Foundations of Privacy

Lecture 3



Resume of previous lecture

Differential Privacy (continuous case) Let £ : X — DZ be a randomized
mechanism. We say that K is e-differentially private if for every pair of databases
r1,To € X such that x1 ~ x5, and for every measurable S C Z, we have:

p(Z eS| X =x1) <ep(Z € S|X =x9)

where p(Z € S| X = x) represents the probability that on the database x the
mechanism reports an answer in S

Properties

e Differential privacy is independent from the prior and the side knowl-
edge of the adversary. In general by prior knowledge we mean the prior
probabilistic knowledge about x, which represent the private values of the
participants in the database (prior = before knowing the reported answer
z = K(z)). By side knowledge we mean every other knowledge of the
adversary.

e Differential privacy is compositional, namely: given two mechanisms K;
and o on X that are respectively €1 and eo-differentially private, their
composition Ky X Ky is (g1 + €2)-differentially private.



Resume of previous lecture

The meaning of differential privacy can be better understood in Bayesian terms.
In the following, z; represents the value of a participant 7 in the database, and
Tothers Tepresents the value of all other participants.

Bayesian characterization
e-differential-privacy is equivalent to the following property:

For all (x;, Tothers) € X, for all z € Z,

e~ ¢ S p(Xz — xi‘Xothers — xothersaz - Z) <e
p(Xz — xi‘Xothers — xothers)
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Namely: assuming that the adversary knows the value of all the other par-
ticipants in the database, the reported answer does not increase significantly
his probabilistic knowledge of the value of the participant ¢, with respect to his
prior knowledge.

Note that the above property is not comparable with the following one:
For all (x;, Tothers) € X, for all z € Z,

p(Xz' = xz)

Namely, if we remove the conditioning on X ,spers, we obtain a different formula,
which is neither stronger, nor weaker, than the previous one.
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Resume of previous lecture

Laplace mechanism: Given a query f:X — Y, where V is a subset of the real

numbers, the Laplace mechanism K is obtained by adding Laplacian noise to the
answer off. Namely, if f (x) = Y, then K (x) is a distribution on reals with a
probability density function defined as:
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where A is the sensitivity of f:
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Note that the Laplace mechanism is oblivious: - """

- sensitivity =50, mean = 180
sensitivity = 5, mean = 170
sensitivity = 20, mean = 150

the reported answer depends only on ¥y, not on x
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Resume of previous lecture

Geometric mechanism: This is an oblivious mechanism similar to the Laplace,
but on integers rather than reals. Namely: Given a query f : X — V/, where VY is

a subset of the integer numbers, the Geometric mechanism K is defined as
follows: if f(x) = vy, then XK(x) is a distribution on integers with a probability
distribution defined as:

|z —y|

p(Z = 2| f(X) =y) =ce 55

where C is a normalization factor, given by
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Exercise: show that the normalization factors of the Laplace
and the geometric mechanisms are indeed those indicated
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Intuition behind the Laplace distribution

Assume for example

R
¢ Af: | f(z1) — f(x2)] = 10 ratio = e 2
o y1 = f(x1) =10, yo = f(x2) = 20
Then: " ratio < e
|z—10]|

® dPy,(z) = 3¢ ™ ° ratio = €°—03"

g |Z—20|€ 2
) dPy2 (Z) — 210 (& 0.2 1 ratio = e

ratio = e
The ratio between these distribution is 2;

e = ¢° outside the interval [y, ys]

30 -20 -10 O 10 20 30 40 S50 60

o < ¢ inside the interval [y1, yo] y1 Y2 z

Note that the distance between y; and - is greatest when y; and y5 correspond
to the sensitivity of f. In this case the ratio between the respective Laplaces is
e. In all other cases, the distance between vy, y- is smaller, and therefore also

the ratio is smaller. Similar considerations hold for the geometric mechanism.
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Example

Consider a query of the form
f(x) = average age of the people in z
Assume that:
e The DB contains at least 100 people
e The age of people ranges in [0, 150]

We want to define the Laplace mechanism for this query. For this purpose, we
just need to compute the sensitivity of f.

Ay = maxg,~a, |f(r1) — f(72)]
— MaXg y;,0v5,€[0,150] n>100 la — wnﬁw

where a = average age in 1,
and vq,vo = ages of an individual in 1 and x5 resp.

V1 —V2
—  IMaXg vy,v5€[0,150] n2100| o

150—-0
100

= 1.5

_ 1=~y
A 6



Example: Counting Queries

® A counting query for a certain property Pis a
query of the form:

f(x) = number of individuals in the
database X who satisfy 2

® Kxercise: determine the sensitivity of a
counting query



Solution of the Exercises

Bob wants to find out whether Don is affected by a
certain disease d. He knows Don’s age and weight, and
that Don is going to check in a hospital that maintains a
database of all patients, and that can be queried with
queries of the form:

- How many patients are affected by the disease d !

- What is the average age and weight of the patients
affected by the disease d?

s it possible for Bob to determine, with high probability,
whether Don has the disease ? If you answer yes, what
is the strategy ! If you answer no, what other kind of
queries or knowledge should Bob have at his disposal?

9



Solution of the Exercises

|. Show that the Laplace mechanism is e-differentially-
private

2. Prove that differential privacy is compositional (slide 2)

3. Prove that differential privacy is equivalent to its
Bayesian characterization (slide 3)



