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Privacy issues in Machine Learning

® Membership Inference: Determine the membership of a record to a database.

* Feature Inference/Model Inversion: Determine properties of a given
record.

* Anonymization/Sanitation: Safeguard the sensitive information of a record
or set of records.

® Adversarial Examples: Cause a classification algorithm to malfunction
(Security issue).
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Membership Inference

Consider a Deep Learning Model Fy : 2" — %, parameterized by W.

1
1
|
1
Fw, — Training Process —— Fyy,

|

Where the attacker has no knowledge of D D).

® The dashed line denotes some degree of access to the model.
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Feature Inference/Model Inversion

® Z': Feature Space.
® % Label Space.

X — Fy —— ¥y

/

e x,XeXZ.
s yVew.
® The dashed line denotes some degree of access to the model.
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Feature Inference/Model Inversion

Model Inversion attacks can, for example, recover a person’s image from a person's
identity.

Figure: An image recovered using a new model inversion attack (left) and a training set image of the victim
(right).

Image taken from Model Inversion Attacks that Exploit Confidence Information and
Basic Countermeasures [1].

® The attacker is given only the person's name and access to a facial
recognition system that returns a class confidence score.
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Anonymization /Sanitation

® 2. Feature Space, Z: Latent Space.
® 2% Public Label Space, .¥: Private Label Space.

Attacker
X — Encoder —— z
Fw —— ¥

°* x\,Xxe X ,ye¥, K se ¥, ze ¥.

® Database D € % is sanitized by the encoder and made publicly available.
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Anonymization /Satination

The public label could be for example an emotion, while the private label (sensitive
information) could be the identity of a person.

Figure: Samples of preprocessed pen-digits (images on the left), JAFEE (images on the right) and FERG
(images at the center).

Image taken from Learning Anonymized Representations with Adversarial Neural
Networks [2].
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Adversarial Examples

Adversarial Examples present a big security risk for machine learning models.
® Should we trust machine learning models?

Figure: Left: Original Image correctly classified as a whale. Center: Noise crafted by the DeepFool algorithm.
Right: Adversarial example wrongly classified as a turtle.

Image taken from DeepFool: a simple and accurate method to fool deep neural
networks [3].

® This is a hot topic of research in Machine Learning these days.
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Feature Inference
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Inferring Sensitive Features

® Z": Input Space.
e % Output Space.

)_<:{X17X2a"'7xt} FW j\/

1

1

1

I
°* xe 2, ye¥.

® The attacker attempts to recover target sensitive feature x;.

® The dashed line denotes some degree of access to the model.
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Inferring Sensitive Features

® Consider a regression model trained with a dataset of records
D= {x',3,...,x™}. Each individual record is of the form X' = {X{, %5, ..., Xt}
® In this scenario, an attacker has partial information of a record, for example
{x],%,,...,x._1}, and wants to recover the rest of the information xi.

X1 X X3 y
Record Name Age | Symptoms | Genomes | Dosage
L Ronald Thompson 32 V,N A,C 0.8mg
X2 Thonald Rompson 23 V,.B C,D 0.7mg
X3 Woody Stroker 27 V,N,AP AB 1.2mg
X Com Truise 44 D,V A,D 0.9mg
X0 Robert Bobby 33 B,AP C.D 1.5mg
X0 Pimmy Jage 75 N AC 0.5mg

Table: Patient records for a study of the “Heebie Jeebies” on men.

Ganesh Del Grosso Privacy in Machine Learning November, 2019



Feature Inference
O00@0000000000000O000000

Question!

¢ Does feature inference present a privacy risk for
all possible records, or only for members of the
training set of the target model?

¢ What is the trade-off between the generalization
of the target model and its privacy?
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Problem Formulation

® Let Fyy: Z — % be a regression model parametrized by W that maps input
features xe 2" to predictions ye #'.

® Where 2 is of the form 27 X 25 X ... X 2%, and thus X = {x1, X2, X3, ..., X¢}.

* Definition: A feature inference model Ar, : % X 27 X ... X Z1_1 — Z¢ is

a function that maps prediction ye # and known input features
{x1,%0,X3, .., Xe_1} € Z1 X ... X Z;_1 to estimated target feature X; € 2%,

AFw(j\GXlw“athl) = )I(\t7

where the subscript Fyy denotes access to query the target model.
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Problem Formulation

® Let Fyy: Z — % be a regression model parametrized by W that maps input
features xe 2" to predictions ye #'.

® Where 2 is of the form 27 X 25 X ... X 2%, and thus X = {x1, X2, X3, ..., X¢}.

* Definition: A feature inference model Ar, : % X 27 X ... X Z1_1 — Z¢ is

a function that maps prediction ye # and known input features
{x1,%0,X3, .., Xe_1} € Z1 X ... X Z;_1 to estimated target feature X; € 2%,

AFw(j\GXlw“athl) = )I(\t7

where the subscript Fyy denotes access to query the target model.

For simplicity, we consider the case where the attacker knows t—1 features and
wants to infer feature x;; however, this is easily generalized to the case where there

is more than one target feature.
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Inferring Sensitive Genome Information

® As a particular example, an attacker could try to use the Maximum a
Posteriori Probability (MAP) Estimate to find target feature xi,

Pr[Xl’|X17"'aXt—1ay]OC Z H Pi,

XeXd,=xg L<i<t—1

where p; are the marginals over features x;

® Note that the x; with maximizes the MAP estimate also minimizes the
miss-classification rate of the attacker.
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Inferring Sensitive Genome Information

Algorithm 1 Feature Inference without performance statistics.

1 INPUT: xq,x2, .0, %¢—1, %, Fw, P12, t—1y

2: Find the feasible set XS 2, such that VX' € X: X/ =x; for 1 <i<t—1, and Fy(X) =¥
3 1f |X| =1, return L

4: Return x; that maximizes ZX,EX%:)Q [lici<i—1pPi

Algorithm 2 Feature Inference with performance statistics.

1 INPUT: xq,x2,..., %1, T, ¥, Fw, p12,..t—1y

2. Find the feasible set X< 27, such that VX' € X: X, =x; for 1 <i<t—1, and Fy(xX) =y
3 If |X| =1, return L

4: Return x; that maximizes ZX/EXX;:Xt n’FW(X/)_yl_Ils,'gt,1 pi

* where Tr, (), represents the probability that the model Fy gives the true
response y provided input X.
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Inferring Sensitive Genome Information

W Ideal, all

] M Ideal, basic
20 + O Ag, all
7 Ar. basic
10 +
0 Bl LI = IID

% Over Baseline

- T T — 1
Accuracy AUCROC Accuracy AUCROC
VKORC1 CYP2C9

Figure: Model inversion performance, as improvement over baseline guessing from marginals.
Image taken from Privacy in Pharmacogenetics: An End-to-End Case Study of
Personalized Warfarin Dosing [4].
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Reconstruction Attack

® Z": Input Space.
e % Output Space.

X —— Fy —— ¥

1
1
1
I

® The attacker attempts to reconstruct a representative example X} of class k.

° x. XX, )A/,yke@.

® The dashed line denotes some degree of access to the model.

Ganesh Del Grosso Privacy in Machine Learning November, 2019 19 /47



Feature Inference
0000000008000 0000O000000

Reconstruction Attack

e Consider a classification model Fyy trained of dataset D, a reconstruction
attack attempts to produce a representative example of one of the classes of
the classification problem.

* Note that this representative example is not necessarily (and most probably
not) in D.

Figure: Reconstruction without using post-processing (left), with it (center), and the training set image (right).
Image taken from Model Inversion Attacks that Exploit Confidence Information and
Basic Countermeasures [1].
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Question!

¢ Do reconstruction attacks present a privacy risk
for all possible records, or only for members of the
training set of the target model?

e What is the trade-off between the generalization
of the target model and its privacy?
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Problem Formulation

® Let Fyy: Z — & be a classification model parametrized by W that maps
input features xe 2~ to soft probabilities ye #.

* Definition: A feature inference model Af, : % — 2" is a function that maps
label y, € & into a representative member X € 2 of the target class k,
AFy (Vi) = Xk 5

where y, denotes the one-hot encoding of class k, and the subscript Fpy,
denotes access to query the target model.

This definition corresponds to a black-box attack.
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Problem Formulation

® Let Fyy: Z — & be a classification model parametrized by W that maps
input features xe 2~ to soft probabilities ye #'.

e Definition: A feature inference model A: % X # — 2 is a function that
maps label y, € % and model parameters We # into a representative
member X € 2 of the target class k,

A(yk7 VV) :)?k7

where y, denotes the one-hot encoding of class k.

In this case the attacker has complete access to the target model and its parameters.
This definition corresponds to a white-box attack.
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Model Inversion against Face Recognition Systems

Algorithm 3 Inversion attack for Facial Recognition System.

10:
11
12:
13:

© O NSO RN

. INPUT: ko, B.7,A

c(x) i=1—F&,(x)
X0« 0
fori—1, ... ado
X = xi—1 — AVe(xi-1)
if c(x;) = max(c(xi—1),c(xi—2),...,c(xi—p)) then
Break
end if
if c(x;) <y then
Break
end if
end for
Return x;

® ) controls the rate at which we update the candidate.

® o, B and y determine the stopping conditions for the algorithm.
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Model Inversion against Face Recognition Systems

Results of the attacks agaist:
® Softmax classifier.
® Multi-layer perceptron.

® De-noising auto-encoder.

x

Target » Softmax MLP DAE

Figure: Reconstruction of the individual on the left by Softmax, MLP, and DAE.
Image taken from Model Inversion Attacks that Exploit Confidence Information and

Basic Countermeasures [1].
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Model Inversion against Face Recognition Systems

® In the black-box case, the derivatives are obtained using scipy’s numeric
gradient approximation,
® which computes the finite difference approximation of the gradient,
Of  fxas e Xim 1, XiF A X1, o X)) — FIXL o Xim1, X — By X1, X)

- ’

&x,- 2h

for a small perturbation h.

® Note that the finite difference approximation method only requires access
to query the model.
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Model Inversion against Face Recognition Systems

® Rounding confidence values to the nearest r level is considered as a defense
mechanism.

no rounding r=0.001 7 =0.005 r=0.01 r=0.05

Figure: Black-box face reconstruction attack with rounding level r.
Image taken from Model Inversion Attacks that Exploit Confidence Information and
Basic Countermeasures [1].
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Question!

® How do we compute the gradients in the
white-box case?

¢ How do we compute the gradients in the
black-box case?

¢ How can rounding the confidence values of the
prediction help against the reconstruction attack?
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Reconstruction Attack: A Generative Approach

® Similar to what we saw before, reconstruction attack problem can be
formulated in the following way,

X = arg)[nin[L(FW(x),yk) —AR(X)],

where A is a regularization hyper-parameter and R(x) a regularization term.

®* Now we will consider a modified definition in order to search in the latent
GAN space,
Zy = argmin[L(Fw(G(2)),yx) —AR(2)] .
z

® The final solution is provided by,

%= G(Z) .
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Reconstruction Attack: A Generative Approach

Figure: Attack on MNIST classifier without background knowledge: (Left) Retrieval of class “5"”, (Middle)
Retrieval of class “6”, (Right) Retrieval of class “9”.

Figure: Attack on MNIST classifier with background knowledge: (Left) Retrieval of class “0”, (Middle)
Retrieval of class “1”, (Right) Retrieval of class “3".

Images taken from Membership Model Inversion Attacks for Deep Networks [5].
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Reconstruction Attack: A Generative Approach

Figure: Attack on Fashion MNIST classifier with background knowledge. (Left): Retrieval of Class “T-shirts”;
(Middle) Retrieval of class “Coats”; (Right) Retrieval of class “Sneakers”.

Image taken from Membership Model Inversion Attacks for Deep Networks [5].
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Question!

e What are the possible advantages of using a
generative model for the reconstruction attack?

e What are the possible disadvantages?
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Categorizing Feature Inference Attacks

* White-box vs. Black-box: What side information does the attacker
possess?
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Categorizing Feature Inference Attacks

* White-box vs. Black-box: What side information does the attacker
possess?

* Regression vs. Classification: What is the task of the target model?

Ganesh Del Grosso Privacy in Machine Learning November, 2019



Feature Inference
0000000000000 0O00O000000e

Categorizing Feature Inference Attacks

* White-box vs. Black-box: What side information does the attacker
possess?

* Regression vs. Classification: What is the task of the target model?

® Reconstruction vs. Sensitive feature inference: Does the attacker possess
partial information of the records?
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Learning Anonymized Representations
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Adversarial Approach to Anonymization

T Qo (1)

b Qy o (2fus)

Softmax

4Qy [,'(3"“5)
b Qp ) ()
e Qz”‘(;(l‘“f)

b @z (2[us)

Softmax

regular
N Qz”‘u(B‘“f)
branch

private - Gradient reversal layer

L b QZA‘U(al\u;)
branch
Figure: Architecture of the proposed Deep Network for anonymization.

Image taken from Learning Anonymized Representations with Adversarial Neural

Networks [2].
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Adversarial Approach to Anonymization

Figure: Anonymized representations of faces for emotion detection task.
Image taken from Learning Anonymized Representations with Adversarial Neural
Networks [2].
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Adversarial Attacks

Ganesh Del Grosso Privacy in Machine Learning November, 2019 37 /47



Adversarial Attacks
0@000000

Linear Approximation to Adversarial Examples

¢ Consider adversarial example X = x+ 1, where x is the original un-perturbed
example and 1 is a small perturbation.

® Consider the product between a weight vector and an adversarial example,

wix=wlx+ WTT] .

* We would like to maximize the perturbation term w’n under the maximum
norm constrain for noise || N ||oo< €.

® The maximum is achieved by,

n = esign(w) .

® Note that, even if € is too small to be captured by a detector, the
perturbation term will grow linearly on the size of w.
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Linear Approximation to Adversarial Examples

® let Fyy: 2 — % be a classifier model, we can linearize the loss function
used to train the model around the current value of W to obtain an optimal
max-norm constrained perturbation of,

n = esign(ViL(Fw(x),y)) ,

this is known as the Fast Gradient Sign Method for computing adversarial
examples.
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Linear Approximation to Adversarial Examples

. T+
3‘: sign(VaJ (8, . 7)) esien(VoJ (6. 1))
“panda” “nematode” “gibbon™
57.7% confidence .2% confidence 99.3 % confidence

Figure: A demonstration of fast adversarial example generation applied to GoogleNet on ImageNet.

Image taken from Explaining and Harnessing Adversarial Examples [6].
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Deepfool

® let Fyy: 2" — % be an affine classifier, i.e., Fyy(x) = WTx for a given weight
matrix W.

e Considering i((xo) the original class predicted by the classifier for input xg, the
problem of finding the minimal perturbation to fool the classifier can be
written as follows:

® Minimize ||r]|2 subject to:

® k:w(x+0r = sz—(xo) (x0+7)
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Deepfool

® Geometrically, this is equivalent to finding the projection into the convex
polyhedron P defined by,

ﬂ (X2 Foing) (X) = Fl9}

where xq is located inside P.
* The set P at iteration i is approximated by a polyhedron P/,

n

ﬂ {x: fi(xi) (X)(X,)—i-ka(x,) x= Vi ( ) Tx<0}.
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Deepfool

Algorithm 1 Deepfool Algorithm
1: Input: Image x, classifier f
2: Output: Perturbation 7
3:

. Initialize x < X0 10
5. while A(\g) =k(x;) do
6 fork;ék(\g)dn
7: Wi = V(i) =V fp (i)
8 f e filw) - f;(\,ﬂ,(.\-,‘)
9 end for

0 I —arg mm'bém“J \“; T

1 r,-(—l‘lenJ
120 xjp + \,+:,
13: i+

14:

15: end while

16: Return: 7 =Y ;r;

Figure: Deepfool Algorithm.
Image taken from DeepFool: a simple and accurate method to fool deep neural

networks [3].
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Robust Nets by Dropout

Algorithm 1 Stochastic Activation Pruning (SAP)

1: Input: input datum a. neural network with n layers, with it" layer having weight matrix TW?,
non-linearity ¢* and number of samples to be drawn +*.

2 k0

3: for each layer i do

4 Lt < ot (W1 1> activation vector for layer ¢ with dimension a*

5 p; % vied{l,..., a'} &> activations normalized on to the simplex

6: S+ {} > set of indices not to be pruned

7: repeat ' times ‘ ©> the activations have * chances of being kept

8: Draw s ~ categorical(p*) & draw an index to be kept

o: S« Su{s} > add index s to the keep set

10: for each j ¢ S do

11 (h'); <0 > prune the activations not in S

12: for each j € S do

13 (h1); + LJZ 1> scale up the activations in S
1-(1—p3)"

14: return h™

Figure: Stochastic Activation Pruning Algorithm.
Image taken from Stochastic Activation Pruning for Robust Adversarial Defense [7].
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