Motivation

Can differential privacy be adapted to different privacy requirements?

Can we use differential privacy on secrets that are not databases?
Outline

- Generalization of differential privacy
- Privacy in the context of statistical databases
- Privacy in location-based systems
Differential Privacy, adjacent databases

- **Adjacency**: $x \sim_h x'$ iff they differ in exactly one individual

 $x = \langle 32, 41, 27 \rangle$

 $x' = \langle 32, 52, 27 \rangle$

- $K : \mathcal{X} \rightarrow \mathcal{P}(\mathcal{Z})$ satisfies ϵ-differential privacy iff

 $$K(x)(Z) \leq e^\epsilon K(x')(Z) \quad \forall x \sim_h x'$$

- ϵ: distinguishability level between adjacent databases
Differential Privacy, any databases

- Hamming distance $d_h(x, x')$: number of elements in which x, x' differ

\[
x = \langle 32, 41, 27 \rangle \\
x' = \langle 21, 52, 27 \rangle \\
d_h(x, x') = 2
\]
Differential Privacy, any databases

- **Hamming distance** $d_h(x, x')$: number of elements in which x, x' differ

 \[
x = \langle 32, 41, 27 \rangle

x' = \langle 21, 52, 27 \rangle
\]

 \[
d_h(x, x') = 2
\]

- Differential privacy can be equivalently defined as follows:

 \[
 K(x)(Z) \leq e^{\epsilon d_h(x, x')} K(x')(Z) \quad \forall x, x'
 \]
Differential Privacy, any databases

- Hamming distance $d_h(x, x')$: number of elements in which x, x' differ

 $x = \langle 32, 41, 27 \rangle$

 $x' = \langle 21, 52, 27 \rangle$

 $d_h(x, x') = 2$

- Differential privacy can be equivalently defined as follows:

 $K(x)(Z) \leq e^{\varepsilon d_h(x, x')} K(x')(Z) \quad \forall x, x'$

- $\varepsilon d_h(x, x')$: distinguishability level between any databases
Differential Privacy, any databases

- Hamming distance $d_h(x, x')$: \# of elements in which x, x' differ

 \[x = \langle 32, 41, 27 \rangle \]
 \[x' = \langle 21, 52, 27 \rangle \]
 \[d_h(x, x') = 2 \]

- Differential privacy can be equivalently defined as follows:

 \[K(x)(Z) \leq e^{\varepsilon d_h(x, x')} K(x')(Z) \quad \forall x, x' \]

- $\varepsilon d_h(x, x')$: distinguishability level between any databases

- the less distinguishable two databases are, the more similar the outcome should be
Differential Privacy, generalization

- Arbitrary domain of secrets \mathcal{X}
Differential Privacy, generalization

- Arbitrary domain of secrets \mathcal{X}

- $\mathbf{\varepsilon}(x, x')$: distinguishability level between x, x'
Differential Privacy, generalization

- Arbitrary domain of secrets \mathcal{X}
- $\mathcal{E}(x, x')$: distinguishability level between x, x'
- Expected properties:
 - $\mathcal{E}(x, x) = 0$
 - $\mathcal{E}(x, x') = \mathcal{E}(x', x)$
 - $\mathcal{E}(x_1, x_2) \leq b \Rightarrow \mathcal{E}(x_1, x_3) \leq f(b)$
Differential Privacy, generalization

- Arbitrary domain of secrets \mathcal{X}

- $\varepsilon(x, x')$: distinguishability level between x, x'

- Expected properties:
 - $\varepsilon(x, x) = 0$
 - $\varepsilon(x, x') = \varepsilon(x', x)$
 - $\varepsilon(x_1, x_2) \leq b$\n - $\varepsilon(x_3, x_2) \leq b$\n
 $\Rightarrow \varepsilon(x_1, x_3) \leq f(b)$

- We take $\varepsilon(x, x')$ to be a metric, denoted $d_\mathcal{X}$

\[d_\mathcal{X}(x_1, x_3) \leq d_\mathcal{X}(x_1, x_2) + d_\mathcal{X}(x_3, x_2) \]
Differential Privacy, generalization

d_X-privacy

\[K(x)(Z) \leq e^{d_X(x, x')} K(x')(Z) \quad \forall x, x' \]

- the less distinguishable two secrets are, the more similar the outcome should be.

- There is no \(\epsilon \), but we can just rescale the metric in order to obtain the desired level of privacy: \(d_X = \epsilon d_X' \)

- \(\epsilon \)-differential privacy = \(\epsilon d_h \)-privacy
Differential Privacy, generalization

\[d_x\text{-privacy} \]
\[K(x)(Z) \leq e^{d_x(x,x')} K(x')(Z) \quad \forall x, x' \]

This notion of privacy protects the accuracy of the data

- Foundations
 - Compositionality
 - Implementation: Laplacian
 - Optimality results

- Applications
 - Statistical databases - (normalized) Manhattan distance
 - Location privacy - Geographical distance
 - In general, every domain equipped with a metric
Compositionality

If K, K' are d_x and d_x' differentially private, then the composition of the two mechanisms, (K, K'), is $d_x + d_x'$ differentially private.
Answering queries

- Query $f : \mathcal{X} \rightarrow \mathcal{Y}$

- f is Δ-sensitivity wrt d_x, d_y iff:

$$\Delta = \max_{x, x'} \frac{d_y(f(x), f(x'))}{d_x(x, x')}$$

- If $H : \mathcal{Y} \rightarrow \mathcal{P}(\mathcal{Z})$ satisfies d_y-privacy then $H \circ f$ satisfies Δd_x-privacy

- H can be implemented in the usual way as Laplacian noise:

$$H(y)(z) = c \cdot e^{\frac{-d_y(z, y)}{\Delta}} \epsilon$$

We can easily prove that H satisfies $\frac{d_y}{\Delta} \epsilon$-privacy, and consequently $H \circ f$ satisfies $d_x \epsilon$-privacy
Outline

- Generalization of differential privacy
- **Privacy in the context of statistical databases**
- Privacy in location-based systems
The normalized Manhattan metric

- The Hamming distance is independent from the actual values

\[x_1 = \langle 32, 0, 27 \rangle \]
\[x_2 = \langle 32, 0.01, 27 \rangle \]
\[x_3 = \langle 32, 10^6, 27 \rangle \]

\[d_h(x_1, x_2) = d_h(x_1, x_3) = 1 \]
The normalized Manhattan metric

- The Hamming distance is independent from the actual values

\[x_1 = \langle 32, 0, 27 \rangle \]
\[x_2 = \langle 32, 0.01, 27 \rangle \]
\[x_3 = \langle 32, 10^6, 27 \rangle \]
\[d_h(x_1, x_2) = d_h(x_1, x_3) = 1 \]

- the distinguishing level between \(x_1, x_2 \) and \(x_2, x_3 \) is the same
The normalized Manhattan metric

- The Hamming distance is independent from the actual values

 $$x_1 = \langle 32, 0, 27 \rangle$$
 $$x_2 = \langle 32, 0.01, 27 \rangle$$
 $$x_3 = \langle 32, 10^6, 27 \rangle$$
 $$d_h(x_1, x_2) = d_h(x_1, x_3) = 1$$

- the distinguishing level between x_1, x_2 and x_2, x_3 is the same

- Many queries are insensitive to minor changes in values
The normalized Manhattan metric

- The Hamming distance is independent from the actual values

 \[x_1 = \langle 32, 0, 27 \rangle \]
 \[x_2 = \langle 32, 0.01, 27 \rangle \]
 \[x_3 = \langle 32, 10^6, 27 \rangle \]
 \[d_h(x_1, x_2) = d_h(x_1, x_3) = 1 \]

- The distance level between \(x_1, x_2 \) and \(x_2, x_3 \) is the same

- Many queries are insensitive to minor changes in values

- If \(\epsilon \) is “weak”, we might require higher protection for \(x_1, x_2 \)
The normalized Manhattan metric

- **Manhattan metric:**
 \[d_1(x, x') = \sum_{i=1}^{n} d_V(x[i], x'[i]) \]

- **Normalized Manhattan metric:**
 \[\tilde{d}_1(x, x') = \frac{d_1(x, x')}{d_V(V)} \]
 where \(d_V(V) \) is the maximum distance among the values

- **Stronger than Hamming:** \(\tilde{d}_1(x, x') \leq d_h(x, x') \)

\[x_1 = \langle 32, 0, 27 \rangle \]
\[x_2 = \langle 32, 0.01, 27 \rangle \quad \tilde{d}_1(x_1, x_2) = 10^{-8} \]
\[x_3 = \langle 32, 10^6, 27 \rangle \quad \tilde{d}_1(x_1, x_3) = 1 \]
Advantages of the normalized Manhattan metric

Sensitivity:
- For a family of queries (sum, average, percentile, . . .), the sensitivity wrt \tilde{d}_1, d_R and d_h, d_R coincide
- In general, \tilde{d}_1 is smaller than d_h
- hence we get **stronger privacy** with the same noise

Optimality:
- If the set of values is discrete, then sum, average and percentile queries induce a graph structure which is a **straight line**
- As a consequence, the Geometric mechanism is **universally optimal** for sum, average and percentile queries wrt \tilde{d}_1
- In contrast, we saw that only counting queries have universally optimal mechanisms wrt d_h
The Manhattan metric

We can use the Manhattan metric without normalization:

\[d_1(x, x') = \sum_{i=1}^{n} d_v(x[i], x'[i]) \]

\(d_1 \) can be much higher than Hamming, but \(\Delta \) will be proportionally smaller than the usual sensitivity, so the protection, with respect to the introduced noise, is comparable.

Example:

\[x_1 = \langle 32, 0, 27 \rangle \]
\[x_2 = \langle 32, 0.01, 27 \rangle \]
\[x_3 = \langle 32, 10^6, 27 \rangle \]

\[\tilde{d}_1(x_1, x_2) = 10^{-2} \]
\[\tilde{d}_1(x_1, x_3) = 10^6 \]
The Manhattan metric

- The Manhattan metric be useful when we need to prevent the attacker from getting very precise data (for instance because they can be used to identify an individual),

- Trade-off between privacy and utility

- Optimality results similar to \tilde{d}_1
Outline

- Generalization of differential privacy
- Privacy in the context of statistical databases
- Privacy in location-based systems
Motivation

Geographical information is becoming essential for a variety of services: LBS, advertising, social networks, data mining, . . .

Privacy: location data are often sensitive and need protection.
Location-Based Systems

A location-based system is a system that uses geographical information in order to provide a service.

- Retrieval of Points of Interest (POIs).
- Mapping Applications.
- Deals and discounts applications.
- Location-Aware Social Networks.
Location-Based Systems

- **Location information is sensitive.** (it can be linked to home, work, religion, political views, etc).
- Ideally: we want to **hide our true location**.
- Reality: we need to **disclose some information**.
Motivating example

Locate a restaurant close to my location
Motivating example

Goal:

▶ Hide the user’s location (not identity) from the service provider
▶ Formal privacy guarantee

Constraints:

▶ Implementable in real-time on a smartphone
▶ No trusted party
▶ Optimally: no peer-to-peer communication
Existing privacy notions

\textit{k}-anonymity (or \textit{l}-diversity)

Hide the user’s location among \textit{k} points

- Include \textit{k} − 1 randomly generated points in the query
- Use a cloaking region including \textit{k} points of interest

\textbf{Problem:} depends on the attacker’s side information
Existing privacy notions

Differential Privacy
Changes in a single user’s value should have negligible effect on the reported value

- Useful for publishing aggregate information about a large number of users
- Has been used in the context of geo-location
- Inadequate for our motivating example
Towards a Definition

- Secrets are **locations**.
- Attacker’s goal: **distinguish** location x from x’.
- The closer two locations are, the more indistinguishable they should be.
Towards a Definition

- Secrets are locations.
- Attacker’s goal: distinguish location x from x’.
- The closer two locations are, the more indistinguishable they should be.
Towards a Definition

- Secrets are **locations**.
- Attacker’s goal: **distinguish** location x from x'.
- The closer two locations are, the more indistinguishable they should be.
Towards a Definition

- Secrets are locations.
- Attacker’s goal: distinguish location x from x’.
- The closer two locations are, the more indistinguishable they should be.
Towards a Definition

- Secrets are locations.
- Attacker’s goal: distinguish location x from x’.
- The closer two locations are, the more indistinguishable they should be.
Towards a Definition

- Secrets are locations.
- Attacker’s goal: distinguish location x from x'.
- The closer two locations are, the more indistinguishable they should be.
Towards a Definition

- Secrets are **locations**.
- Attacker’s goal: **distinguish** location x from x’.
- The closer two locations are, the more indistinguishable they should be.
Towards a Definition

- Secrets are locations.
- Attacker’s goal: distinguish location x from x’.
- The closer two locations are, the more indistinguishable they should be.
In search for a new definition

- What kind of privacy does the user expect to have?
In search for a new definition

- What kind of privacy does the user expect to have?
- Privacy depends on the accuracy of detecting x
In search for a new definition

- What kind of privacy does the user expect to have?
- Privacy depends on the accuracy of detecting x
- A different privacy level l for each radius r
In search for a new definition

ϵ-geo-indistinguishability

Require privacy for any radius r with a proportional level $l(r) = \epsilon \cdot r$
First approach for defining this notion

Intuitively we would like to require:

$$\frac{P(x|z)}{P(x'|z)} \leq e^{\epsilon r} \quad \forall r \forall x, x' : d_2(x, x') \leq r$$

but this might fail because of the prior knowledge $P(x)$
First approach for defining this notion

So we have to take it into account:

\[
\frac{P(x|z)}{P(x'|z)} \leq e^{\epsilon r} \frac{P(x)}{P(x')} \quad \forall r \quad \forall x, x' : d_2(x, x') \leq r
\]

are require this to hold for any prior \(P(x) \)
Second approach for defining this notion

Ideally we’d like the attacker’s knowledge to be unaffected by z:

$$\frac{P(x|z)}{P(x)} \leq e^{er} \quad \forall r, x$$

but z does provide information (i.e. that the user is in Paris)
Second approach for defining this notion

So we restrict the increase in knowledge within the radius r:

$$\frac{P(x|z, B_r(x))}{P(x|B_r(x))} \leq e^{\epsilon r} \quad \forall r, x$$

again, this should hold for any prior $P(x)$
Third approach for defining this notion

Nearby points should produce similar observations:

\[
\frac{K(x)(z)}{K(x')(z)} \leq e^{er} \quad \forall r \forall x, x' : d_2(x, x') \leq r
\]

which is the same as \(\epsilon d_2 \)-privacy.

All three formulations are equivalent.
A mechanism for geo-indistinguishability

The case of one dimension:

pdf: $\frac{\epsilon}{2} e^{-\epsilon|z-x|}$
A mechanism for geo-indistinguishability

Similarly in two dimensions:

\[
\text{pdf: } \frac{\epsilon^2}{2\pi} e^{-\epsilon d_2(\vec{x}, \vec{z})}
\]
A mechanism for geo-indistinguishability

Drawing from this distribution:
- use polar coordinates
- draw an angle θ uniformly
- draw a radius r from a gamma distribution

pdf: $\epsilon^2 r e^{-\epsilon r}$
A mechanism for geo-indistinguishability

- In practice locations are discretized
- (discretely) draw r, θ, map to the closest point on the grid
- Points correspond to differently shaped areas, leading to a violation of geo-indistinguishability
A mechanism for geo-indistinguishability

Solution: adjust ϵ to compensate for these differences

$$
\epsilon' = \epsilon + \frac{1}{u} \ln \frac{q - 2 + 3 e^{\epsilon v} \sqrt{2}}{q - 5}
$$
Case study: Location-Based Services

Retrieve location-dependent information

- Restaurants
- Friends
- Gas stations
- Weather
- ...

[picture of a man standing near the Eiffel Tower]
Case study: Location-Based Services

Solution:

▶ Add noise to the location x to obtain z
▶ Use z to query the provider
▶ Some services are insensitive to “small” perturbations (eg. weather, gas stations)
▶ In this case the quality of the results will not be affected
Case study: Location-Based Services

▶ Many LBS depend on the accuracy of the location eg. find restaurants within 300m from x
▶ In this case the query needs to be extended to a larger area eg. get restaurants within 1km from z
▶ Important: the area needs to be independent from z
Obfuscation

area of interest
Obfuscation

area of interest

reported position
Obfuscation
Obfuscation

area of retrieval

area of interest
Obfuscation
Privacy versus utility: evaluation

- 9x9 = 81 "points".
- We compare 4 mechanisms.
- Configured to the same utility.
- Three prior independent:
 - Planar Laplacian (discretized).
 - Optimal under uniform prior.
 - Simple cloaking.
Privacy versus utility: evaluation

- We fix the utility and measured the privacy.
- Utility loss measured as the expected distance between the true location and the reported one [Shroki et al., S&P 2012]
- Privacy measured as the expected error of the attacker (using prior information) [Shroki et al., S&P 2012]
- Priors: uniform over colored regions

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
</tr>
<tr>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
</tr>
<tr>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
</tr>
<tr>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
</tr>
<tr>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td>71</td>
<td>72</td>
</tr>
<tr>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
<td>81</td>
</tr>
</tbody>
</table>
Privacy versus utility: evaluation

The four mechanisms:
- Cloaking,
- Optimal by [Shroki et al. S&P 2012] for the uniform prior
- Ours (Planar Laplacian)
- Optimal by [Shroki et al. S&P 2012] for the given prior
With respect to the privacy measures proposed by [Shokri et al, S&P 2012], our mechanism performs better than the other mechanisms proposed in the literature which are independent from the prior (and therefore from the adversary)

The only mechanism that outperforms ours is the optimal by [Shokri et al, S&P 2012] for the given prior, but that mechanism is adversary-dependent.
Tool: “Location Guard”

http://www.lix.polytechnique.fr/~kostas/software.html

About 50,000 active users to date
Location Guard: goals

Provide a simple solution, for sporadic, real-time LBS access

Can we make it simple enough so that people actually use it?

Understandable, configurable by human beings

Low-level, application-agnostic solution
Location Guard: goals

Provide a simple solution, for sporadic, real-time LBS access

Can we make it simple enough so that people actually use it?

Understandable, configurable by human beings

Low-level, application-agnostic solution

OS-level on smartphones (problem: rooting the phone)

Browser level (desktop & mobile)
HTML5 geo-location API

Asking the browser for the user’s location
navigator.geolocation.getCurrentPosition(function(pos) {
 alert(
 "Latitude: " + pos.coords.latitude +
 "Longitude:" + pos.coords.longitude
);
});

navigator.geolocation.getCurrentPosition(function(pos)
 alert(
 "Latitude: " + pos.coords.latitude +
 "Longitude:" + pos.coords.longitude
);
);

Intercept the javascript call

Content-script, running in separate javascript enviroment

Inject code in the page, replace `navigator.geolocation`

Transparent to the user
User interfaces are hard

No initial setup, user configuration if needed
User interfaces are hard

No initial setup, user configuration if needed
Mobile support
Mobile support
User adoption

Timeline

Nov 2013: Chrome
Jul 2014: Firefox
Feb 2015: Firefox Mobile
Feb 2015: Opera

Current users

Chrome: 6224 active
Firefox: 4642 active
Firefox Mobile: 370 active
Opera: 2134 downloads
User adoption

Timeline

- Nov 2013: Chrome
- Jul 2014: Firefox
- Feb 2015: Firefox Mobile
- Feb 2015: Opera

Current users

- Chrome: **6224** active
- Firefox: **4642** active
- Firefox Mobile: **370** active
- Opera: **2134** downloads
How do users discover Location Guard?

No publicity

Huge number of extensions (1367 in Firefox privacy category alone!)
How do users discover Location Guard?

No publicity

Huge number of extensions (1367 in Firefox privacy category alone!)

Occasional promotion by Google/Mozilla

Mostly by searching (users care about privacy!)

“location”: position 1-2

“privacy”: position 35-40
You are here: Home > Firefox > Change your location in Firefox using Location Guard

Change your location in Firefox using Location Guard

by Martin Brinkmann on December 1, 2014 in Firefox - Last Update: December 1, 2014

Geolocation, the retrieval of a connecting user's location in the world, can be beneficial to both user and website operator. When you connect to a weather website for instance, it is often the case that you want weather information for the location you are at.

It can also be comfortable to be redirected to a country-specific version of a website.

Sometimes however, geolocation can backfire. This can be the case if you want to look up weather information for another location, if you don't want to be redirected automatically, or if the location that the service discovers is incorrect.

Privacy is usually not part of the problem and the main reason for that is that browsers such as Firefox display prompts before websites may access your location. Then again, if you allow it you may dislike that it can pinpoint your location precisely.

Location Guard is a relative new extension for the Firefox web browser that can be configured individually for each domain you visit that wants to access location-based features.

It offers two main features: the first enables you to add noise to your location so that it cannot be pinpointed with accuracy anymore. The second feature on the other hand sets your location to any place in the world.

Location Guard

Options Privacy Levels Fixed Position FAQ

Low Medium High

Protection area: 500 meters
Accuracy: 1186 meters
ghacks.net article
Chrome: linear growth
Questions?