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Resume of previous lecture

Differential privacy 

• Compositionality: robustness to combination attacks

• Bayesian Interpretation of differential privacy: strong 
adversary model

 2

Privacy via randomization
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Compositionality
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Di↵erential privacy is compositional:

Definition Let K1 and K2 be two mechanisms on X . Their composition K1⇥K2

is defined as follows:

if K1(x) reports z1 and K2(x) reports z2, then (K1 ⇥K2)(x) reports (z1, z2)

Theorem (Compositionality) IfK1 andK2 are respectively "1 and "2-di↵erentially-
private, then their composition K1 ⇥K2 is ("1 + "2)-di↵erentially private.

Proof: Let x and x0 be two adjacent DB. Then:

p((K1 ⇥K2)(x) = (z1, z2)) = p(K1(x) = z1) p(K2(x) = z2)

 e"1 p(K1(x0) = z1) e"2 p(K2(x0) = z2)

= e"1+"2 p((K1 ⇥K2)(x0) = (z1, z2))
<latexit sha1_base64="wy5jcOZDa8zVjHAePPf2Kn1jZyc="></latexit>



Bayesian interpretation of DP
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Consider an individual i whose value is represented by 
the random variable Vi with the same distribution as V

The individual i may or may not be present in the DB

The rest of the elements of the DB (or the whole DB) is 
represented by the random variable X

Theorem K is "-di↵erentially-private i↵ 8v 2 V, 8x 2 X , 8z 2 Z

e�" p(Vi = v|X = x)  p(Vi = v|X = x, Z = z)  e" p(Vi = v|X = x)

where Z represents the reported answer of K.

Proof

Only if) By the Bayes law, we have

p(Vi = v|X = x, Z = z) =
p(Z = z|X = x, Vi = v) p(Vi = v|X = x)

p(Z = z|X = x)

And now, just observe that, since K is "-DP, we have

e�" p(Z = z|X = x)  p(Z = z|X = x, Vi = v)  e" p(Z = z|X = x)

Note that the above inequalities holds independently from whether the
individual i is in the DB or not.

If) Analogous, just reverse the reasoning.
<latexit sha1_base64="Tq9all69ovTKFYC4EkholYb5zqU="></latexit>
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Strong adversary
In the Bayesian interpretation of DP, the conditioning on X=x represents 
the fact that the adversary knows the rest of the DB. This scenario is 
called strong adversary hypothesis (SAH).

Is this hypothesis necessary for the boundaries expressed by the Bayesian 
interpretation of DP ? 
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Strong adversary
In the Bayesian interpretation of DP, the conditioning on X = x represents 
the fact that the adversary knows the rest of the DB. This scenario is 
called strong adversary hypothesis (SAH).

Is this hypothesis necessary for the boundaries expressed by the Bayesian 
interpretation of DP ?

Yes. But we can have a similar result without this hypothesis, only with 
weaker bounds.
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Strong adversary
In the Bayesian interpretation of DP, the conditioning on X = x represents 
the fact that the adversary knows the rest of the DB. This scenario is 
called strong adversary hypothesis (SAH).

Is this hypothesis necessary for the boundaries expressed by the Bayesian 
interpretation of DP ?

Yes. But we can have a similar result without this hypothesis, only with 
weaker bounds.
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Consider individuals 1,2, ... h 
whose value is represented 
by the RV  V = V1 V2 ...Vh
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Bayesian interpretations of DP w/o the SAH
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Theorem The following statements are equivalent

1. K is "-DP

2. e�h" p(V = v|X = x)  p(V = v|X = x, Z = z)  eh" p(V = v|X = x)

3. e�h" p(Vi = v|X = x)  p(Vi = v|X = x, Z = z)  eh" p(Vi = v|X = x)

Furthermore, we can drop the conditioning on X = x if we know that there is

no correlation between the Vi’s and X (given the result of K, i.e., Z).

Proof

(1) $ (2)) This part can be proved in a way analogous to the previous theorem

(2) $ (3)) Observe that (2) holds for every tuple of values of V and then marginal-

ize w.r.t. Vi

(3) $ (1)) For h = 1, (3) coincides with (1).

Note: The same results hold if we replace the value of Vi with the pres-

ence/absence of i in the DB.
<latexit sha1_base64="eKSYH1WEA+RMcW5UnISlN4GtkiI="></latexit>



Differential Privacy: continuous case
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We now consider the continuous case. Namely, K(x) determines a probability
density function on Z. The only thing that change is that we consider measur-
able subsets S of Z rather than single z.

Definition (Di↵erential Privacy) K is "-di↵erentially-private i↵ for every
pair of databases x1, x2 2 X s.t. x1 ⇠ x2 and for every measurable S ✓ Z we
have

p(K(x1) 2 S)  e" p(K(x2) 2 S)

where p(K(x) 2 S) represents the probability that K applied to x report an
answer in S

Note: p(K(x) 2 S) represents a conditional probability. We will write it as
p(Z 2 S|X = x) when we need to make this fact more explicit.

<latexit sha1_base64="G1TVHjJCpgJdPMf7wuBfs1vYUWA="></latexit>



Some "real" DP mechanisms
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Oblivious Mechanisms
• Given  f : X → Y  and   K : X → Z,  we say that K is oblivious if it depends 

only on Y  (not on X)

• If K is oblivious, it can be seen as the composition of f and a randomized 
mechanism H  (noise) defined on the exact answers    K = H ∘ f
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• Privacy concerns the information flow between the databases and the reported answers, 
while utility concerns the information flow between the correct answer and the 
reported answer



A typical oblivious DP mechanism:  
Laplace noise

• Randomized mechanism for a query  f : X → Y.                            

• A typical randomized method: add Laplace noise to y=f(x).        
Namely, report z with a probability density function defined as:
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dPy(z) = c e�
|z�y|
�f "

where �f is the sensitivity of f :

�f = max
x⇠x02X

|f(x)� f(x0)|

(x ⇠ x0 means x and x0 are adjacent,
i.e., they di↵er only for one record)

and c is a normalization factor:

c =
"

2�f



Example of Laplace Mechanism
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y2y1

• " = 1

• �f = |f(x1)� f(x2)| = 10

• y1 = f(x1) = 10, y1 = f(x2) = 20

Then:

• dPy1 = 1
2·10e

|z�10|
10

• dPy2 = 1
2·10e

|z�20|
10

z

The ratio between these distribution is

• = e" outside the interval [y1, y2]

•  e" inside the interval [y1, y2]

ratio = ee

ratio < ee



The Laplace mechanism is DP
Remember that the probability density function of the Laplace 
mechanism is: 

p(Z = z|X = x) = dPf(x)(z) = c e�
|z�f(x)|

�f "

where c =
"

2�f

Theorem:  The Laplace mechanism is e-differentially private

Proof:  Let and We have:x1 ⇠ x2 y1 = f(x1), y2 = f(x2)

p(Z=z|X=x1)
p(Z=z|X=x2)

= c e
� |z�f(x1)|

�f
"

c e
� |z�f(x2)|

�f
"

= e
|z�y2|

�f "� |z�y1|
�f "

 e
|y1�y2|

�f "

 e"



Sensitivity of the query

• The sensitivity of the query and the level of privacy e determine 
the amount of noise of the mechanism: 

• higher sensitivity ⇒ more noise 

• smaller e ⇒ more privacy, more noise 

• Intuitively, the more the mechanism is noisy, the less useful it is 
(the reported answer is less precise)

• To reduce the sensitivity, for some queries it may help to assume 
that the database contains a minimum number of individuals

• Example: consider the query “What is the average age of the 
people in the DB ?”.  Assume that the age can vary from 0 to 120. 
Check the sensitivity in the following two cases:

• the DB contains at least 100 records, or

• there is no restriction.
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The geometric mechanism

• The Laplacian noise is typically used in the case that Y (the set 
of true answers of the query) is a continuous numerical set, 
like the Reals. 

• If Y is a discrete numerical set, like the Integers, then the 
typical mechanism used in this case is the geometric 
mechanism, which is a sort of discrete Laplacian. 

• In the geometric mechanism, the probability distribution of the 
noise is: 

• In this expression, c is a normalization factor,  defined so to 
obtain a probability distribution, 

•  D f is the sensitivity of query f
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p(z|y) = c e�
|z�y|
� f "



Normalization constant in a  geometric mechanism

• In the geometric mechanism, the probability distribution of the 
noise is: 
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c = 1�↵
1+↵ where ↵ = e

� "
�f

As usual, we can compute c (the normalization factor) by 
imposing that the sum of the probability on all Z is 1. It turns 
out that 

hence p(z|y) = 1�↵
1+↵ ↵|z�y|

p(z|y) = c e�
|z�y|
�f "

• Exercises:  Compute the geometric mechanism for the 
following queries: 
• “ How many diabetic people weight more than 100 kilos ? ” 
• “ What is the max weight (in kilos) of a diabetic person ? ”



Gaussian noise

The formula for gaussian noise is

where 𝒄 is a normalization factor and 𝜎 is a suitable constant.  

Question: does an oblivious mechanism based on this noise 
function satisfy 𝛆-differential privacy, for some suitable value of 𝜎 ?
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c e�
(y�z)2

� "



Gaussian noise

The formula for gaussian noise is

where 𝒄 is a normalization factor and 𝜎 is a suitable constant.  

Question: does an oblivious mechanism based on this noise 
function satisfy 𝛆-differential privacy, for some suitable value of 𝜎 ?
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c e�
(y�z)2

� "

A gaussian noise does not satisfy differential privacy.

However it satisfies a more relaxed form of privacy called (e,d)-DP


