
July 2004 1/25

A Proof Search Specification of the π-Calculus

Dale Miller, INRIA-Futurs and LIX, École Polytechnique
Alwen Tiu, LIX and Penn State University

“A Proof Theory for Generic Judgments” (LICS2003)
“A Proof Search Specification of the π-Calculus” (submitted)

Outline:

1. A proof theoretic approach to term-level binders

2. A meta-logic: sequents, definitions, and ∇-quantification

3. One-step transitions of the π-calculus

4. Open and late simulation

July 2004 2/25

Two slogans

From Alan Perlis’s Epigrams on Programming: As Will Rogers
would have said, “There is no such thing as a free variable.”

In our operational semantics specifications: We wish to treat the
names of binders as the same kind of fiction as we treat white
space: they are artifacts of how we write expressions and have zero
semantic content.

July 2004 3/25

Static and dynamic notions of binders

Modeling the static nature of bindings in expressions seems clear.

• For example, simply typed λ-terms modulo α, β, and η

conversions works well to encode syntax. This approach follows the
tradition of λ-tree syntax (a subset of higher-order abstract syntax).

But: how should we model the dynamic nature of binding?

• names in the π-calculus, nonces and keys in security protocols,
locations in references, etc.

If computations are modeled using proof search, term-level bindings
move to proof-level bindings (mobility of binders).

• Eigenvariables are one form of proof level abstractions. We argue
that these are not sufficient.

• A new local binding context and the ∇-quantifier will be
introduced to provide for another kind of proof-level binder.

July 2004 4/25

The collapse of eigenvariables

An attempt to build a cut-free proof of ∀x∀y.P x y first introduces
two new and different eigenvariables c and d and then attempts to
prove P c d.

Eigenvariables have been used to encode names in π-calculus
[Miller93], nonces in security protocols [Cervesato, et.al. 99],
reference locations in imperative programming [Chirimar95], etc.

Since ∀x∀y.P x y ⊃ ∀z.P z z is provable, it follows that the
provability of ∀x∀y.P x y implies the provability of ∀z.P z z. That
is, there is also a cut-free proof where the eigenvariables c and d are
identified.

Thus, eigenvariables are unlikely to capture the proper logic behind
things like nonces, references, names, etc.

July 2004 5/25

Generic judgments and a new quantifier

Should ∀x really mean a (possibly infinite) conjunction indexed by
terms? One reading of Gentzen’s introduction rules allows this.

We introduce the quantification ∇x.B x for the more “intensional”,
“generic”, or “internal” reading, and a new local context into
sequents.

Σ : B1, . . . , Bn −→ B0

⇓
Σ : σ1 . B1, . . . , σn . Bn −→ σ0 . B0

Σ is a list of distinct eigenvariables, scoped over the sequent and σi

is a list of distinct variables, locally scoped over the formula Bi.

The expression σi . Bi is called a generic judgment. Equality
between judgments is defined up to renaming of local variables.

July 2004 6/25

Intuitionistic logic with ∇

Σ : B −→ B init
Σ : ∆ −→ B Σ : B, Γ −→ C

Σ : ∆, Γ −→ C cut

Σ : B,B, Γ −→ C
Σ : B, Γ −→ C cL Σ : Γ −→ C

Σ : B, Γ −→ C wL

Σ : σ . ⊥, Γ −→ B ⊥L
Σ : Γ −→ σ . > >R

Σ : σ . Bi, Γ −→ D
Σ : σ . B1 ∧B2, Γ −→ D

Σ : Γ −→ σ . B1 Σ : Γ −→ σ . B2

Σ : Γ −→ σ . B1 ∧B2

Σ : σ . B1, Γ −→ D Σ : σ . B2, Γ −→ D
Σ : σ . B1 ∨B2, Γ −→ D

Σ : Γ −→ σ . Bi

Σ : Γ −→ σ . B1 ∨B2

Σ : Γ −→ σ . B Σ : σ . C, Γ −→ D
Σ : σ . B ⊃ C, Γ −→ D

Σ : σ . B, Γ −→ σ . C

Σ : Γ −→ σ . B ⊃ C

July 2004 7/25

The quantifiers

Σ : (σ, y : τ) . B[y/x],Γ −→ C
Σ : σ . ∇τx.B, Γ −→ C

Σ : Γ −→ (σ, y : τ) . B[y/x]
Σ : Γ −→ σ . ∇τx.B

Σ, σ ` t : γ Σ : σ . B[t/x], Γ −→ C
Σ : σ . ∀γx.B, Γ −→ C

Σ, h : Γ −→ σ . B[(h σ)/x]
Σ : Γ −→ σ . ∀x.B

Σ, h : σ . B[(h σ)/x], Γ −→ C
Σ : σ . ∃x.B, Γ −→ C

Σ, σ ` t : γ Σ : Γ −→ σ . B[t/x]
Σ : Γ −→ σ . ∃γx.B

Terms are assumed to be simply typed. Dependency between
eigenvariables and the local context is encoded using raising
[Miller92]. For example:

{xα, hτ→γ→β} : Γ −→ (aτ , bγ) . B (h a b) b

{xα} : Γ −→ (aτ , bγ) . ∀βy.B y b
∀L

{xα} : Γ −→ (aτ) . ∇γz.∀βy.B y z
∇R

July 2004 8/25

Properties of ∇
Some theorems:

∇x¬Bx ≡ ¬∇xBx ∇x(Bx ∧ Cx) ≡ ∇xBx ∧∇xCx

∇x(Bx ∨ Cx) ≡ ∇xBx ∨∇xCx ∇x(Bx ⊃ Cx) ≡ ∇xBx ⊃ ∇xCx

∇x∀yBxy ≡ ∀h∇xBx(hx) ∇x∃yBxy ≡ ∃h∇xBx(hx)

∇x∀yBxy ⊃ ∀y∇xBxy ∇x.> ≡ >, ∇x.⊥ ≡ ⊥
Consequence: ∇ can always be given atomic scope within formulas.
Some non-theorems:

∇x∇yBxy ⊃ ∇zBzz ∇xBx ⊃ ∃xBx

∇zBzz ⊃ ∇x∇yBxy ∀xBx ⊃ ∇xBx

∀y∇xBxy ⊃ ∇x∀yBxy ∃xBx ⊃ ∇xBx

∇xBx ⊃ ∀xBx ∇xB ≡ B ∇x∇y.B x y ≡ ∇y∇x.B x y

July 2004 9/25

A proof theoretic notion of definitions

We extend the logic further by allowing non-logical constants
(predicate) to be introduced. To each predicate, we associate some
collection of definition clauses. We write

∀x̄.p t̄
4= B

to denote a definition clause for predicate p. Free variables in B are
in the set of free variables in t̄, which are all in x̄. This notion of
definition has been previously studied in proof theory by
Schroeder-Heister, Girard (fixpoints), McDowell/Miller/Tiu.

Closely related to the “Clark completion” studied in logic
programming.

By imposing certain restriction on definitions, we can prove
cut-elimination.

July 2004 10/25

Introduction rules for definitions

Without ∇, the right introduction rule for an atomic formula A is

Σ : Γ −→ Bθ
Σ : Γ −→ A

defR

provided that there is a clause ∀x̄.[H 4= B] such that A = (Hθ).

The left introduction rule (defL) is

{Σθ : Bθ, Γθ −→ Cθ | ∀x̄.[H 4= B] is a def clause, θ ∈ csu(A,H)}
Σ : A, Γ −→ C

The set of premise set can be empty. csu stands for “complete set
of unifiers.”

The signature Σθ is obtained from Σ by removing variables in the
domain of θ, and adding free variables in the range of θ.

Notice that eigenvariables can be instantiated.

July 2004 11/25

Examples: 1 + 2 = 3 and 1 + 2 6= 1

Define addition on a simple encoding of natural numbers.

sum z N N
4= >.

sum (s N) M (s P) 4= sum N M P.

We can prove that 1 + 2 = 3

−→ >
−→ sum z (s (s z)) (s (s z)) defR

−→ sum (s z) (s (s z)) (s (s (s z))) defR

and that 1 + 2 6= 1.

sum z (s (s z)) z −→ defL
sum (s z) (s (s z)) (s z) −→ defL

July 2004 12/25

More generally, consider (where n and m are eigen-variables):

Γ(n, n),> −→ G(n, n)
Γ(n,m), sum z n m −→ G(n, m) defL

July 2004 13/25

Example: computing max

Let the predicate a be given by a table, for example, as:

a (s z) 4= >.

a (s (s (s z))) 4= >.

a z
4= >.

Specify maxa N so that this is provable if and only if N is the
maximum argument for a.

This is impossible if we use logic programs (instead of definitions)
because of monotonicity. Definitions with defL provides a solution.

This specification will work. And it’s the natural one!

maxa N
4= (a N) ∧ ∀x(a x ⊃ x ≤ N).

z ≤ N
4= true.

(s N) ≤ (s M) 4= N ≤ M.

July 2004 14/25

Applying definitions to judgments

Definitions can be “raised” so that they are defining generic
judgments and not just atomic formulas.

Given a definition clause ∀x̄.H
4= B, and a list of variables ȳ, its

raised form w.r.t. ȳ is (this is similar to ∀-lifting in Isabelle):

∀h̄. ȳ . H[(h̄ ȳ)/x̄] 4= ȳ . B[(h̄ ȳ)/x̄].

The right introduction rule for a judgment ȳ . A

Σ : Γ −→ (ȳ . B)θ
Σ : Γ −→ ȳ . A

defR

where ∀h̄. ȳ . H
4= ȳ . B is a raised definition clause and

λȳ.A =βη (λȳ.H)θ.

July 2004 15/25

The left rule is given by

{Σθ : (ȳ . B)θ, Γθ −→ Cθ}B,θ

Σ : ȳ . A, Γ −→ C defL

where ∀h̄.ȳ . H
4= ȳ . B is a raised definition clause and

(λȳ.A)θ =βη (λȳ.H)θ.

Notice that the local variables ȳ are not instantiated.

No new “technology” is needed here. We rely on the unification of
simply typed λ-terms. Such unification is often “easy” (meaning,
Lλ unification or higher-order patterns unification). This is the
case, for example, with the π-calculus examples.

July 2004 16/25

Meta theorems

Theorem: Cut-elimination. Given a fixed stratified definition, a
sequent has a proof if and only if it has a cut-free proof. (Tiu 2003:
also when induction and coinduction are added.)

Theorem: Given a noetherian definition and a fixed formula B,

` ∇x∇y.B x y ≡ ∇y∇x.B x y.

Theorem: If we restrict to Horn definitions (no implication or
negation in the body of the definitions) then

1. ∀ and ∇ are interchangeable in definitions,

2. For noetherian definitions and fixed B, ` ∇x.B x ⊃ ∀x.B x.

July 2004 17/25

The infinite case?

If our logic with defL and defR proves a formula, it is true in all
fixed points of the definition.

If our definition is noetherian then the greatest and least fixed
points coincide.

Of course, when there is infinite behaviours, we may be interested
only in the least fixed point (inductive) or greatest fixed point
(co-inductive).

Alwen Tui and Alberto Momigliano have shown how do inductive
definitions and coinductive definitions.

Tui has put these together with ∇ to define a single, large
(meta-logic) LINC (lambda, induction, nabla, coinduction). His
PhD thesis [March 2004] has numerous examples and numerous
meta-theorems, including cut-elimination.

I focus here on finite behavior inorder to focus on bindings.

July 2004 18/25

Example: reasoning with an object-logic

If the formula ∀u∀v[q 〈u, t1〉 〈v, t2〉 〈v, t3〉] follows from the
assumptions

∀x∀y[q x x y] ∀x∀y[q x y x] ∀x∀y[q y x x]

then the terms t2 and t3 are equal.

This seems true independent of the extension of the domain of the
quantifiers ∀u∀v. That is, it holds for internal reasons instead of
external reasons.

We would like to prove a meta-level formula like

∀x, y, z[pv (∀̂u ∀̂ v[q 〈u, x〉 〈v, y〉 〈v, z〉]) ⊃ y = z]

where pv · is defined to encode object-level provability.

July 2004 19/25

Example: encoding π calculus

We write the concrete syntax of π-calculus processes as:

P := 0 | τ.P | x(y).P | x̄y.P | (P | P) | (P + P) | (x)P | [x = y]P

We use three syntactic types: n for names, a for actions, and p for
processes. The type n may or may not be inhabited.

We assume three constructors for actions: τ : a and ↓ and ↑ (for
input and output actions, resp), both of type n → n → a.

Abstract syntax for processes is the usual. Restriction: (y)Py is
coded using a constant nu : (n → p) → p as nu(λy.Py) or as just
nuP . Input prefix x(y).Py is encoded using a constant
in : n → (n → p) → p as in x (λy.Py) or just in x P . Other
constructors are done similarly.

July 2004 20/25

π-calculus: one step transitions

One-step transition relation is encoded as two predicates. The type

of · ·−−→ · relates p and a and p. The type of · ·−−⇀ · relates p and
n → a and n → p.

P
A−−→ Q free actions, A : a (τ , ↓ xy, ↑ xy)

P
↓x−−⇀ M bound input action, ↓ x : n → a, M : n → p

P
↑x−−⇀ M bound output action, ↑ x : n → a, M : n → p

Consider encoding a few one-step rules as definition clauses.

OUTPUT−ACT : x̄y.P
↑xy−−→ P

4
= >

INPUT−ACT : x(y).My
↓x−−⇀ M

4
= >

MATCH : [x = x]P
α−−→ Q

4
= P

α−−→ Q

RES : (x)Px
α−−→ (x)Qx

4
= ∀x.(Px

α−−→ Qx)

Should that last ∀ be a ∇? To know, we must leave Horn clauses.

July 2004 21/25

The process (y)[x = y]x̄z.0 cannot make any transition because of
the scope of y. Thus the following statement should be provable.

∀x∀z∀Q∀α.[((y)[x = y](x̄z.0)
α−−→ Q) ⊃ ⊥]

Given the encoding of restriction using ∀, this reduces to proving
the sequent

{x, z, Q, α} : ∀y.([x = y](x̄z.0)
α−−→ Q) −→ ⊥

No matter what is used to instantiate the ∀y, we need to consider
the case where x and y are instantiated to the same thing (say, w),
and this case leads to the non-provable sequent

{z} : ([w = w](w̄z.0)
w̄z−−→ 0) −→ ⊥

The universal quantifier was not the correct choice.

July 2004 22/25

Scoping is captured precisely by ∇. Change RES to use ∇.

RES : (x)P
α−−→ (x)Q 4= ∇x.(P

α−−→ Q)

{x, z, Q, α} : w . ([x = w](x̄z.0)
α−−→ Q) −→ ⊥

defL

{x, z, Q, α} : . .∇y.([x = y](x̄z.0)
α−−→ Q) −→ ⊥

∇L

{x, z, Q, α} : . . ((y)[x = y](x̄z.0)
α−−→ Q) −→ ⊥

defL

{x, z, Q, α} :−→ . . ((y)[x = y](x̄z.0)
α−−→ Q) ⊃ ⊥

⊃ R

The success of defL depends on the unification failure of

λw.x = λw.w.

July 2004 23/25

π-calculus: encoding (bi)simulation

sim P Q
4= ∀A∀P ′ [P

A−−→ P ′ ⊃ ∃Q′.Q A−−→ Q′ ∧ sim P ′ Q′] ∧
∀X∀P ′ [P

↓X−−⇀ P ′ ⊃ ∃Q′.Q ↓X−−⇀ Q′ ∧ ∀w.sim (P ′w) (Q′w)] ∧
∀X∀P ′ [P

↑X−−⇀ P ′ ⊃ ∃Q′.Q ↑X−−⇀ Q′ ∧∇w.sim (P ′w) (Q′w)]

Note that this definition clause is not Horn and helps to illustrate
the differences between ∀ and ∇.

This clause defines open (bi)simulation.

If one changes the expression ∀w.sim (P ′w) (Q′w) to

∀w.(∀y(w = y ∨ w 6= y) ⊃ sim (P ′w) (Q′w))

then one is encoding late (bi)simulation.

July 2004 24/25

Conclusions

We have shown a simple extension of intuitionistic logic with
generic judgments.

This gives rise to a new quantifier ∇ and a richer sequent with
explicit local context.

We have illustrated the use of our logic to organize the syntax of
the π-calculus.

The fact that names are an open datatype is illustrated by showing
that we need to sometimes include the excluded middle over
equality for names.

July 2004 25/25

Future Work

A proof search implementation to do symbolic bisimulation,
exploiting unification. Work already started by Alwen Tiu using a
unification package from Gopalan Nadathur based on his
suspension calculus.

Generalizing the results concerning GSOS and congruence of
bisimulation for mobile and for higher-order process calculi. Axelle
Ziegler is working on this currently for her “stage de DEA”.

Model theoretic semantics.

