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Resume of previous lecture

• Problem of statistical databases: we want to 
make available aggregate information, but 
without compromising the private data of the 
individual participating in the database

• This is not so easy to do. Naive deterministic 
methods, such as k-anonymity, are vulnerable 
to composition attacks
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This is a general problem of the deterministic 
approaches (based on the principle of many-to-one): the 
combination of observations determines smaller and 
smaller intersections on the domain of the secrets, and 
eventually result in singletones
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Preventing composition attacks

We have seen that an effective method to 
mitigate composition attacks is to use  
controlled random noise 

A randomized mechanism is a mechanism 
to answer queries that instead of giving the 
true answer, it gives a noisy one. Namely, it 
gives an approximate answer generated 
according to some probability distribution 
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Randomized mechanisms
• A randomized mechanism (for a certain query) reports an answer which 

is an approximation of the true answer and is generated randomly 
according to some probability distribution 

• Randomized mechanisms are more robust to combination attacks than 
the deterministic ones

• However, we need to choose carefully the probability distribution, in 
order to get the desired degree of privacy, and in order to maintain a 
certain degree of utility for the query

• There is a trade-off between utility and privacy, but it is not strict: for a 
certain degree of privacy, one mechanism can give a better utility than 
another. It is therefore interesting to try to find the optimal mechanism 
(the mechanism with highest utility), among those that offer the desired 
degree of privacy.   

• To solve the above problem, and more in general to reason about privacy 
and utility, we need formal, rigorous definitions of these notions. 

•  A definition of privacy that has become very popular: Differential Privacy 
[Cynthia Dwork, ICALP 2006]

6



Plan of the lecture

• The standard definition of Differential Privacy

• The Bayesian interpretation of DP

• Compositionality of DP

• The privacy budget

• Implementation of DP: Laplacian noise

• Examples and exercises
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Databases
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• V is a set whose elements represent all possible values of the records

(v 2 V can be a tuple, i.e. it can be composed by various fields). We

assume that V contains a special element ? representing a dummy record,

or the absence of the corresponding record.

• A database of n records is an element of V

n
. We will represent the

databases by x, x1, x2, . . .

• We assume a probability distribution ⇡ on the databases. We will indicate

by X the corresponding random variable.

• Two databases x1, x2 are adjacent if they di↵er for exactly one record.

We will indicate this property with the notation x1 ⇠ x2

• The number of records in which two databases x1, x2 di↵er from each
other is called ”Hamming distance” between x1, x2.

• x1 ⇠ x2 represent the fact that x1 and x2 di↵er for the information relative

to an individual. Either this individual has been added to x2, or he has

been removed from x2, or has changed value.



Queries
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• (The answer to) a query f can be seen as a function from the set of

databases X = V

n
to a set of values Y. Namely,

f : X ! Y

• y = f(x) is the true answer of the query f on the database x.

• For a given f , the distribution ⇡ on X also induces a distribution on Y.

We will denote by Y the random variable associated to the distribution

on Y.



Randomized mechanisms
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• A randomized mechanism for the query f is any probabilistic function K
from X to a set of values Z. Namely,

K : X ! DZ

where DZ represents the set of probability distributions on Z.

• Z does not necessarily coincide with Y.

• z drawn from D(x) is a reported answer of the query K on the database

x.

• Note that ⇡ and K induce a probability distribution also on Z. We will

denote by Z the random variable associated to this probability distribution



Differential Privacy: discrete case
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• We are now ready to define Di↵erential Privacy for a randomized mech-

anism K.

• Let us first consider the discrete case. Namely, K(x) is discrete, for every

database x.

• Definition (Di↵erential Privacy) K is "-di↵erentially private if

for every pair of databases x1, x2 2 X such that x1 ⇠ x2, and for every

z 2 Z, we have:

p(Z = z|X = x1)  e

"
p(Z = z|X = x2)

where p(Z = z|X = x) represents the conditional probability of z given

x, namely the probability that on the database x the mechanism reports

the answer z

• This definition therefore means that the value (or the presence) of an

individual does not a↵ect significantly the probability of getting a certain

reported value.



Differential Privacy: continuous case
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• Let us now consider the continuous case. Namely, K(x) is a probability

density function on Z. The only thing that changes is that we consider a

measurable subset S of Z instead than a single z:

• Definition (Di↵erential Privacy) K is "-di↵erentially private if

for every pair of databases x1, x2 2 X such that x1 ⇠ x2, and for every

measurable S ✓ Z, we have:

p(Z 2 S|X = x1)  e

"
p(Z 2 S|X = x2)

where p(Z 2 S|X = x) represents the probability that on the database x

the mechanism reports an answer in S

• This definition therefore means that the value (or the presence) of an

individual does not a↵ect significantly the probability that the reported

value satisfy a certain property.



Independence from the prior

• The distribution p on the databases is called 
prior, meaning: before the reported answer 

• p represents the knowledge that a potential 
adversary (aka user, in the case of DP) has about 
the database (before knowing the answer of K)

• We note that the definition of DP does not 
depend on p. This is a very good property, 
because it means that we can design mechanisms 
that satisfy DP without taking the knowledge of 
the adversary into account: the same mechanism 
will be good for all adversaries.  

13



Compositionality
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• Di↵erential privacy is compositional, namely: given two mechanisms K1

and K2 on X that are respectively "1 and "2-di↵erentially private, their

composition K1 ⇥K2 is ("1 + "2)-di↵erentially private.

Note: K1 ⇥ K2 is defined by the following property: if K1(x) reports

z1 and K2(x) reports z2, then (K1 ⇥K2)(x) reports (z1, z2).

Proof: exercise

• Privacy budget: An user is given an initial budget ↵. Each time he

asks a query, answered by "-di↵erentially private mechanism, his budget

is decreased by ". When his budget is exhausted, he is not allowed to ask

queries anymore.



Bayesian interpretation
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• Let Xi be the random variable representing the value of the individual i,

and let X

others be the random variable representing the value of all the

other individuals in the database.

Similarly, let xi and x

others represent possible values for Xi and X

others.

Note that (xi, xothers

) represents and element in X .

Analogously, let ⇡i represent the component of the prior distribution that

concerns the value of the individual i.

• "-di↵erential privacy is equivalently characterized by the following prop-

erty (we consider the discrete case, the continuous case is analogous): For

all (xi, xothers

) 2 X , for all z 2 Z, and for all ⇡i,

e

�"  p(Xi = xi|Xothers

= x

others

, Z = z)

p(Xi = xi|Xothers

= x

others

)

 e

"

Namely: assuming that the adversary knows the value of all the other

individuals in the database, the reported answer does not increase signif-

icantly his probabilistic knowledge of the value of i, with respect to his

prior knowledge

Note: p(Xi = xi|Xothers

= x

others

) is called prior of xi, and p(Xi =

xi|Xothers

= x

others

, Z = z) is called posterior of xi.



Oblivious Mechanisms
• Given  f : X → Y  and   K : X → Z,  we say that K is oblivious if it depends 

only on Y  (and not on X).  Formally:    p(Z=z | X=x , Y=y) = p(Z=z | Y=y)

• If K is oblivious, it can be seen as the composition of f and a randomized 
mechanism H  (noise) defined on the exact answers    K = f x H
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• Privacy concerns the information flow between the databases and the reported answers, 
while utility concerns the information flow between the correct answer and the 
reported answer



A typical oblivious differentially-private 
mechanism: the Laplace mechanism

• Randomized mechanism for a query  f : X → Y,   with Y subset of reals                            

• A typical randomized method: add Laplacian noise. If the exact answer is y, 
the mechanism reports an answer z with a probability density function 
defined as:
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dPy(z) = c e�
|z�y|
�f "

where �f is the sensitivity of f :

�f = max

x⇠x

02X
|f(x)� f(x

0
)|

(x ⇠ x

0
means x and x

0
are adjacent,

i.e., they di↵er only for one record)

and c is a normalization factor:

c =
"

2�f



The geometric mechanism

• The geometric mechanism is an oblivious mechanism similar to 
the Laplace, but it is defined on the integers rather than the reals

• Assume that Y and Z are sets of integers.   In the geometric 
mechanism, the probability distribution of the noise is: 

where c is a normalization factor,  defined so to obtain a 
probability distribution, and D f is the sensitivity of query f

• Note that it does not make much sense to report answers outside Y.  
If  Y is an interval  [a,b], we can  truncate  the mechanism, i.e., set Z = 
Y,  and  transfer on the extremes a and b all the probability that 
(according to the formula above) would fall outside the interval, to the 
left or to the right, respectively.
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p(z|y) = c e�
|z�y|
� f "



Theorem:  The Laplace, the geometric, and the truncated 
geometric mechanisms are  e-differentially-private, where e is 
the parameter used in their definition. 

19

Proof. The following is the proof for the geometric mechanism.

Let x

1

, x

2

be two adjacent databases. Define y

1

= f(x

1

) and y

2

= f(x

2

). Let

X be the random variable of the databases, Y the random variable of the true

result of the query, and Z the random variable of the reported result. Then:

p(Z=z|X=x1)

p(Z=z|X=x2)
=

p(Z=z|Y=y1,X=x1)

p(Z=z|Y=y2,X=x2)
(f is deterministic)

=

p(Z=z|Y=y1)

p(Z=z|Y=y2)
(the geometric mechanism is oblivious)

=

c exp(

|z�y1|
�f

✏)

c exp(

|z�y2|
�f

✏)

(definition of the geometric mechanism)

= exp(

|z�y1|�|z�y2|
�f

✏) (simplification)

 exp(

|y1�y2|
�f

✏) (triangular inequality)

 exp(✏) (definition of �

f

)



Exercises

1. Show that the Laplace mechanism is e-differentially-
private

2. Prove that differential privacy is compositional (see 
slide 14)

3. Prove that differential privacy is equivalent to its 
Bayesian characterization (see slide 15)
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