more verbose way where the bottom right layer is replaced with
two layers: (1) a layer where a push’s successful CAS takes with it a corresponding pop, and (2) a
layer where a pop’s successful CAS takes with it a corresponding push. For succinctness, we have
combined those layers using the “push/pop” notation.) As discussed below, the thread that succeeds
its CAS in the bottom right later is referred to as the “active” thread, and the thread with which
the active thread collides is referred to as “passive” These concepts are explicit in the quotient:
the thread taking the bold action in the bottom right is the “active” thread, and the thread that
finds itself collided with in the layers on the arcs that exit the “Active Collider Finished” state, are
“passive.”
We now continue to examine the authors’ proof:

In the following, we prove that operations that exchange their values through collisions are also correct set operations,
thus we show that our algorithm has correct set semantics. ... We say that a colliding operation op is active if it executes
a successful CAS in lines C2 or C7. We say that a colliding operation is passive if op fails in the CAS of line 510 or S19.
[underlines added] — ?

The authors lay out a few definitions, which are also captured by the layer quotient. Above the
authors’ intuitive concept of “active” is captured by the paths in a layer that succeed their CAS.
Likewise for “passive” and CAS failure. As mentioned above, the active thread is captured as the
bold thread that succeeds its CAS in the bottom right layer; the passive thread is the thread that
finds itself collided with in the layers on arcs exiting the bottom right layer.

We say that op is trying to collide at state s, if, in s, the value of t’s program counter is pointing at a statement of one of
the following procedures: LesOP, TryCollision, FinishCollision. Otherwise, we say that op is not trying to collide at s. - ?

»

Here the authors’ intuitive concept of “trying to collide” is captured by the “Publish collision intent
quotient automaton state, as compared to the other states.

We next prove that operations can only collide with operations of the opposite type. First we need the following technical
lemma. Lemma 5.2. Every colliding operation op is either active or passive, but not both. — ?

As discussed above, the bottom right layer in the bold action, a single push or pop succeeds,
colliding with another operation of the oppose type, and passing the element from the push to the
pop. Furthermore, the bottom right layer shows that the colliding operations cannot be both active
and passive.



2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303

Scenario-based Proofs for Concurrent Objects 1:47

Lemma 5.3. Operations can only collide with operations of the opposite type: an operation that performs a push can
only collide with operations that perform a pop, and vice versa. - ?

As discussed above, the bottom right layer in the bold action, a single push or pop succeeds,
colliding with another operation of the oppose type, and passing the element from the push to the
pop-.

Lemma 5.4. An operation terminates without modifying the central stack object, if and only if it collides with another
operation. — ?

This is captured by the bottom left layer, which (1) involves return val statements, avoiding the
central stack and (2) is only reachable after a successful collision.

Lemma 5.5. For every thread p and in any state s, if p is not trying to collide in s, then it holds in s that the element
corresponding to p in the location array is NULL. - ?

Captured by the initial conditions and the (only possible) paths through the automaton.

Lemma 5.6. Let op be a push operation by some thread p; if location[p] # NULL, then op is trying to push the value
location[p]->cell.pdata. - ?

Captured by the initial conditions and the (only possible) paths through the automaton.

we show that push and pop operations are paired correctly during collisions. Lemma 5.7. Every passive collider collides
with exactly one active collider. — ?

As discussed above, the bottom right layer in the bold action, a single push or pop succeeds,
colliding with another operation of the oppose type, and passing the element from the push to the

pop-.

Lemma 5.8. Every active collider op1 collides with exactly one passive collider. — ?

As discussed above, the bottom right layer in the bold action, a single push or pop succeeds,
colliding with another operation of the oppose type, and passing the element from the push to the

pop.

Lemma 5.9. Every colliding operation op participates in exactly one collision with an operation of the opposite type. — ?

As discussed above, the bottom right layer in the bold action, a single push or pop succeeds,
colliding with another operation of the oppose type, and passing the element from the push to the
pop-

We now prove that, when colliding, opposite operations exchange values in a proper way. Lemma 5.10. If a pop operation
collides, it obtains the value of the single push operation it collided with. [Lemma 5.11 analogous for push-pop.] - ?

As discussed above, the bottom right layer in the bold action, a single push or pop succeeds,
colliding with another operation of the oppose type, and passing the element from the push to the
pop.

We can now finally prove that our algorithm has correct set semantics. Theorem 5.12. The elimination-backoff stack has
correct set semantics. — ?

As discussed above, separately proving Set semantics is unnecessary.
Linearizability.

we choose the following linearization points for all operations, except for passive-colliders: Lines T4, C2 (for a push
operation), Lines T10, T14, C7 (for a pop operation) — ?

The authors give linearization points for “active” threads as the time when the second CAS succeeds,
and linearization points for “passive” threads “the time of linearization of the matching active-
collider operation, and the push colliding-operation is linearized before the pop colliding-operation.
The linearization points in the quotient are: (1) the bold successful CAS in the bottom right layer
in the quotient automaton, and (2) the subsequent automaton transition where a corresponding



2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352

1:48 Constantin Enea and Eric Koskinen

passive thread finds it has been collided with. Importantly, every run of the quotient automaton
gives a serial linearization order that is a repetition of pairs of active/passive threads. All other
executions are equivalent to one such serialized run, up to commutativity.

For a passive-collider operation, we set the linearization point to be at the time of linearization of the matching
active-collider operation, and the push colliding-operation is linearized before the pop colliding-operation. — ?

Same as above.

Each push or pop operation consists of a while loop that repeatedly attempts to complete the operation. An iteration is
successful if its attempt succeeds, in which case the operation returns at that iteration; otherwise, another iteration is
performed . Each completed operation has exactly one successful attempt (its last attempt), and the linearization of the
operation occurs in that attempt. In other words, the operations are linearized in the aforementioned lineanirazation
points only in case of a successful CAS, which can only be performed in the last iteration of the while loop. —?

Same as above.

To prove that the aforementioned lines are correct linearization points of our algorithm, we need to prove that these are
correct linearization points for the two types of operations: operations that complete by modifying the central stack
object, and operations that exchange values through collisions. — ?

Same as above.

Lemma 5.13. For operations that do not collide, we can choose the following linearization points: Line T4 (for a push
operation). Line T10 (in case of empty stack) or line T14 (for a pop operation) - ?

Follows from the quotient automaton for the Treiber central stack.

We still have to prove that the linearization points for collider-operations are consistent, both with one another, and
with non-colliding operations. We need the following technical lemma, whose proof is omitted for lack of space. Lemma
5.14. Let op1, op2, be a colliding operations-pair, and assume w.l.o.g. that op1 is the active-collider and op2 is the passive
collider, then the linearization point of op1 (as defined above) is within the time interval of op2. - ?

Same as above.

Lemma 5.15. The following are legal linearization points for collider-operations.  An active-collider, op1, is linearized
at either line C2 (in case of a push operation) or at line C7 (in case of a pop operation). * A passive-collider, op2, is
linearized at the linearization time of the active-collider it collided with. If op2 is a push operation, it is linearized
immediately before op1, otherwise it is linearized immediately after op1. - ?

Same as above.

Summary. The quotient naturally and succinctly captures the key concept of the Elimination
stack: that a single successful CAS of one type of operation is the linearization point for that
operation as well as the corresponding matched operation (order with the push before the pop).
Specifically, every run of the quotient automaton gives a serial linearization order that is a repetition
of pairs of active/passive threads. All other executions are equivalent to one such serialized run,
upto commutativity.

Many of the lemmas and reasoning in the ? proof are used to set up a bijection between active
and passive threads. The quotient instead simplifies the proof through the serialized representative
executions. The quotient similarly simplifies the other logistics of threads preparing/completing in
the other quotient automaton states.

N.3 Michael-Scott Queue
The layer quotient for the MSQ is given in Apx. G. We will refer to the layers defined there.

We now review all the steps in detail. An enqueuer creates a new node with the new value to be enqueued (Line 10),
reads tail, and finds the node that appears to be last (Lines 12—13). To verify that node is indeed last, it checks whether
that node has a successor (Line 15). If so, the thread attempts to append the new node by calling compareAndSet()
(Line 16). (A compareAndSet() is required because other threads may be trying the same thing.) — Herlihy and Shavit
[2008b]




2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401

Scenario-based Proofs for Concurrent Objects 1:49

The above scenario involves a single successful enqueuer and unboundedly many other enqueuers
attempting. This scenario is captured by the Enqueue Succeed Layer, and the automaton transitions
shown in Fig. 1.

If the compareAndSet() succeeds, the thread uses a second compareAndSet() to advance tail to the new node (Line 17).
Even if this second compareAndSet() call fails, the thread can still return successfully because, as we will see, the call
fails only if some other thread “helped” it by advancing tail. — Herlihy and Shavit [2008b]

The above scenario corresponds to the Advancer Succeed Layer, where some advancer succeeds.

If the tail node has a successor (Line 20), then the method tries to “help” other threads by advancing tail to refer directly
to the successor (Line 21) before trying again to insert its own node. — Herlihy and Shavit [2008b]

The above scenario corresponds to the Advancer Succeed Layer, and the fact that “trying again to
insert” occurs in a subsequent layer.

This enq() is total, meaning that it never waits for a dequeuer. A successful enq() is linearized at the instant where the
executing thread (or a concurrent helping thread) calls compareAndSet() to redirect the tail field to the new node at Line
21. - Herlihy and Shavit [2008b]

This linearization point occurrence is preserved in the layer quotient abstraction, at the point where
the tail is advanced.

The deq() method is similar to its total counterpart from the UnboundedQueue. If the queue is nonempty, the dequeuer
calls compareAndSet() to change head from the sentinel node to its successor, making the successor the new sentinel
node. The deq() method makes sure that the queue is not empty in the same way as before: by checking that the next
field of the head node is not null. - Herlihy and Shavit [2008b]

This scenario is captured by the Dequeue Succeed Layer (when the queue is non-empty) and by
Read Only Layer 1 (where dequeue returns because the queue was empty).

Regarding ADT states, the correctness argument mentions two aspects: (1) whether the queue was
empty and (2) whether the tail pointer was lagged. This is captured in the automaton representation
in Fig. 1, where the states capture both 1 and 2.

tail head

ALK

b sentinel

o

new o
released
node

There is, however, a subtle issue in the lock-free case, depicted [above]: before advancing head one must make sure that
tail is not left referring to the sentinel node which is about to be removed from the queue. To avoid this problem we
add a test: if head equals tail (Line 31) and the (sentinel) node they refer to has a non-null next field (Line 32), then
the tail is deemed to be lagging behind. As in the enq() method, deq() then attempts to help make tail consistent by
swinging it to the sentinel node’s successor (Line 35), and only then updates head to remove the sentinel (Line 38). As in
the partial queue, the value is read from the successor of the sentinel node (Line 37). If this method returns a value,
then its linearization point occurs when it completes a successful compareAndSet() call at Line 38, and otherwise it is
linearized at Line 33. - Herlihy and Shavit [2008b]

There are multiple layers discussed above. First, there is an Advancer Succeed Layer as part of a
dequeue. Second, a Dequeue Succeed Layer (or Read Only Layer 1) may occur, but only after (“only
then”) the Advancer Succeed Layer. This scenario is focused on the refers to gs; in the quotient
automaton, where Q. tail=Q.head and yet Q. tail->next#null. The automaton helps illuminate
this case because the states and arcs require one to consider all possible cases, which layers are
enabled, and where the arcs land after the layer.



2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450

1:50 Constantin Enea and Eric Koskinen

Summary. See Sec. 6.1.

N.4 SLS Queue

We review the correctness argument presented by the original authors [Scherer III et al. 2006], quot-
ing their prose and discussing how those statements correspond to our quotient proof methodology
with layer expressions.

The reservation linearization point for this code path occurs at line 10 when we successfully insert our offering into the
queue — Scherer III et al. [2006]

First, this prose indicates that is a linearization point. The write of is atomic and so this
line number has a corresponding location in the layer expression, which is this same linearization
point. Second, this prose identifies a layer as an important state change: inserting an offer node
into the queue. This is the EAIN layer in our decomposition. Third, the prose describes what kind
of data change is important: the tail changing to non-null, a distinction we make in the states of
our layer automaton.

“A successful followup linearization point occurs when we notice at line 13 that our data has been taken. — Scherer I
et al. [2006]

Similarly here this linearization point appears in a layer where a dequeue mutates the state, and
local path is feasible. This prose also identifies important state change: from an item to null.

The other case occurs when the queue consists of reservations (requests for data), and is depicted [below]. — Scherer III
et al. [2006]

Head Tail

o o /°

Dummy Reserv. Cancel Reserv.
|
N U mm
Item @ Item @

In this case, after originally reading the head node (step A), we read its successor (line 21/step B) and verify consistency
(line 22). Then, we attempt to supply our data to the head-most reservation (line 25/C). If this succeeds, we dequeue the
former dummy node ( 26/D) and return — Scherer III et al. [2006]

This prose again indicates important state changes, which are reflected as distinct states (and
transitions between them) in our layer automata: whether head-most reservation has data supplied
and whether the head dummy node needs to be advanced.

If it fails, we need to go to the next reservation, so we dequeue the old dummy node anyway (28) and retry the entire
operation (32, 05). — Scherer III et al. [2006]

This is a description of the failure path - (@I + (6bP)) and that interference (implicitly) caused
by a concurrent cas from @®.

The reservation linearization point for this code path occurs when we successfully supply data to a waiting consumer at
line 25; the followup linearization point occurs immediately thereafter. — Scherer III et al. [2006]

Again, this prose indicates the important state transition at @®, replacing a null with an item (as
seen in the states of our layer automaton), and corresponding automaton transition for layer EFHR.

Summary. A summary is given in Sec. 6.2.



2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499

Scenario-based Proofs for Concurrent Objects 1:51

N.5 Herlihy-Wing Queue

We now examine the author’s proof of this object. As discussed in Sec. 6.5, the quotient can be
abstracted as: (degF* - (enqI)* - engW* - deqT*)*. A proof of correctness is given in Appendix II
of Herlihy and Wing [1990]. A key challenge of this object is that linearization points are non-fixed.

An Enq execution occurs in two distinct steps, which may be interleaved with steps of other concurrent operations: an
array slot is reserved by atomically incrementing back, and the new item is stored in items. — Sec 4.1 of Herlihy and
Wing [1990]

This describes an execution scenario with unboundedly many threads, though is not yet an argument
for why that scenarios is correct. This scenario appears in the quotient as the fact that enqI and
engW are distinct.

To cope with non-fixed linearization points (in this and other objects), the authors introduce a
proof methodology based on tracking all possible linearizations that could happen in the future:

For each linearized value, it is sometimes useful to keep track of which invocations were completed in the linearization
that yielded that value, and what their responses were. A possibility for a history H is a triple (v, P, R), where v is a
linearized value of H, P is the subset of pending invocations in H not completed when forming the linearization that
yielded u, and R is the set of responses appended to H to form u. — Appendix I of Herlihy and Wing [1990]

This is a rather general method for linearizability. The quotient, however, allows one to consider
scenarios along the lines of “one or more enqueuers increment back, possibly some of them write
to the array, and then some dequeuers succeed,” following the quotient’s regular expression.

Importantly, while the Appendix I of Herlihy and Wing [1990] methdology maintains a history to
allow for all possible linearization orders, quotient-based reasoning instead involves representative
executions (those that are accepted by the regular expression) with fixed linearization orders and
all other executions are equivalent to one such representative execution upto commutativity.



	Abstract
	1 Introduction
	1.1 Formalizing Scenarios with Quotients
	1.2 Example: Scenario-based proofs of the Michael-Scott Queue
	1.3 Challenges and Contributions

	2 Preliminaries
	3 Object Quotients
	4 Finite Abstract Representations of Quotients
	5 Layers: An Inductive Quotient Language
	5.1 Local-vs-Write Paths
	5.2 The Language of Layers
	5.3 Proof Methodology with Two-Thread Reasoning

	6 Evaluation: Verifying Concurrent Objects
	6.1 The Michael/Scott Queue
	6.2 The SLS Synchronous Reservation Queue
	6.3 The Hendler et al. Elimination Stack
	6.4 The Harris et al. Restricted Double-Compare Single-Swap (RDCSS)
	6.5 The Herlihy-Wing Queue

	7 Generating Candidate Quotient Expressions
	8 Related work
	9 Conclusion
	References
	A Unabridged Concurrent Object Semantics
	A.1 Executions, Traces, Linearizability

	B Proof of Theorem 5.6
	C Layer Automata
	C.1 Automaton Representation of Layer Quotients
	C.2 Computing Layer Automata

	D SLS queue source code
	D.1 SLS queue implementation graph

	E Detailed explanation for Counter
	F Layer automaton for Counter
	G Quotient for Michael-Scott Queue (Further Details)
	H Quotient for the SLS Queue
	I Quotient for Treiber's Stack
	J Quotient for Elimination Stack
	K Quotient for RDCSS
	L Quotient for the List Set
	M Quotient for the Herlihy-Wing Queue
	M.1 Proof of atomicity of outer loop

	N Evaluation: Algorithm Authors' Correctness Arguments
	N.1 Treiber's Stack
	N.2 Elimination Stack
	N.3 Michael-Scott Queue
	N.4 SLS Queue
	N.5 Herlihy-Wing Queue


