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Expressing Security Properties in CSP

� Security properties: the goals that a protocol is 
meant to satisfy, relatively to specific kinds and 
levels of threat – the intruders and their capabilities

� We will consider the following security properties:
� Secrecy

� messages, keys, etc. have not become known
� Authentication

� Guarantees about the parties involved in the protocol
� Non-repudiation

� Evidence of the involvement of the other party
� Anonymity

� Protecting the identity of agents wrt particular events 
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Anonymity

� We will model events as consisting of two 
components: the event itself, x, and the identity of 
the agent performing the event, a

a.x
� AnUsers: the users who want to remain secret
� Given x, define A = { a.x | a ε AnUsers }

� Definition: A protocol described as a CSP 
system P provides anonymity if an arbitrary 
permutation of the events in A, applied to all 
the traces of P, does not alter the set of all 
possible traces of P
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Anonymity

� Traces of a process: the sequences of visible actions 
in all possible runs

� Example:  a -> b -> Stop |||  c -> d -> Stop

Traces: a.b.c.d a.c.b.d   c.a.b.d   a.c.d.b   c.a.d.b c.d.a.b

� Example:  a -> b -> c -> Stop ||{b} d -> b -> e -> Stop

Traces: a.d.b.c.d d.a.b.c.d    a.d.b.d.c    d.a.b.d.c
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Anonymity

� Let   AnUsers = {p1,p2}

� Let  A = {p1.m, p2.m}

� Example 1     p1.m -> p2.m -> Stop
� Example 2     p1.m -> Stop |||  p2.m -> Stop
� Example 3     p1.m -> Stop +   p2.m -> Stop

� Question: for each system, say whether or 
not it provides anonymity wrt A
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Anonymity

� A more involved example:

P = p1.m -> a -> Stop []  p2.m -> a -> Stop
||{p1.m , p2.m }
p1.m -> b -> Stop []  p2.m -> c -> Stop

Question: Does P provides anonymity wrt 
A = {p1.m, p2.m}
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Anonymity

� Answer: No
P has traces  (p1.m).b.a ,   (p2.m).c.a  ,  …

but not  (p2.m).b.a ,   (p1.m).c.a ,  …
The permutation  { p1 -> p2 , p2 -> p1 } changes the traces. 

� However, if we assume that the observer has no 
visibility of the actions b and c, then the system does 
provide anonymity wrt    A = {p1.m, p2.m}

� One elegant way to formalize the concept of visibility 
in CSP is to use the the hiding operator:

P\{b, c} provides anonymity wrt A

� Note: the above example shows that hiding A would not be enough
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Anonymity

� In general, given P, consider the sets: 
� A = { a.x | a ε AnUsers }  : the actions that we want 

to know only partially (we want to know x but not a)
� B :  the actions that we want to observe
� C = Actions – (B U A) : The actions we want to hide

B C

A

�

The system to consider for the
Anonymity analysis:  P\C

Method: for any perm ρ : A -> A
Check that ρ (P\C)  =T P\C

=T : trace equivalence
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Example: The dining cryptographers

Crypt(0)

Crypt(1) Crypt(2)

Master

Coin(2)

Coin(1) Coin(0)

pays.0notpays.0

look.2.0

out.1
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The dining cryptographers

� Three cryptographers share a meal
� The meal is paid either by the organization 

(master) or by one of them. The decision on 
who pays is taken by the master

� Each of them is informed by the master 
whether or not he is paying

� GOAL: The cryptographers would like to know 
whether the organization is paying or not, but 
without knowing the identity of the 
cryptographer who is paying (if any).
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The dining cryptographers

� Solution: Each cryptographer tosses a coin. Each coin 
is in between two cryptographers.

� The result of each coin-tossing is visible to the 
adjacent cryptographers, and only to them.

� Each cryptographer examines the two adjacent coins 
� If he is not paying, he announces “agree” if the results are 

the same, and “disagree” otherwise.
� If he is paying, he says the opposite

� Claim: if the number of “disagree” is even, then the 
master is paying. Otherwise, one of them is paying. In 
the latter case, the non paying cryptographers will 
not be able to deduce whom exactly is paying
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The dining cryptographers

� Specification in CSP: Master and Coins

Master = 
Σn pays.n -> notpays.(n+1) -> notpays (n+2) -> Stop
+ notpays.0 -> notpays.1 -> notpays.2 -> Stop

Coin(n) = Heads(n) + Tails(n)

Heads(n) = look.n.n.hd ->Stop  |||  look.(n-1).n.hd ->Coin(n)

Tails(n) = look.n.n.tl -> Stop  |||  look.(n-1).n.tl ->Coin(n)

� Note: the arithmetic operations are modulo 3
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The dining cryptographers

� Specification in CSP:  Cryptographers

Crypt(n) = notpays(n) -> Check(n)
[] pays(n) -> Check’(n)

Check(n) =  look.n.n?x -> look.n.(n+1)?y ->
if (x=y) then out.n.agree -> Stop

else out.n.disagree -> Stop

Check’(n) =  look.n.n?x -> look.n.(n+1)?y ->
if (x=y) then out.n.disagree -> Stop

else out.n.agree -> Stop
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The dining cryptographers

� Specification in CSP:  The whole system

Crypts = Crypt(0)  |||  Crypt(1)  |||  Crypt(2) 

Coins  =  Coin(0)  |||  Coin(1)  |||  Coin(2) 

Meal   = Master ||{pays, notpays} ( Coins ||{look} Crypts )
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The dining cryptographers

� The anonymity property

� A = { pays.0, pays.1, pays.2 }        
� B = { out } 
� C = Actions – (B U A) = {look,notpays}

� Theorem: For every permutation ρρρρ: A -> A, we have
ρρρρ(Meal\C) =T Meal\C

� =T here represents trace equivalence. 
� This theorem means that an external observer cannot infer 

which cryptographer has paid.

� This theorem can be proved by using the authomatic tool FDR.  
� Of course, it can also be proved “by hand”. Exercise
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The dining cryptographers
� One can argue that previous result is not strong 

enough: a cryptographer has more information than an 
external observer. Let us then do the analysis for a 
cryptographer, say Crypt(0)

A = { pays.1, pays.2 }  
B = { pays.0, notpays.0, look.0, out } 
C = Actions – (B U A) 

� Theorem: For every permutation ρρρρ: A -> A, we have
ρρρρ(Meal\C) =T Meal\C

� This means that if Crypt(1) or Crypt(2) pay, then Crypt(0) can’t 
infer which of them has paid. The same can be shown for the 
other two. So Meal\C provides the desired anonymity property.
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The dining cryptographers

� Example of a case in which the anonymity property 
does not hold.

� Assume that Crypt(0) can access the result of the third coin, 
namely has visibility of the result of the action look.2.2

A = { pays.1, pays.2 }  
B = { pays.0, notpays.0, look.0, out } U { look.2.2 }
C = Actions – (B U A) 

� We have that for some permutation ρρρρ: A -> A, 
ρρρρ(Meal\C) =/=T Meal\C

pays.2  notpays.0  look.00.heads  look.0.1.heads  look.2.2.heads  out.2.disagree  YES
pays.1  notpays.0  look.00.heads  look.0.1.heads  look.2.2.heads  out.2.disagree  NO


