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Protection of sensitive information

• This part of the course is dedicated to the problem of protecting secret 
information when it is collected, stored, processed and  communicated 
by computer systems. This is the central issue in Security

• Typical counter-measures are encryption and access-control. 
However, they are not always sufficient! Systems could leak 
secret information through correlated observables.

• The notion of  “observable” depends on the adversary

• Often, secret-leaking observables are public, and therefore available to 
any adversary
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Leakage through correlated observables
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Password checking

Election tabulation

Timings of decryptions



Plan of the lecture

1. Information leakage: motivation for quantitative approaches.

2. The information-theoretic approach to quantify the leakage of 
information:  

3. Channel matrix

4. Prior and posterior probablity
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Quantitative Information Flow

Information Flow:  Leakage of secret information via 
correlated observables 

Ideally:  No leak 

• No interference [Goguen & Meseguer’82]

In practice:  There is almost always some leak

• Intrinsic to the system (public observables, part of the design)

• Side channels 

 need quantitative ways to measure the leak 

5



Password checker 1

Password: K1K2 . . .KN

Input by the user: x1x2 . . . xN

Output: out (Fail or OK)

Intrinsic leakage 

By learning the result of the 
check the adversary learns 
something about the secret
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Example 1



Example 1

Password checker 2

Password: K1K2 . . .KN

Input by the user: x1x2 . . . xN

Output: out (Fail or OK)

More efficient, but what about 
security?
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Password checker 2

Password: K1K2 . . .KN

Input by the user: x1x2 . . . xN

Output: out (Fail or OK)

Side channel attack 

If the adversary can measure 
the execution time, then he can 
also learn the longest correct 
prefix of the password
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• A set of nodes with some 
communication channels (edges).

• One of the nodes (source) wants to 
broadcast one bit b of information

• The source (broadcaster) must 
remain anonymous

Example 2
Example of Anonymity Protocol:  

DC Nets [Chaum’88] 



• A set of nodes with some 
communication channels (edges).

• One of the nodes (source) wants to 
broadcast one bit b of information

• The source (broadcaster) must 
remain anonymous

b=1

Example of Anonymity Protocol:  
DC Nets [Chaum’88] 



Chaum’s solution

• Associate to each edge a fair 
binary coin

b=1



Chaum’s solution
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• Associate to each edge a fair binary 
coin
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Chaum’s solution
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• Associate to each edge a fair binary 
coin

• Toss the coins

• Each node computes the binary 
sum of the incident edges.  The 
source adds b. They all broadcast 
their results

b=1



Chaum’s solution
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• Associate to each edge a fair binary 
coin

• Toss the coins

• Each node computes the binary 
sum of the incident edges.  The 
source adds b. They all broadcast 
their results

• Achievement of the goal:                             
Compute the total binary sum:       
it coincides with b 

b=1



Anonymity of DC Nets

Observables:  An (external) attacker can 
only see the declarations of the nodes

Question: Does the protocol protects the 
anonymity of the source? 
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• If the graph is connected and the 
coins are fair,  then for an external 
observer,  the protocol satisfies 
strong anonymity: 

the a posteriori probability that a 
certain node is the source is equal 
to its a priori probability

• A priori / a posteriori   =              
before / after observing the 
declarations

Strong anonymity (Chaum)
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b=1



Example 3: Crowds [Rubin and Reiter’98]

• Problem:  A user (initiator) wants to send a 
message anonymously to another user (dest.)

• Crowds:   A group of n users who agree to 
participate in the protocol. 

• The initiator selects randomly another user 
(forwarder) and forwards the request to her

• A forwarder randomly decides whether to 
send the message to another forwarder or 
to dest.

• ... and so on

dest.



Example 3: Crowds [Rubin and Reiter’98]

• Problem:  A user (initiator) wants to send a 
message anonymously to another user (dest.)

• Crowds:   A group of n users who agree to 
participate in the protocol. 

• The initiator selects randomly another user 
(forwarder) and forwards the request to her

• A forwarder randomly decides whether to 
send the message to another forwarder or 
to dest.

• ... and so on

dest.

Probable innocence: under 
certain conditions, an attacker 
who intercepts the message from 
x cannot attribute more than 0.5 
probability to x to be the initiator 



Common features

• Secret information

• Password checker: The password

• DC: the identity of the source 

• Crowds: the identity of the initiator 

• Public information (Observables)

• Password checker: The result (OK / Fail) and the execution time

• DC: the declarations of the nodes

• Crowds: the identity of the agent forwarding to a corrupted user 

• The system may be probabilistic

• Often the system uses randomization to obfuscate the relation between secrets 
and observables

• DC: coin tossing 

• Crowds: random forwarding to another user 
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Simplifying assumptions

In this course we assume: 

• Secrets: elements of a random variable  S

• Observables: elements of a random variable O

• For each secret s, the probability that we obtain an 
observable o is given by p(o | s) 

• No feedback: the secret is not influenced by the 
observables

• No nondeterminism:  everything is (either deterministic 
or) probabilistic, although we may not know the 
distribution  
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The basic model: 
Systems = Information-Theoretic channels

Observables

......

o1

on

System

Secret Information

Input Output

s1

sm
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Probabilistic systems are noisy channels:   
an output can correspond to different inputs, and  
an input can generate different outputs, according to a prob. distribution 

p(oj|si):   the conditional probability to observe oj given the secret si

 

...

s1 o1

on

......
sm

p(o1|s1)

p(on|s1)
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A channel is characterized by its matrix: the array of conditional probabilities 

In a information-theoretic channel these conditional probabilities are 
independent from the input distribution 

This means that we can model systems abstracting from the input 
distribution

......

s1

sm

o1 on

p(on|s1)p(o1|s1)

p(o1|sm) p(on|sm)

...

...
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p(o|s) = p(o and s)

p(s)



Particular case: Deterministic systems 
In these systems an input generates only one output 
Still interesting: the problem is how to retrieve the input from the output 

The entries of the channel matrix can be only 0 or 1

 

...

s1
o1

on

...
...

sm
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Example: DC nets (ring of 3 nodes, b=1)

Secret Information Observablesn0

n2 n1
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Example: DC nets (ring of 3 nodes, b=1)

n0

Secret Information Observablesn0

n2 n1
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Example: DC nets (ring of 3 nodes, b=1)

n1

Secret Information Observablesn0

n2 n1
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Example: DC nets (ring of 3 nodes, b=1)

n2

Secret Information Observablesn0

n2 n1
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Example: DC nets (ring of 3 nodes, b=1)

n2 111

Secret Information Observables

n0

n1
n2

n0

n2 n11

01

1

29

11



Example: DC nets (ring of 3 nodes, b=1)

n2

Secret Information Observablesn0

n2 n10

00

0

100
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Example: DC nets (ring of 3 nodes, b=1)

n2

001

010

100

111

Secret Information Observablesn0

n2 n1
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Example: DC nets (ring of 3 nodes, b=1)

n0

n2

001

n1

010

100

111

Secret Information Observablesn0

n2 n1

32



⅓ ²⁄₉ ²⁄₉ ²⁄₉

²⁄₉ ⅓ ²⁄₉ ²⁄₉

²⁄₉ ²⁄₉ ⅓ ²⁄₉

001

n0

n1

n2

010 100 111

Example: DC nets (ring of 3 nodes, b=1)

fair coins: Pr(0) = Pr(1) = ½
strong anonymity

biased coins:  Pr(0) = ⅔ , Pr(1) = ⅓
The source is more likely to declare 1 than 0

001

n0

n1

n2

010 100 111

¼ ¼ ¼ ¼
¼¼¼¼

¼ ¼ ¼ ¼
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Quantitative Information Flow

• Intuitively, the leakage is the (probabilistic) 
information that the adversary gains about the 
secret through the observables

• Each observable changes the prior probability 
distribution on the secret values into a posterior 
probability distribution according to the Bayes 
theorem

• In the average, the posterior probability distribution 
gives a better hint about the actual secret value



Observables:  prior ⇒ posterior
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Observables:  prior ⇒ posterior
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conditional prob
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Observables:  prior ⇒ posterior

37

⅓ ²⁄₉ ²⁄₉ ²⁄₉

²⁄₉ ⅓ ²⁄₉ ²⁄₉

²⁄₉ ²⁄₉ ⅓ ²⁄₉

001

n0

n1

n2

010 100 111

⅙
1/18 1/12 1/18 1/18

1/18 1/18 1/12 1/18

001

n0

n1

n2

010 100 111

  p(o|n) 
conditional prob

  p(n,o) 
joint prob

p(n)

½
¼
¼

prior
secret 
prob



Observables:  prior ⇒ posterior
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Bayes theorem
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Password-checker 1

          
Let us construct the channel matrix

Note:  The string x1x2x3 typed by the user is a parameter, and  K1K2K3 is the 
channel input 

The standard view is that the input represents the secret. Hence we should take 
K1K2K3 as the channel input 



Password-checker 1

          

Let us construct the channel matrix

000

001

010

011

100

101

110

111

Fail

OK

Input: K1K2K3 2 {000, 001, . . . , 111}

Output: out 2 {OK,FAIL}

Assume the user string is x1x2x3 = 110

Different values of x1x2x3 

give different channel 
matrices, but they all 
have this kind of shape 
(seven inputs map to Fail, 
one maps to OK)



Password-checker 2
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Let us construct the channel matrix{ }
Output: out 2 {OK, (FAIL, 1), (FAIL, 2), (FAIL, 3)}

Assume the adversary can measure
the execution time

000

001

010

011

100

101

110

111

(Fail,1)

(Fail,2)

(Fail,3)

OK

Input: K1K2K3 2 {000, 001, . . . , 111}

Assume the user string is x1x2x3 = 110



Exercise 1

• Assuming that the possible passwords have 
uniform prior distribution, compute the 
matrix of the joint probabilities, and the 
posterior probabilities, for the two password-
checker programs
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Example:  DC nets.  Ring of 2 nodes, and assume b = 1 

n0

n1
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Let us construct the channel matrix 

Input:  n0 , n1

Output:  the declarations of n1 and n0:  d1d0 ∈ {01,10}

n0

n1

01

10

Secret Observable

coin = 0

coin = 1



Example:  DC nets.  Ring of 2 nodes, and assume b = 1 

n0

n1
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Let us construct the channel matrix 

Input:  n0 , n1

Output:  the declarations of n1 and n0:  d1d0 ∈ {01,10}

Fair coin: p(0) = p(1) = ½ Biased coin:  p(0) = ⅔  p(1) = ⅓ 

01 10

n0 ½ ½

n1 ½ ½

01 10

n0 ⅔ ⅓
n1 ⅓ ⅔



Exercise 2

• DC nets: Assuming that n0 and n1 have 
uniform prior distribution, compute the 
matrix of the joint probabilities, and the 
posterior probabilities, in the two cases of 
fair coins, and of biased coins

• Same exercise, but now assume that the prior 
distribution is 2/3 for n0 and 1/3 for n1
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