
Introduction to Deep Neural Networks

Lecture 2



OUTLINE

Introduction to multi-layered neural network  

Optimization (back-propagation) 

Regularization and Dropout 

The vanishing gradient issue 

Toolkit 

�2



OUTLINE

Introduction to multi-layered neural network  

Optimization (back-propagation) 

Regularization and Dropout 

The vanishing gradient issue 

Toolkit 

�3



INTRODUCTION

FEATURE ENGINEERING

Introduction

Feature engineering

Most current machine learning works well because of human-designed
representations and input features

Data
Machine 
learning 
model

✓x 2 Rd y 2 {y1, . . . , yK}

Decision

Features Parameters Class

Time consuming and task/domain dependant

Features are often both over-specified and incomplete

Machine learning , optimizing parameters to make the best prediction
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INTRODUCTION

REPRESENTATION LEARNING AND DEEP NETWORKS

Introduction

Representation learning and Deep networks

Representation learning attempts to automatically learn useful features

Data
Machine 
learning 
model

✓x 2 Rd y 2 {y1, . . . , yK}

Decision

Features Parameters Class

Learning a hierarchical and abstract representation

That can be shared among tasks

Almost all data is unlabeled ) unsupervised learning
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INTRODUCTION

THE CURSE OF DIMENSIONALITY  

Introduction

The curse of dimensionality

In high-dimensional space, training data becomes sparse

http ://www.edupristine.com/blog/curse-dimensionality

To generalize :

Use the distance to define some sort of “near-ness”

Spread the probability mass around training examples (smooth the
empirical distribution)
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INTRODUCTION

THE CURSE OF DIMENSIONALITY (DIMENSION=3)

Introduction

The curse of dimensionality - 2

In 2-dimensions, two points are near if one falls within a certain radius of
another.

http://www.edupristine.com/blog/
curse-dimensionality

In 2-d, which proportion of uniformly
spaced points within black square fall
inside the red circle ?

⇡r2

4r2
=

⇡

4
⇡ 78%

This proportion drops to 52% in 3-d,
and to 0.24% in 10-d.

Consequence

In high-dimensional space, the distance does not define a useful similarity.
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INTRODUCTION

THE CURSE OF DIMENSIONALITY (DIMENSION=3)

Introduction

The curse of dimensionality - 3

Smoothing distribution

The mass is spread around the examples.

While plausible in this 2-dimensional case, in higher dimensions, the balls
will leave holes or be too large in high probability regions.

Manifold

If we can discover a representation
of the probability concentration,

a lower dimensional (non-linear)
manifold,

we can ”flatten” it by changing
the representation

for which the distance is useful for
density estimation, interpolation,
... Y. Bengio, 2015
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INTRODUCTION

NEURAL NETWORKS
Introduction

Neural Networks

A Deep Architecture 
Mainly,%work%has%explored%deep%belief%networks%(DBNs),%Markov%
Random%Fields%with%mulGple%layers,%and%various%types%of%
mulGpleJlayer%neural%networks%

Output%layer%

Here%predicGng%a%supervised%target%

%

Hidden%layers%

These%learn%more%abstract%%
representaGons%as%you%head%up%

Input%layer%

Raw%sensory%inputs%(roughly)%3%
Raw inputs

Hidden Layers

Output layer

learn more abstract 
features as you head up

prediction of the 
supervised target

(from Bengio, 2015)
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INTRODUCTION

ILLUSTRATION AT DIFFERENT LAYERS?
Introduction

Illustration

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

are not conditionally independent of one another given
the layers above and below. In contrast, our treatment
using undirected edges enables combining bottom-up
and top-down information more e�ciently, as shown
in Section 4.5.

In our approach, probabilistic max-pooling helps to
address scalability by shrinking the higher layers;
weight-sharing (convolutions) further speeds up the
algorithm. For example, inference in a three-layer
network (with 200x200 input images) using weight-
sharing but without max-pooling was about 10 times
slower. Without weight-sharing, it was more than 100
times slower.

In work that was contemporary to and done indepen-
dently of ours, Desjardins and Bengio (2008) also ap-
plied convolutional weight-sharing to RBMs and ex-
perimented on small image patches. Our work, how-
ever, develops more sophisticated elements such as
probabilistic max-pooling to make the algorithm more
scalable.

4. Experimental results

4.1. Learning hierarchical representations
from natural images

We first tested our model’s ability to learn hierarchi-
cal representations of natural images. Specifically, we
trained a CDBN with two hidden layers from the Ky-
oto natural image dataset.3 The first layer consisted
of 24 groups (or “bases”)4 of 10x10 pixel filters, while
the second layer consisted of 100 bases, each one 10x10
as well.5 As shown in Figure 2 (top), the learned first
layer bases are oriented, localized edge filters; this re-
sult is consistent with much prior work (Olshausen &
Field, 1996; Bell & Sejnowski, 1997; Ranzato et al.,
2006). We note that the sparsity regularization dur-
ing training was necessary for learning these oriented
edge filters; when this term was removed, the algo-
rithm failed to learn oriented edges.

The learned second layer bases are shown in Fig-
ure 2 (bottom), and many of them empirically re-
sponded selectively to contours, corners, angles, and
surface boundaries in the images. This result is qual-
itatively consistent with previous work (Ito & Ko-
matsu, 2004; Lee et al., 2008).

4.2. Self-taught learning for object recognition

Raina et al. (2007) showed that large unlabeled data
can help in supervised learning tasks, even when the

3http://www.cnbc.cmu.edu/cplab/data kyoto.html
4We will call one hidden group’s weights a “basis.”
5Since the images were real-valued, we used Gaussian

visible units for the first-layer CRBM. The pooling ratio C
for each layer was 2, so the second-layer bases cover roughly
twice as large an area as the first-layer ones.

Figure 2. The first layer bases (top) and the second layer
bases (bottom) learned from natural images. Each second
layer basis (filter) was visualized as a weighted linear com-
bination of the first layer bases.

unlabeled data do not share the same class labels, or
the same generative distribution, as the labeled data.
This framework, where generic unlabeled data improve
performance on a supervised learning task, is known
as self-taught learning. In their experiments, they used
sparse coding to train a single-layer representation,
and then used the learned representation to construct
features for supervised learning tasks.

We used a similar procedure to evaluate our two-layer
CDBN, described in Section 4.1, on the Caltech-101
object classification task.6 The results are shown in
Table 1. First, we observe that combining the first
and second layers significantly improves the classifica-
tion accuracy relative to the first layer alone. Overall,
we achieve 57.7% test accuracy using 15 training im-
ages per class, and 65.4% test accuracy using 30 train-
ing images per class. Our result is competitive with
state-of-the-art results using highly-specialized single
features, such as SIFT, geometric blur, and shape-
context (Lazebnik et al., 2006; Berg et al., 2005; Zhang
et al., 2006).7 Recall that the CDBN was trained en-

6Details: Given an image from the Caltech-101
dataset (Fei-Fei et al., 2004), we scaled the image so that
its longer side was 150 pixels, and computed the activations
of the first and second (pooling) layers of our CDBN. We
repeated this procedure after reducing the input image by
half and concatenated all the activations to construct fea-
tures. We used an SVM with a spatial pyramid matching
kernel for classification, and the parameters of the SVM
were cross-validated. We randomly selected 15/30 training
set and 15/30 test set images respectively, and normal-
ized the result such that classification accuracy for each
class was equally weighted (following the standard proto-
col). We report results averaged over 10 random trials.

7Varma and Ray (2007) reported better performance
than ours (87.82% for 15 training images/class), but they
combined many state-of-the-art features (or kernels) to im-
prove the performance. In another approach, Yu et al.
(2009) used kernel regularization using a (previously pub-
lished) state-of-the-art kernel matrix to improve the per-

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

Table 2. Test error for MNIST dataset
Labeled training samples 1,000 2,000 3,000 5,000 60,000
CDBN 2.62±0.12% 2.13±0.10% 1.91±0.09% 1.59±0.11% 0.82%
Ranzato et al. (2007) 3.21% 2.53% - 1.52% 0.64%
Hinton and Salakhutdinov (2006) - - - - 1.20%
Weston et al. (2008) 2.73% - 1.83% - 1.50%

faces cars elephants chairs faces, cars, airplanes, motorbikes

Figure 3. Columns 1-4: the second layer bases (top) and the third layer bases (bottom) learned from specific object
categories. Column 5: the second layer bases (top) and the third layer bases (bottom) learned from a mixture of four
object categories (faces, cars, airplanes, motorbikes).
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Features Faces Motorbikes Cars
First layer 0.39±0.17 0.44±0.21 0.43±0.19

Second layer 0.86±0.13 0.69±0.22 0.72±0.23
Third layer 0.95±0.03 0.81±0.13 0.87±0.15

Figure 4. (top) Histogram of the area under the precision-
recall curve (AUC-PR) for three classification problems
using class-specific object-part representations. (bottom)
Average AUC-PR for each classification problem.
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Figure 5. Histogram of conditional entropy for the repre-
sentation learned from the mixture of four object classes.

the posterior over class labels when a feature is ac-
tive. Since lower conditional entropy corresponds to a
more peaked posterior, it indicates greater specificity.
As shown in Figure 5, the higher-layer features have
progressively less conditional entropy, suggesting that
they activate more selectively to specific object classes.

4.5. Hierarchical probabilistic inference

Lee and Mumford (2003) proposed that the human vi-
sual cortex can conceptually be modeled as performing
“hierarchical Bayesian inference.” For example, if you
observe a face image with its left half in dark illumina-

Figure 6. Hierarchical probabilistic inference. For each col-
umn: (top) input image. (middle) reconstruction from the
second layer units after single bottom-up pass, by project-
ing the second layer activations into the image space. (bot-
tom) reconstruction from the second layer units after 20
iterations of block Gibbs sampling.

tion, you can still recognize the face and further infer
the darkened parts by combining the image with your
prior knowledge of faces. In this experiment, we show
that our model can tractably perform such (approxi-
mate) hierarchical probabilistic inference in full-sized
images. More specifically, we tested the network’s abil-
ity to infer the locations of hidden object parts.

To generate the examples for evaluation, we used
Caltech-101 face images (distinct from the ones the
network was trained on). For each image, we simu-
lated an occlusion by zeroing out the left half of the
image. We then sampled from the joint posterior over
all of the hidden layers by performing Gibbs sampling.
Figure 6 shows a visualization of these samples. To en-
sure that the filling-in required top-down information,
we compare with a “control” condition where only a
single upward pass was performed.

In the control (upward-pass only) condition, since
there is no evidence from the first layer, the second
layer does not respond much to the left side. How-

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations
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the posterior over class labels when a feature is ac-
tive. Since lower conditional entropy corresponds to a
more peaked posterior, it indicates greater specificity.
As shown in Figure 5, the higher-layer features have
progressively less conditional entropy, suggesting that
they activate more selectively to specific object classes.

4.5. Hierarchical probabilistic inference

Lee and Mumford (2003) proposed that the human vi-
sual cortex can conceptually be modeled as performing
“hierarchical Bayesian inference.” For example, if you
observe a face image with its left half in dark illumina-

Figure 6. Hierarchical probabilistic inference. For each col-
umn: (top) input image. (middle) reconstruction from the
second layer units after single bottom-up pass, by project-
ing the second layer activations into the image space. (bot-
tom) reconstruction from the second layer units after 20
iterations of block Gibbs sampling.

tion, you can still recognize the face and further infer
the darkened parts by combining the image with your
prior knowledge of faces. In this experiment, we show
that our model can tractably perform such (approxi-
mate) hierarchical probabilistic inference in full-sized
images. More specifically, we tested the network’s abil-
ity to infer the locations of hidden object parts.

To generate the examples for evaluation, we used
Caltech-101 face images (distinct from the ones the
network was trained on). For each image, we simu-
lated an occlusion by zeroing out the left half of the
image. We then sampled from the joint posterior over
all of the hidden layers by performing Gibbs sampling.
Figure 6 shows a visualization of these samples. To en-
sure that the filling-in required top-down information,
we compare with a “control” condition where only a
single upward pass was performed.

In the control (upward-pass only) condition, since
there is no evidence from the first layer, the second
layer does not respond much to the left side. How-

(Lee et al.2009)
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INTRODUCTION

DEEP LEARNING AND NEURAL NETWORKS: A SUCCESS STORY 

Introduction

Deep learning in neural networks : a success story

Since 2009, deep learning approaches won several challenges

ImageNet since 2012 (Krizhevsky et al.2012)

Tra�c signs recognition : superhuman performance in 2011 (Ciresan et
al.2012) based on (LeCun et al.1989)

Handwritting recognition since 2009 (Graves and Schmidhuber2009)
based on (Hochreiter and Schmidhuber1997)

Automatic Speech recognition (Hinton et al.2012)

Breakthrough in computer vision: 
2012-2015 
•  GPUs!+!10x!more!data!

7!

•  1000!object!categories,!!
•  Facebook:!millions!of!faces!

•  2015:!
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DEEP LEARNING AND NEURAL NETWORKS: A SUCCESS STORY 
Introduction

Deep learning in neural networks : a success story

Since 2009, deep learning approaches won several challenges

ImageNet since 2012 (Krizhevsky et al.2012)

Tra�c signs recognition : superhuman performance in 2011 (Ciresan et
al.2012) based on (LeCun et al.1989)

Handwritting recognition since 2009 (Graves and Schmidhuber2009)
based on (Hochreiter and Schmidhuber1997)

Automatic Speech recognition (Hinton et al.2012)

Laurence Likforman – Digicosme /Deep Nets 2014 5/35

 feature extraction: sliding window left-right (+ right-
left for RNNs)

5

Word/Text-line recognition with RNNs/HMMs

 concavity configurations, pixel distribution, B/W 
transitions, histograms of gradient (HoG): 8 directions

 pixel values 

o

Laurence Likforman – Digicosme /Deep Nets 2014 10/3510

BRNNs

1 Tt-1 t t+1

 bi-directional recurrent neural networks [Schuster and 
Paliwal, 97]  
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INTRODUCTION

DEEP LEARNING AND NEURAL NETWORKS: A LONG STORY 

Introduction

Deep learning in neural networks : a long story

The breakthrough of 2006

The expression Deep Learning was coined around 2006 with papers on
unsupervised pre-training of neural nets (Hinton et al.2006; Hinton and
Salakhutdinov2006; Bengio et al.2007)

And before ? (just a few dates)

1958 Rosenblatt proposed the perceptron (Rosenblatt1958), following the
work of McCulloch and Pitts in 1943 and Hebb in 1949.

1980 Neocognitron (Fukushima1980) or the multilayered NNets

1982 Hopfield network with memory and recurrence (Hopfield1982), the
unsupervised SOM (Kohonen1982), Neural PCA (Oja1982)

1986 Multilayer perceptrons and backpropagation (Rumelhart et al.1986b)

1989 Autoencoders (Baldi and Hornik1989), Convolutional network
(LeCun et al.1989)

1993 Sparse coding (Field1993)
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INTRODUCTION

BUT, WHAT IS NEW?

Introduction

What is new ?
From Chris Bishop’s slides (2015)

Why today ?

The huge amount of data and the growth of computational power.

Regularization

and ...

�10 �5 0 5 10
0

0.25

0.5

0.75

1

�10 �5 0 5 10
0

0.25

0.5

0.75

1

�10 �5 0 5 10
0

2.5

5

7.5

10
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INTRODUCTION

BUT, WHAT IS NEW?

Introduction

What is new ?
From Kyunghyun Cho’s slides (2015)

Why today ?

We have connected the dots, e.g.
(Probabilistic) PCA / Neural PCA /
Autoencoder

We understand learning better
(regularization, architecture)

No need to be scared of non-convex
optimization (initialization)

The huge amount of data and the growth
of computational power.

What is the di↵erence between a NNet and a
Deep Network ?

An intensive empirical exploration of di↵erent
issues

Deep Supervised Neural Nets, Rectifiers 
•  Now!can!train!them!even!without!

unsupervised!pre]training:!!
be]er$iniAalizaAon$and$nonV
lineariAes$(rec5fiers,!maxout),!
!
!
!generalize!well!with!large!labeled!
sets!and!regularizers!(dropout)!

•  Unsupervised$preVtraining:$$
rare!classes,!transfer,!smaller!
labeled!sets,!or!as!extra!
regularizer.!61!

(Glorot!&!Bengio!AISTATS!2011;!
Goodfellow!et!al!ICML!2013!)!

Y. Bengio, 2015
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INTRODUCTION

LOGISTIC REGRESSION 

Neural Nets : Basics Introduction to multi-layered neural network

A choice of terminology

Logistic regression (binary classification)

x

1 intercept term

wt
1

y1 = f(w1
tx)

f(a = w1
tx) =

1

1 + e�a
�10 �5 0 5 10

0

0.25

0.5

0.75

1

w1
tx

y1

A single artificial neuron

pre-activation : a1 = w1
tx

y1 = f(w1
tx), f is the activation function of the neuron

x

1
bias term

w1
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INTRODUCTION

LOGISTIC REGRESSION 

Neural Nets : Basics Introduction to multi-layered neural network

A choice of terminology - 2

From binary classification to K classes (Maxent)

x

wt
1

y1 = f(w1
tx)

wt
K

yK = f(wK
tx)

f(ak = wk
tx) =

eak

PK
k0=1 eak0

=
eak

Z(x)

A simple neural network

y1 = f(wt
1x)

x

w1

wK

yK = f(wt
Kx)

x : input layer

y : output layer

each yk has its parameters wk

f is the softmax function
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INTRODUCTION

LOGISTIC REGRESSION 
Neural Nets : Basics Introduction to multi-layered neural network

Two layers fully connected

x y = f(Wx)

W

W k,: = wk
t

f is usually a non-linear function

f is a component wise function

e.g the softmax function :

yk = P (c = k|x) =
ewk

tx

P
k0 ewk0 tx

=
eW k,:x

P
k0 eW k0,:x

tanh, sigmoid, relu, ...
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INTRODUCTION

MAXENT CLASSIFIERS 

Neural Nets : Basics Introduction to multi-layered neural network

Feature engineering for Maxent classifiers
Ex. POS tagging

yi�1 yi yi+1

wi�1 wi wi+1

Word representation

For each word in the context

surface form (one-hot vector)

prefix

su�x

...

xi =

autrement
finalement

su�xe :⌧ er �
su�xe :⌧ ment �

prefixe :⌧ autre �

A rich representation
of the input for a
better generalization.
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finalement

su�xe :⌧ er �
su�xe :⌧ ment �

prefixe :⌧ autre �

A rich representation
of the input for a
better generalization.
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INTRODUCTION

NEURAL NETWORKS WITH A HIDDEN LAYER 
Neural Nets : Basics Introduction to multi-layered neural network

With neural network : add a hidden layer

x : raw input representation

h = f(W (1)x)

y = f(W (2)h)

the internal and tailored representation

Intuitions

Learn an internal representation of the raw input

Apply a non-linear transformation

The input representation x is transformed/compressed in a new
representation h

Adding more layers to obtain a more and more abstract representation
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INTRODUCTION

HOW DO WE LEARN THE PARAMETERS ?

Neural Nets : Basics Introduction to multi-layered neural network

How do we learn the parameters ?

For a supervised single layer neural net

Just like a maxent model :

Calculate the gradient of the objective function and use it to iteratively
update the parameters.

Conjugate gradient, L-BFGS, ...

In practice : Stochastic gradient descent (SGD)

With one hidden layer

The internal (“hidden”) units make the function non-convex ... just like
other models with hidden variables :

hidden CRFs (Quattoni et al.2007), ...

But we can use the same ideas and techniques

Just without guarantees ) backpropagation (Rumelhart et al.1986b)
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Optimization (back-propagation) 

Regularization and Dropout 

The vanishing gradient issue 

Toolkit 
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OPTIMIZATION

OPTIMIZATION OF A SINGLE LAYER NETWORK FOR CLASSIFICATION 

Neural Nets : Basics Optimization via back-propagation

Ex. 1 : A single layer network for classification

x

y = f(Wx)

W

yk = P (c = k|x)

The set of parameters is denoted ✓, in
this case :

✓ = (W )

The log-loss (conditional log-likelihood)

Assume the dataset D = (x(i), c(i))
N
i=1, c(i) 2 {1, 2, . . . , C}

L(✓) =
NX

i=1

l(✓, x(i), c(i)) =
NX

i=1

⇣
�

CX

c=1

I
�
c = c(i)

 
log(P (c|x(i)))

⌘
(1)

l(✓, x(i), c(i)) = �
CX

k=1

I
�
k = c(i)

 
log(yk) (2)
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OPTIMIZATION

OPTIMIZATION USING SGD 

Neural Nets : Basics Optimization via back-propagation

Ex. 1 : optimization method

Stochastic Gradient Descent (Bottou2010)

For ( t = 1 ; until convergence ; t + +) :

Pick randomly a sample (x(i), c(i))

Compute the gradient of the loss function w.r.t the parameters (r✓)

Update the parameters : ✓ = ✓ � ⌘tr✓

Questions

convergence : what does it mean ?

what do you mean by ⌘t ?
convergence if

P
t ⌘t = 1 and

P
t ⌘2

t < 1
⌘t / t�1

and lot of variants like Adagrad (Duchi et al.2011), Down scheduling, ...
see (LeCun et al.2012)
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Neural Nets : Basics Optimization via back-propagation

Ex. 1 : compute the gradient - 1

wkj

⇥

=f
⇣ ⌘

W

xt

y

j

k

wkj

Inference chain :
x(i) �! (a = Wx(i)) �! (y = f(a)) �! l(✓, x(i), c(i))

The gradient for wkj

rwkj =
@l(✓, x(i), c(i))

@wkj
=

@l(✓, x(i), c(i))

@y
⇥ @y

@a
⇥ @a

@wkj

= �(I
�
k = c(i)

 
� yk)xj = �kxj
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GRADIENT COMPUTATION AT FIRST LAYER
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OPTIMIZATION

GRADIENT COMPUTATION AT SECOND LAYER

Neural Nets : Basics Optimization via back-propagation

Ex. 1 : compute the gradient - 2

wkj

⇥

= )f
⇣ ⌘

W

xt

y �

Generalization

rW = �xt

�k = �(I
�
k = c(i)

 
� yk)

with � the gradient at the pre-activation level.
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Neural Nets : Basics Optimization via back-propagation

Ex. 1 : Summary

x
y = f(W (1)x)

forward x

backward �

Inference : a forward step

matrice multiplication with the input x

Application of the activation function

One training step : forward and backward steps

Pick randomly a sample (x(i), c(i))

Compute �

Update the parameters : ✓ = ✓ � ⌘t�xt
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OPTIMIZATION

FEED-FORWARD NETWORKS WITH A MULTI-LAYERS

Neural Nets : Basics Optimization via back-propagation

Notations for a multi-layer neural network
(feed-forward)

One layer, indexed by l

x(l)

W (l)

y(l)

x(l) : input of the layer l

y(l) = f (l)(W (l) x(l))

stacking layers : y(l) = x(l+1)

x(1) = a data example

x(1) x(2) x(3) x(L)

W (1)

y(1)
W (2)

y(2) y(L�1)
W (L)

y(L) : output
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OPTIMIZATION

EXAMPLE OF TWO LAYERS 

Neural Nets : Basics Optimization via back-propagation

Ex. 2 : with one hidden layer

x(1) x(2)

W (1)

y(1)
W (2)

y(2) : output

✓ = (W (1), W (2))

Gradient for the output layer

As in the Ex. 1 :

y ! y(2)

W ! W (2)

x ! x(2) = y(1)

rW (2) = �(2)x(2)t
, with

�(2)
k = �I

�
k = c(i)

 
� yk
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OPTIMIZATION

BACK-PROPAGATION OF THE LOSS GRADIENT

Neural Nets : Basics Optimization via back-propagation

Back-propagation of the loss gradient
For the hidden layer - 1

(

y(1) y(2)

W (2)
:,j

y(1)
j

�(2)

Inference chain part 1 :

y(1) = f (1)(a(1)) !
⇣
a(2) = W (2)y(1)

⌘
!

⇣
y(2) = f (2)(a(2))

⌘
! l(✓, x(i), c(i))

r
a(1)

j
=

@l(✓, x(i), c(i))

@a(1)
j

=
@l(✓, x(i), c(i))

@y(2)
⇥ @y(2)

@a(2)
⇥ @a(2)

@y(1)
j

⇥
@y(1)

j

@a(1)
j

=
X

k

(I
�
k = c(i)

 
� y(2)

k )w(2)
kj f 0(1)(aj) = f 0(1)(aj)

⇣
W (2)

:,j �(2)t
⌘
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OPTIMIZATION

BACK-PROPAGATION OF THE LOSS GRADIENT (SECOND HIDDEN LAYER)

Neural Nets : Basics Optimization via back-propagation

Back-propagation of the loss gradient
For the hidden layer - 2

"

 f
⇣ ⌘

W (2)

the back-propagated signal ry(1)  

�(2)

j

k

W (2)
:,k

ry(1) = W (2)t
�(2), then

�(1) =ra(1) = f (1)0
(a(1)) �

�
W (2)t

�(2)�
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OPTIMIZATION

BACK-PROPAGATION OF THE LOSS GRADIENT (THIRD LAYER) 

Neural Nets : Basics Optimization via back-propagation

Back-propagation of the loss gradient
For the hidden layer - 3

((

y(1) y(2) �(2)�(1)

As for the output layer, the gradient is :

rW (1) = �(1)x(1)t
, with

�(1)
j = r

a(1)

j

�(1) = f 0(1)(a(1)) � (W (2)t
�(2))

The term (W (2)t
�(2)) comes from the upper layer.
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OPTIMIZATION

BACK-PROPAGATION : GENERAL CASE
Neural Nets : Basics Optimization via back-propagation

Back-propagation : generalization

For a hidden layer l :

The gradient at the pre-activation level :

�(l) = f 0(l)(a(l)) �
�
W (l+1)t

�(l+1)�

The update is as follows :

W (l) = W (l) � ⌘t�
(l)x(l)t

The layer should keep :

W (l) : the parameters

f (l) : its activation function

x(l) : its input

a(l) : its pre-activation associated to the input

�(l) : for the update and the back-propagation to the layer l � 1
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OPTIMIZATION

BACK-PROPAGATION : ONE TRAINING STEP 

Neural Nets : Basics Optimization via back-propagation

Back-propagation : one training step

Pick a training example : x(1) = x(i)

Forward pass

For l = 1 to (L � 1)

Compute y(l) = f (l)(W (l)x(l))

x(l+1) = y(l)

y(L) = f (L)(W (L)x(L))

Backward pass

Init : �(L) = ra(L)

For l = L to 2 // all hidden units

�(l�1) = f 0(l�1)(a(l�1)) �
�
W (l)t

�(l)�

W (l) = W (l) � ⌘t�
(l)x(l)t

W (1) = W (1) � ⌘t�
(1)x(1)t
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OPTIMIZATION

INITIALIZATION RECIPES 

Neural Nets : Basics Optimization via back-propagation

Initialization recipes

A di�cult question with several empirical answers.

One standard trick

W ⇠ N (0,
1

p
nin

)

with nin is the number of inputs

A more recent one

W ⇠ U
h

�
p

6p
nin + nout

,

p
6p

nin + nout

i

with nin is the number of inputs
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REGULARIZATION

REGULARIZATION L2 OR GAUSSIAN PRIOR OR WEIGHT DECAY 

Neural Nets : Basics Regularization and Dropout

Regularization l2 or gaussian prior or weight decay

The basic way :

L(✓) =
NX

i=1

l(✓, x(i), c(i))+
�

2
||✓||2

The second term is the regularization term.

Each parameter has a gaussian prior : N (0, 1/�).

� is a hyperparameter.

The update has the form :

✓ = (1 + ⌘t�)✓ � ⌘tr✓
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REGULARIZATION

DROPOUT - A NEW REGULARIZATION SCHEME

Neural Nets : Basics Regularization and Dropout

Dropout
A new regularization scheme (Srivastava and Salakhutdinov2014)

Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.

Model combination nearly always improves the performance of machine learning meth-
ods. With large neural networks, however, the obvious idea of averaging the outputs of
many separately trained nets is prohibitively expensive. Combining several models is most
helpful when the individual models are di↵erent from each other and in order to make
neural net models di↵erent, they should either have di↵erent architectures or be trained
on di↵erent data. Training many di↵erent architectures is hard because finding optimal
hyperparameters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train di↵erent networks on
di↵erent subsets of the data. Even if one was able to train many di↵erent large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many di↵erent neural network
architectures e�ciently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.

1930

For each training example :
randomly turn-o↵ the neurons of
hidden units (with p = 0.5)

At test time, use each neuron
scaled down by p

Dropout serves to separate e↵ects from strongly correlated features and

prevents co-adaptation between units

It can be seen as averaging di↵erent models that share parameters.

It acts as a powerful regularization scheme.
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VANISHING GRADIENTS

EXPERIMENTAL OBSERVATIONS (MNIST TASK) - ONE LAYER

Neural Nets : Basics The vanishing gradient issue

Experimental observations (MNIST task) - 1

The MNIST database

Comparison of di↵erent depth for feed-forward architecture

x(1) x(2) x(3) x(L)

W (1)

y(1)
W (2)

y(2) y(L�1)
W (L)

y(L) : output

Hidden layers have a sigmoid activation function.

The output layer is a softmax.
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VANISHING GRADIENTS

EXPERIMENTAL OBSERVATIONS (MNIST TASK) - TWO LAYERS
Neural Nets : Basics The vanishing gradient issue

Experimental observations (MNIST task) - 2

Varying the depth

Without hidden layer : ⇡ 88% accuracy

1 hidden layer (30) : ⇡ 96.5% accuracy

2 hidden layer (30) : ⇡ 96.9% accuracy

3 hidden layer (30) : ⇡ 96.5% accuracy

4 hidden layer (30) : ⇡ 96.5% accuracy

(From http://neuralnetworksanddeeplearning.
com/chap5.html)
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VANISHING GRADIENTS

INTUITIVE EXPLANATION

Neural Nets : Basics The vanishing gradient issue

Intuitive explanation

Let consider the simplest deep neural network, with just a single neuron in
each layer.

wi, bi are resp. the weight and bias of neuron i and C some cost function.

Compute the gradient of C w.r.t the bias b1

@C

@b1
=

@C

@y4
⇥ @y4

@a4
⇥ @a4

@y3
⇥ @y3

@a3
⇥ @a3

@y2
⇥ @y2

@a2
⇥ @a2

@y1
⇥ @y1

@a1
⇥ @a1

@b1
(3)

=
@C

@y4
⇥ �0(a4) ⇥ w4 ⇥ �0(a3) ⇥ w3 ⇥ �0(a2) ⇥ w2 ⇥ �0(a1) (4)

(5)
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VANISHING GRADIENTS

INTUITIVE EXPLANATION

Neural Nets : Basics The vanishing gradient issue

Intuitive explanation - 2

The derivative of the activation function : �0

�10 �5 0 5 10
0

0.25

0.5

0.75

1

�0(x) = �(x)(1 � �(x))

But weights are initialize around 0.

The di↵erent layers in our deep network are learning at vastly
di↵erent speeds :

when later layers in the network are learning well,

early layers often get stuck during training, learning almost nothing at all.
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VANISHING GRADIENTS

SOME HEURISTICS

Neural Nets : Basics The vanishing gradient issue

Solutions

Change the activation function (Rectified Linear Unit or ReLU)

�10 �5 0 5 10
0

2.5

5

7.5

10

Avoid the vanishing gradient

Some units can ”die”

See (Glorot et al.2011) for more details

Do pre-training when it is possible

See (Hinton et al.2006; Bengio et al.2007) :

when you cannot really escape from the initial (random) point, find a good
starting point.

More details

See (Hochreiter et al.2001; Glorot and Bengio2010; LeCun et al.2012)
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TOOLKIT

USEFUL TOOLS

Conclusion

Toolkits

Theano : http://deeplearning.net/software/theano/

in python, works on CPU and GPU and several wrappers

http://lasagne.readthedocs.org/

http://keras.io/

https://www.cs.cmu.edu/~ymiao/pdnntk.html

http://deeplearning.net/software/pylearn2/

http://blocks.readthedocs.org/

Torch7 : http://torch.ch/

Lua interface to C/CUDA

TensorFlow https://www.tensorflow.org

API in C++ and Python
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READINGS

READINGS (PAPERS)

�47

Reading lists for new MILA students 

 

Research in General 
 

How to write a great research paper 

Basic concepts on information theory in visual terms 
 
Blog post from Christopher Olah on  visualizing the representations of neural networks 
http://colah.github.io/posts/2015-09-Visual-Information/ 
 
 

Basics of machine learning 
 
● DL book chapter on linear algebra: 
http://www.deeplearningbook.org/contents/linear_algebra.html 
● DL book chapter on probability: 
http://www.deeplearningbook.org/contents/prob.html 
● DL book chapter on numerical computation: 
http://www.deeplearningbook.org/contents/numerical.html 
● DL book chapter on machine learning: 
http://www.deeplearningbook.org/contents/ml.html 
 

Basics of deep learning 
● Intro to deep learning: http://www.deeplearningbook.org/contents/intro.html 
● Feedforward multi-layer nets:  http://www.deeplearningbook.org/contents/mlp.html 
●  
● Learning deep architectures for AI 
● Practical recommendations for gradient-based training of deep architectures 
● Quick’n’dirty introduction to deep learning: Advances in Deep Learning  
● A fast learning algorithm for deep belief nets 
● Greedy Layer-Wise Training of Deep Networks 
● Stacked denoising autoencoders: Learning useful representations in a deep 
network with a local denoising criterion 
● Contractive auto-encoders: Explicit invariance during feature extraction 
● Why does unsupervised pre-training help deep learning? 
● An Analysis of Single Layer Networks in Unsupervised Feature Learning 

● The importance of Encoding Versus Training With Sparse Coding and Vector 
Quantization 
● Representation Learning: A Review and New Perspectives  
● Deep Learning of Representations: Looking Forward  
● Measuring Invariances in Deep Networks 
● Neural networks course at USherbrooke  [youtube ] 

Feedforward nets 
● http://www.deeplearningbook.org/contents/mlp.html 
● “Improving Neural Nets with Dropout” by Nitish Srivastava 
● Batch Normalization 

● “Fast Drop Out”  
● “Deep Sparse Rectifier Neural Networks” 
● “What is the best multi-stage architecture for object recognition?” 
● “Maxout Networks” 

MCMC 
● Iain Murray’s MLSS slides 
● Radford Neal’s Review Paper (old but still very comprehensive) 
● Better Mixing via Deep Representations 
● Bayesian Learning via Stochastic Gradient Langevin Dynamics 

Restricted Boltzmann Machines 
● Unsupervised learning of distributions of binary vectors using 2-layer networks 
● A practical guide to training restricted Boltzmann machines 
● Training restricted Boltzmann machines using approximations to the likelihood 
gradient 
● Tempered Markov Chain Monte Carlo for training of Restricted Boltzmann 
Machine 
● How to Center Binary Restricted Boltzmann Machines 
● Enhanced Gradient for Training Restricted Boltzmann Machines 
● Using fast weights to improve persistent contrastive divergence 
● Training Products of Experts by Minimizing Contrastive Divergence 
 

Boltzmann Machines 
● Deep Boltzmann Machines (Salakhutdinov & Hinton) 
● Multimodal Learning with Deep Boltzmann Machines 
● Multi-Prediction Deep Boltzmann Machines  
● A Two-stage Pretraining Algorithm for Deep Boltzmann Machines 
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● Deep Boltzmann Machines (Salakhutdinov & Hinton) 
● Multimodal Learning with Deep Boltzmann Machines 
● Multi-Prediction Deep Boltzmann Machines  
● A Two-stage Pretraining Algorithm for Deep Boltzmann Machines 
 
Regularized Auto-Encoders 
● The Manifold Tangent Classifier 
● DL book chapter on autoencoders: 
http://www.deeplearningbook.org/contents/autoencoders.html 
● DL book chapter on representation learning: 
http://www.deeplearningbook.org/contents/representation.html 
● Representation Learning: A Review and New Perspectives, in particular section 7. 
 

Regularization 
 

Stochastic Nets & GSNs 
● Estimating or Propagating Gradients Through Stochastic Neurons for Conditional 
Computation 
● Learning Stochastic Feedforward Neural Networks 
● Generalized Denoising Auto-Encoders as Generative Models 
● Deep Generative Stochastic Networks Trainable by Backprop  
 

Others 
● Slow, Decorrelated Features for Pretraining Complex Cell-like Networks 
● What Regularized Auto-Encoders Learn from the Data Generating Distribution  
● Generalized Denoising Auto-Encoders as Generative Models  
● Why the logistic function? 

 

Recurrent Nets 
● DL book chapter on recurrent nets 
● Learning long-term dependencies with gradient descent is difficult 
● Advances in Optimizing Recurrent Networks  
● Learning recurrent neural networks with Hessian-free optimization 
● On the importance of momentum and initialization in deep learning, 
● Long short-term memory (Hochreiter & Schmidhuber) 
● Generating Sequences With Recurrent Neural Networks 
● Long Short-Term Memory in Echo State Networks: Details of a Simulation Study 
● The "echo state" approach to analysing and training recurrent neural networks 
● Backpropagation-Decorrelation: online recurrent learning with O(N) complexity 
● New results on recurrent network training:Unifying the algorithms and accelerating 
convergence 
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● The "echo state" approach to analysing and training recurrent neural networks 
● Backpropagation-Decorrelation: online recurrent learning with O(N) complexity 
● New results on recurrent network training:Unifying the algorithms and accelerating 
convergence 
● Audio Chord Recognition with Recurrent Neural Networks 
● Modeling Temporal Dependencies in High-Dimensional Sequences: Application to 
Polyphonic Music Generation and Transcription 
 

Memory networks 
● Weston, Jason, Sumit Chopra, and Antoine Bordes. "Memory networks." arXiv preprint arXiv:1410.3916 (2014). 
● Graves, Alex, Greg Wayne, and Ivo Danihelka. "Neural Turing Machines." arXiv preprint arXiv:1410.5401 (2014). 
● Vinyals, Oriol, Meire Fortunato, and Navdeep Jaitly. "Pointer networks." arXiv preprint arXiv:1506.03134 (2015). 
● Kurach,Karol, Andrychowicz, Marcin and Sutskever,Ilya. "Neural Random-Access Machines." arXiv preprint 
arXiv:1511.06392 (2015). 
● Cho, Kyunghyun, Aaron Courville, and Yoshua Bengio. "Describing Multimedia Content using Attention-based 
Encoder--Decoder Networks." arXiv preprint arXiv:1507.01053 (2015). 
● Salakhutdinov, Ruslan, and Geoffrey Hinton. "Semantic hashing." International Journal of Approximate Reasoning 50.7 

(2009): 969-978.  
● Hinton, Geoffrey E. "Distributed representations." (1984) 

Convolutional Nets 
● DL book chapter on convolutional nts: 
http://www.deeplearningbook.org/contents/convnets.html 
● Generalization and Network Design Strategies (LeCun) 
● ImageNet Classification with Deep Convolutional Neural Networks, Alex 
Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, NIPS 2012. 
● On Random Weights and Unsupervised Feature Learning 

Optimization issues with DL 
● Curriculum Learning  
● Evolving Culture vs Local Minima 
● Knowledge Matters: Importance of Prior Information for Optimization 
● Efficient Backprop 
● Practical recommendations for gradient-based training of deep architectures 
● Batch Normalization 
● Natural Gradient Works Efficiently (Amari 1998) 
● Hessian Free 
● Natural Gradient (TONGA) 
● Revisiting Natural Gradient 
 

NLP + DL 
● The first journal paper on neural language models (there was a NIPS’2000 paper 
before): A Neural Probabilistic Language Model 
● Natural Language Processing (Almost) from Scratch 
● DeViSE: A Deep Visual-Semantic Embedding Model 
● Distributed Representations of Words and Phrases and their Compositionality 
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Conclusion

Further reading

Deep Learning Book by Yoshua Bengio, Ian Goodfellow and Aaron
Courville (http://www.iro.umontreal.ca/~bengioy/dlbook/)

Deep Learning for Natural Language Processing by Stanford University
http://cs224d.stanford.edu/

Deep Learning - Methods and Applications by Li Deng and Dong Yu
http://research.microsoft.com/pubs/219984/BOOK2014.pdf

Reading lists for new LISA students by University of Montreal.
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