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Inkroduction ko ‘Deep Neural Nebworkes




OUTLINE

o Introduction to multi-layered neural network
o Optimization (back-propagation)

¢ Regularization and Dropout

° The vanishing gradient issue

o Toollkik
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INTRODUCTION

FEATURE ENGINEERING

Most current machine learning works well because of human-designed
representations and input features

Machine
Data - learning -~ Decision
model
‘ ) yve{y,...,yx}
Features Parameters Class

e Time consuming and task/domain dependant
e Features are often both over-specified and incomplete

@ Machine learning < optimizing parameters to make the best prediction



INTRODUCTION

REPRESENTATION LEARNING AND DEEP NETWORKS

Representation learning attempts to automatically learn useful features

Machine
Data - learning — Decision
model
G e D)D) — G D
Features Parameters Class

@ Learning a hierarchical and abstract representation
@ That can be shared among tasks

@ Almost all data is unlabeled = unsupervised learning



INTRODUCTION

THE CURSE OF DIMENSIONALITY

In high-dimensional space, training data becomes sparse

data universg

dpta sample

http ://www.edupristine.com/blog/curse-dimensionality
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To generalize :
@ Use the distance to define some sort of “near-ness”

e Spread the probability mass around training examples (smooth the
empirical distribution)



INTRODUCTION

THE CURSE OF DIMENSIONALITY (DIMENSION=3)

In 2-dimensions, two points are near if one falls within a certain radius of

another.
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http://www.edupristine.com/blog/
curse-dimensionality

Consequence

In 2-d, which proportion of uniformly
spaced points within black square fall
inside the red circle ?

7TT2

472 g ~ 78%

This proportion drops to 52% in 3-d,
and to 0.24% in 10-d.

In high-dimensional space, the distance does not define a useful similarity.




INTRODUCTION

THE CURSE OF DIMENSIONALITY (DIMENSION=3)

Smoothing distribution
@ The mass is spread around the examples.

@ While plausible in this 2-dimensional case, in higher dimensions, the balls
will leave holes or be too large in high probability regions.

Manifold

e If we can discover a representation
of the probability concentration,

e a lower dimensional (non-linear)
manifold,

e we can "flatten” it by changing
the representation

@ for which the distance is useful for

density estimation, interpolation,
Y. Bengio, 2015




INTRODUCTION

NEURAL NETWORKS

Output layer

prediction of the
supervised target

Hidden Layers
learn more abstract
features as you head up

Raw inputs >

X (from Bengio, 2015)
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ILLUSTRATION AT DIFFERENT LAYERS?

L NN NV
\\ \\ \\/\,-\

(Lee et al.2009)



INTRODUCTION

DEEP LEARNING AND NEURAL NETWORKS: A SUCCESS STORY

Since 2009, deep learning approaches won several challenges
e ImageNet since 2012 (Krizhevsky et al.2012)

e Traffic signs recognition : superhuman performance in 2011 (Ciresan et
al.2012) based on (LeCun et al.1989)

e Handwritting recognition since 2009 (Graves and Schmidhuber2009)
based on (Hochreiter and Schmidhuber1997)

e Automatic Speech recognition (Hinton et al.2012)

Breakthrough in computer vision:
RO12-2016

e GPUs + 10x more data
[ _— ;

¢ 1000 object categories,
¢ Facebook: millions of faces

QPISER N U mantlevellperformance)

D‘ r—"j'i'.'." Iperson
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DEEP LEARNING AND NEURAL NETWORKS: A SUCCESS STORY

Since 2009, deep learning approaches won several challenges
e ImageNet since 2012 (Krizhevsky et al.2012)

e Traffic signs recognition : superhuman performance in 2011 (Ciresan et
al.2012) based on (LeCun et al.1989)

e Handwritting recognition since 2009 (Graves and Schmidhuber2009)
based on (Hochreiter and Schmidhuber1997)

e Automatic Speech recognition (Hinton et al.2012)

("'——E

Hidden forward layer () \
Hidden backward layer ()

H « w

1 t+1 T
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DEEP LEARNING AND NEURAL NETWORKS: A LONG STORY

The breakthrough of 2006

The expression Deep Learning was coined around 2006 with papers on
unsupervised pre-training of neural nets (Hinton et al.2006; Hinton and

Salakhutdinov2006; Bengio et al.2007)

And before? (just a few dates)

e 1958 Rosenblatt proposed the perceptron (Rosenblatt1958), following the
work of McCulloch and Pitts in 1943 and Hebb in 1949.

@ 1980 Neocognitron (Fukushimal980) or the multilayered NNets

e 1982 Hopfield network with memory and recurrence (Hopfield1982), the
unsupervised SOM (Kohonen1982), Neural PCA (0jal982)

e 1986 Multilayer perceptrons and backpropagation (Rumelhart et al.1986b)

e 1989 Autoencoders (Baldi and Hornik1989), Convolutional network
(LeCun et al.1989)

@ 1993 Sparse coding (Field1993)
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BUT, WHAT IS NEW?

Why today ?
@ The huge amount of data and the growth of computational power.

@ Regularization

@ and ...




INTRODUCTION

BUT, WHAT IS NEW?

Why today 7

@ We have connected the dots, e.g.
(Probabilistic) PCA / Neural PCA /
Autoencoder

@ We understand learning better
(regularization, architecture)

@ No need to be scared of non-convex
optimization (initialization)

@ The huge amount of data and the growth
of computational power.

What is the difference between a NNet and a
Deep Network ?

An intensive empirical exploration of different
issues

OO0
Y. Bengio, 2015
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LOGISTIC REGRESSION

Logistic regression (binary classification)

1] intercept term
[ wt
A CITIT1]— w = f(wite)
X
fla =w'x) = !
1+ea
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A single artificial neuron

bias term
(1@ L ,
@, O  pre-activation : a1 = wy'x

Q00O
S
et

y1 = f(wi'x), f is the activation function of the neuron
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LOGISTIC REGRESSION

From binary classification to K classes (Maxent)

’w'i |- T — =

[(TT 1T 11—, y1 = f(wrtx)

SO

flap = wi'x) = = =

D¢
: Wy

[(TTTTT)— yx = f(wkg'x)

A simple neural network
w1 .
(O e x : input layer
O QO 1= flwix) g /
7 | 8 ; e y : output layer
8 O yx = f(wkex) @ each yi has its parameters wy
WK e f is the softmax function




INTRODUCTION

LOGISTIC REGRESSION
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@ f is usually a non-linear function
@ f is a component wise function

@ e.g the softmax function :

ewk,t:c ewk,;w

Zk’ ewk’tw - Zk’ eWk,,:;c

yr = Plc=k|x) =

@ tanh, sigmoid, relu, ...

18



INTRODUCTION

MAXENT CLASSIFIERS

O
O
O .
O |finalement
@® | autrement
O :
O
X; — O o
) : t
Word representation 8 PIEHRE - alite =
: O
For each word in the context 8 Sugﬁﬁxe -« ment >
e surface form (one-hot vector) O SHHEe e er
O
@ prefix . :
- A rich representation
¢ sulllx of the input for a
° ... p better generalization.




INTRODUCTION

NEURAL NETWORKS WITH A HIDDEN LAYER

O — O
O 1Ol O
x : raw input representation - 8 8 8 y = f(WHh)
O ~|O] O
O\ : - 1O
h=f(W®Mg)

the internal and tailored representation

Intuitions

Learn an internal representation of the raw input
Apply a non-linear transformation

The input representation « is transformed/compressed in a new
representation h

Adding more layers to obtain a more and more abstract representation

20



INTRODUCTION

HOW DO WE LEARN THE PARAMETERS ?

For a supervised single layer neural net
Just like a maxent model :

e Calculate the gradient of the objective function and use it to iteratively
update the parameters.

e Conjugate gradient, L-BFGS, ...
e In practice : Stochastic gradient descent (SGD)

With one hidden layer

@ The internal (“hidden”) units make the function non-convex ... just like
other models with hidden variables :

o hidden CRFs (Quattoni et al.2007), ...

@ But we can use the same ideas and techniques

e Just without guarantees = backpropagation (Rumelhart et al.1986b)

y
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OUTLINE

o Introduction to mulki-layered neural network
o Optimization (back-propagation)

* Regularization and Dropout

* The vanishing gradient issue

o Toollkik
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OPTIMIZATION OF A SINGLE LAYER NETWORK FOR CLASSIFICATION

( O . y — f(Ww)
8 ‘ 8 The set of parameters is denoted 0, in
RS @y, = P(c=klx) this case :
19| O 6= (W)
w

The log-loss (conditional log-likelihood)
Assume the dataset D = (z(;), c(i))fil, ch) €11,2,...,C}

L(Q) Z 9 213(1), C(z Z ( — Z]I{C = C(Z)} log C|£E(Z)))) (1)

Q

10, ), caiy) Z = ¢(;) § log(yx) (2)

v
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OPTIMIZATION USING SGD

Stochastic Gradient Descent (Bottou2010)
For ( ¢t = 1; until convergence; t 4+ +) :
o Pick randomly a sample (x(;), c(;))

o Compute the gradient of the loss function w.r.t the parameters (Vg)

e Update the parameters : @ = 0 — Vg

Questions

@ convergence : what does it mean 7

e what do you mean by n; ?
o convergence if >, 1 = co and Y, 7 < oo
o 7t X t_l

o and lot of variants like Adagrad (Duchi et al.2011), Down scheduling, ...
see (LeCun et al.2012)




OPTIMIZATION

GRADIENT COMPUTATION AT FIRST LAYER
J

= T Wi
Wgj —s f( Hk): ..... E I
w Y

Inference chain :
L) — ((L = Ww(i)) — (y — f(a)) — l(07 L(i)> C(i))

The gradient for wy;

o _OUO.zh ) 00z cy) Oy Da
Wi j 8wkj 0y 80, 8wkj

= —(I[{k — c(i)} — Y )T = 0k
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GRADIENT COMPUTATION AT SECOND LAYER

T T
X

o B

(Generalization

VW = 5:13t
O = —(I{k = cy } — yr)

with 0 the gradient at the pre-activation level.
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ITERATIONS

forward x s
18] 1)
O Oly = f(W'x)
x| |© O
O O
O O
\ O
¢ backward o

Inference : a forward step
@ matrice multiplication with the input @

e Application of the activation function

One training step : forward and backward steps
o Pick randomly a sample (x(;), c(;))

e Compute o

e Update the parameters : @ = 6 — n;dx?




OPTIMIZATION

FEED-FORWARD NETWORKS WITH A MULTI-LAYERS

One layer, indexed by [

(1)

O O o () : input of the layer I
8 8 o y) = FOWO g0)
8 8 o stacking layers : y¥) = (1)
l

w) o o (1) = a data example
(1) 2 (2) 2 (3) (L)
O O 0 0 S
O O O O O
8 N 8 N 8 ...... 8 N 8
© 1 1@ 2 © © Ly ©

W (1) W (2) (L—-1) W (L)

Y (7] (7] y'\~’  output

28



OPTIMIZATION
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EXAMPLE OF TWO LAYERS

(1) 2(2)
O O O
O O O
O O O
O O O
°F wo @ o we ©
y(l) y(2) : output
Gradient for the output layer
As in the Ex. 1 :
y — y?
W — w®

Ve = 5(2):13(2)t, with

07 = —1{k=cu)} — m

0 — (W(l), W(Q))
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BACK-PROPAGATION OF THE LOSS GRADIENT

e y@ 5@

OO0OO0OO00O
S/‘\
ﬁ\oo
O000O
i
0000

Inference chain part 1 :

yM = fWaV) - (0(2) = W(z)y(”) E (y@) = f@)(a(z))) = 10,2, c(i))

1
(0, x (), i) _ ol(0, ), ciy) y (‘)y(2) oa? ayj( )
8a(-1) Oy (2) a2 (7y(1) (9a§.1>

/ / t
=S @1k =y} — )@ Viay) = f “’(aj)(wf?jé@) )
k

Vo =
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BACK-PROPAGATION OF THE LOSS GRADIENT (SECOND HIDDEN LAYER)

the back-propagated signal V)

A

Vy(1) = W(Q)t5(2), then

J
(T T} w'

1l

/

|

5V =v_oy = FO (@MW) o (W@)t(;(z))



OPTIMIZATION

BACK-PROPAGATION OF THE LOSS GRADIENT (THIRD LAYER)

g 5O 4@ 5@

olelolelelelele
OO0000
000000
1
elelele
0000
i

As for the output layer, the gradient is :

Vo = 5(1){B(1)t, with
5 =V,

5V = WMy o (W' §@)

The term (W<2)t5(2)) comes from the upper layer.

32



OPTIMIZATION

BACK-PROPAGATION : GENERAL CASE

For a hidden layer [ :

@ The gradient at the pre-activation level :

5O — f/(l)(a(l)) o (W(z+1)t5(z+1))

e The update is as follows :

wO — wO _ 50,0

The layer should keep :

w®
@
20
al) .

60 .

: the parameters

its activation function

its input

its pre-activation associated to the input

for the update and the back-propagation to the layer [ — 1

33



OPTIMIZATION

BACK-PROPAGATION : ONE TRAINING STEP

Pick a training example : x(l) = T (;)

Forward pass

For =1 to (L —1)
o Compute y = O W0
o (Ut = 4

yL) = L) (W L)L)

Backward pass

Init : 5(L) = V4@
For [ =L to 2 // all hidden units

o 51 — f/(l—l)(a(l—l)) 5 (W(l)té(l))
o WW —w® _ nté(l)a:(l)t
wl —w® _ nté(l)a:(l)t
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INITIALIZATION RECIPES

A difficult question with several empirical answers.

One standard trick

W ~ N(0,

V Nin

with n;,, is the number of inputs

A more recent one

V6 V6

qu[— ,
\/nz'n + Nout \/nzn + Nout

with n;, is the number of inputs

|
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OUTLINE

o Introduction to multi-layered neural networlk
e Optimization (back-propagation)

¢ Regularization and Dropout

* The vanishing gradient issue

o Toollkik



REGULARIZATION

REGULARIZATION L2 OR GAUSSIAN PRIOR OR WEIGHT DECAY

The basic way :
N

A
£(8) = 3" U8, w(, )+ 5116

1=1

The second term is the regularization term.
Each parameter has a gaussian prior : N'(0,1/X).
A is a hyperparameter.

The update has the form :

0= (1+mN0 —nVe

37



REGULARIZATION 38

DROPQOUT - A NEW REGULARIZATION SCHEME

@ For each training example :

randomly turn-off the neurons of
hidden units (with p = 0.5)

@ At test time, use each neuron
scaled down by p

a) Standard Neural Net (b) After applying dropout.

@ Dropout serves to separate effects from strongly correlated features and
@ prevents co-adaptation between units
e It can be seen as averaging different models that share parameters.

e It acts as a powerful regularization scheme.
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OUTLINE

o Introduction to multi-layered neural networlk
e Optimization (back-propagation)

* Regularization and Dropout

° The vanishing gradient issue

o Toollkik



VANISHING GRADIENTS

EXPERIMENTAL OBSERVATIONS (MNIST TASK) - ONE LAYER

The MNIST database

N =~
SN N
ITxRw-o
N W R

Neses—X
Co NN &
Qo6 x

7
2
3
9

N =0~
CcONO

N O &a®

2
'S
/
!

o G
W RN Y

O~ £~

Wy i
NMWod~=

L L S
RN A
GG Q@

Comparison of different depth for feed-forward architecture

8

(1)

OO000-O

_

w @)

8

OO00O00O

y

(2)

_

W (2)

23)

O

O

e

(L)

O

)

y(L_l)

_

w (L)

e Hidden layers have a sigmoid activation function.

@ The output layer is a softmax.

OO000-O

@/‘\

: output




VANISHING GRADIENTS

EXPERIMENTAL OBSERVATIONS (MNIST TASK) - TWO LAYERS

Varying the depth
e Without hidden layer : ~ 88% accuracy
@ 1 hidden layer (30) : =~ 96.5% accuracy
@ 2 hidden layer (30) : =~ 96.9% accuracy
@ 3 hidden layer (30) : =~ 96.5% accuracy
)

@ 4 hidden layer (30) : =~ 96.5% accuracy

10° Speed of learning: 4 hidden layers
’ : - | — Hidden layer 1
: : : Hidden layer 2
101_ .................... ..................... —— Hidden layer 3 4
: : : layer 4

1072}

(From http://neuralnetworksanddeeplearning.

107
com/chap5.html)

107 b\

10

0 100 200 300 400 500
Number of epochs of training



VANISHING GRADIENTS 42

INTUITIVE EXPLANATION

Let consider the simplest deep neural network, with just a single neuron in
each layer.

w;, b; are resp. the weight and bias of neuron ¢+ and C some cost function.

Compute the gradient of C' w.r.t the bias by

80 o 60 (9y4 8a4 ayg 8a3 (‘9y2 8&2 8y1 8&1
T TR T TP A T Tra Tl el T

- 270 x 0'(as) X wy X 0'(az) x w3 x 0'(az) x wg x o' (ay) (4)
4




VANISHING GRADIENTS

INTUITIVE EXPLANATION

The derivative of the activation function : o’

1,,

0.75 1

o'(x) = o(z)(1 - o(x))

But weights are initialize around 0.

10 _5 10

The different layers in our deep network are learning at vastly
different speeds :

@ when later layers in the network are learning well,

e early layers often get stuck during training, learning almost nothing at all.



VANISHING GRADIENTS 44

SOME HEURISTICS

Change the activation function (Rectified Linear Unit or ReLU)

10 %

" e Avoid the vanishing gradient

5,,

@ Some units can ”die”
See (Glorot et al.2011) for more details

2.5 1

; : 5 ;
—10 -5 0 5 10

Do pre-training when it is possible
See (Hinton et al.2006; Bengio et al.2007) :

when you cannot really escape from the initial (random) point, find a good
starting point.

More details
See (Hochreiter et al.2001; Glorot and Bengio2010; LeCun et al.2012) J
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OUTLINE

o Introduction to multi-layered neural network
¢ Optimization (Pack-propagation)

* Regularization and Dropout

* The vanishing gradient issue

o Toollkik



TOOLKIT

USEFUL TOOLS

Theano : http://deeplearning.net/software/theano/

in python, works on CPU and GPU and several wrappers
http://lasagne.readthedocs.org/

http://keras.io/
https://www.cs.cmu.edu/~ymiao/pdnntk.html
http://deeplearning.net/software/pylearn2/

o
o
o
o
o
@ http://blocks.readthedocs.org/

46

Torch7 : http://torch.ch/
Lua interface to C/CUDA

TensorFlow https://www.tensorflow.org
API in C++ and Python
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READINGS (PAPERS)

Basics of deep learning

Intro to deep learning: http://www.deeplearningbook.org/contents/intro.htrr
Feedforward multi-layer nets: http://www.deeplearningbook.org/contents/r

Learning deep architectures for Al

Practical recommendations for gradient-based training of deep architectur
Quick’n’dirty introduction to deep learning: Advances in Deep Learning

A fast learning algorithm for deep belief nets

Greedy Layer-Wise Training of Deep Networks

Stacked denoising autoencoders: Learning useful representations in a dee
network with a local denoising criterion

° Contractive auto-encoders: Explicit invariance during feature extraction

° Why does unsupervised pre-training help deep learning?

° An Analysis of Single Layer Networks in Unsupervised Feature Learning

° The importance of Encoding Versus Training With Sparse Coding and Vector
Quantization

Representation Learning: A Review and New Perspectives
Deep Learning of Representations: Looking Forward
Measuring Invariances in Deep Networks

Neural networks course at USherbrooke [youtube]
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READINGS (PAPERS)

Feedforward nets

° http://www.deeplearningbook.org/contents/mip.html

° “Improving Neural Nets with Dropout” by Nitish Srivastava

° Batch Normalization

° “Fast Drop Out”

° ‘Deep Sparse Rectifier Neural Networks”

° “What is the best multi-stage architecture for object recognition?”
° “Maxout Networks”

MCMC

° lain Murray’s MLSS slides

° Radford Neal's Review Paper (old but still very comprehensive)
° Better Mixing via Deep Representations

° Bayesian Learning via Stochastic Gradient Langevin Dynamics

Restricted Boltzmann Machines

° Unsupervised learning of distributions of binary vectors using 2-layer networks
° A practical guide to training restricted Boltzmann machines

° Training restricted Boltzmann machines using approximations to the likelihood
gradient

° Tempered Markov Chain Monte Carlo for training of Restricted Boltzmann
Machine

° How to Center Binary Restricted Boltzmann Machines

) Enhanced Gradient for Training Restricted Boltzmann Machines

° Using fast weights to improve persistent contrastive divergence

° Training Products of Experts by Minimizing Contrastive Divergence




READINGS

READINGS (PAPERS)

Boltzmann Machines

° Deep Boltzmann Machines (Salakhutdinov & Hinton)

° Multimodal Learning with Deep Boltzmann Machines

° Multi-Prediction Deep Boltzmann Machines

° A Two-stage Pretraining Algorithm for Deep Boltzmann Machines

Regularized Auto-Encoders

° The Manifold Tangent Classifier

° DL book chapter on autoencoders:
http://www.deeplearningbook.org/contents/autoencoders.html

° DL book chapter on representation learning:
http://www.deeplearningbook.org/contents/representation.html

° Representation Learning: A Review and New Perspectives, in particular section 7.
Regularization

Stochastic Nets & GSNs

° Estimating or Propagating Gradients Through Stochastic Neurons for Conditional
Computation

° Learning Stochastic Feedforward Neural Networks

° Generalized Denoising Auto-Encoders as Generative Models

° Deep Generative Stochastic Networks Trainable by Backprop

49
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READINGS (PAPERS)

Others

Slow, Decorrelated Features for Pretraining Complex Cell-like Networks

What Regularized Auto-Encoders Learn from the Data Generating Distribution
Generalized Denoising Auto-Encoders as Generative Models

Why the logistic function?

Recurrent Nets

DL book chapter on recurrent nets

Learning long-term dependencies with gradient descent is difficult

Advances in Optimizing Recurrent Networks

Learning recurrent neural networks with Hessian-free optimization

On the importance of momentum and initialization in deep learning,

Long short-term memory (Hochreiter & Schmidhuber)

Generating Sequences With Recurrent Neural Networks

Long Short-Term Memory in Echo State Networks: Details of a Simulation Study
The "echo state" approach to analysing and training recurrent neural networks
Backpropagation-Decorrelation: online recurrent learning with O(N) complexity
New results on recurrent network training:Unifying the algorithms and accelerating

convergence

Audio Chord Recognition with Recurrent Neural Networks
Modeling Temporal Dependencies in High-Dimensional Sequences: Application to

Polyphonic Music Generation and Transcription




READINGS

READINGS (PAPERS)

Convolutional Nets

° DL book chapter on convolutional nts:
http://www.deeplearningbook.org/contents/convnets.html

° Generalization and Network Design Strategies (LeCun)

° ImageNet Classification with Deep Convolutional Neural Networks, Alex
Krizhevsky, llya Sutskever, Geoffrey E Hinton, NIPS 2012.

° On Random Weights and Unsupervised Feature Learning

Optimization issues with DL

Curriculum Learning

Evolving Culture vs Local Minima

Knowledge Matters: Importance of Prior Information for Optimization
Efficient Backprop

Practical recommendations for gradient-based training of deep architectures

Batch Normalization

Natural Gradient Works Efficiently (Amari 1998)
Hessian Free

Natural Gradient (TONGA)

Revisiting Natural Gradient

51
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READINGS (BOOKS)

@ Deep Learning Book by Yoshua Bengio, Ian Goodfellow and Aaron
Courville (http://www.iro.umontreal.ca/~bengioy/dlbook/)

@ Deep Learning for Natural Language Processing by Stanford University
http://cs224d.stanford.edu/

@ Deep Learning - Methods and Applications by Li Deng and Dong Yu
http://research.microsoft.com/pubs/219984/B00K2014 .pdf

@ Reading lists for new LISA students by University of Montreal.

Neural Networks for
Pattern Recognition

Christopher M. Bishop




