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THE PRACTICAL PARADIGM
ML Redux: The Experimental Paradigm

Variations: k-fold cross-validation, etc.

This is the main driver for progress in machine learning.
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MATHEMATICAL FORMULATION
ML Redux: Mathematical Statement (i)

• Assumption

Examples are drawn independently from

an unknown probability distribution P (x, y)

that represents the laws of Nature.

• Loss Function

Function ℓ(ŷ, y) measures the cost

of answering ŷ when the true answer is y.

• Expected Risk

We seek to find the function f∗ that minimizes:

min
f

E(f) =

∫

ℓ( f(x), y ) dP (x, y)

Note: The test set error is an approximation of the expected risk.
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MATHEMATICAL FORMULATION
ML Redux: Mathematical Statement (ii)

• Approximation

Not feasible to search f∗ among all functions.

Instead, we search f∗F that minimizes the Expected Risk E(f)
within some richly parametrized family of functions F .

• Estimation

Not feasible to minimize the expectation E(f)
because P (x, y) is unknown.

Instead, we search fn that minimizes the Empirical Risk En(f),
that is, the average loss over the training set examples.

min
f∈F

En(f) =
1

n

n
∑

i=1

ℓ( f(xi), yi )

In other words, we optimize a surrogate problem!
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TRADITIONAL TRADEOFF
ML Redux: The Tradeoff

E(fn)− E(f∗) =
(

E(f∗F )− E(f∗)
)

Approximation Error

+
(

E(fn)− E(f∗F)
)

Estimation Error

Size of F

Estimation error

Approximation error

(Vapnik and Chervonenkis, Ordered risk minimization, 1974).

(Vapnik and Chervonenkis, Theorie der Zeichenerkennung, 1979)
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STATISTICAL AND COMPUTATIONAL PERSPECTIVES
The Computational Problem (i)

• Statistical Perspective:

“It is good to optimize an objective function than ensures a fast

estimation rate when the number of examples increases.”

• Optimization Perspective:

“To efficiently solve large problems, it is preferable to choose

an optimization algorithm with strong asymptotic properties, e.g.

superlinear.”

• Incorrect Conclusion:

“To address large-scale learning problems, use a superlinear algorithm to

optimize an objective function with fast estimation rate.
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COMPUTATIONAL CONSTRAINTS 
The Computational Problem (ii)

• Baseline large-scale learning algorithm

Randomly discarding data is the simplest

way to handle large datasets.

– What are the statistical benefits of processing more data?

– What is the computational cost of processing more data?

• We need a theory that joins Statistics and Computation!

– 1967: Vapnik and Chervonenkis theory does not discuss computation.

– 1981: Valiant’s learnability excludes exponential time algorithms,

but (i) polynomial time already too slow, (ii) few actual results.

– We propose a new analysis of approximate optimization. . .
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TRADEOFF BETWEEN LOSS AND LEARNING TIMETest Error versus Learning Time

Computing Time

Te
st

 E
rr

or

Bayes Limit
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Test Error versus Learning Time

Computing Time

Te
st

 E
rr

or

10,000 examples

1,000,000 examples
100,000 examples

Bayes limit

Vary the number of examples. . .

TRADEOFF BETWEEN LOSS AND LEARNING TIME
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Test Error versus Learning Time

Computing Time

Te
st

 E
rr

or

10,000 examples

1,000,000 examples
100,000 examples

Bayes limit

optimizer a
optimizer b
optimizer c

model I
model II
model III
model IV

Vary the number of examples, the statistical models, the algorithms,. . .

TRADEOFF BETWEEN LOSS AND LEARNING TIME
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Test Error versus Learning Time

Bayes limit

Good Learning
Algorithms

$

$

Point where we should
start working on something else?

Changing the units along the axes. . .

TRADEOFF BETWEEN LOSS AND LEARNING TIME
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LEARNING WITH APPROXIMATE OPTIMIZATION
Learning with Approximate Optimization

Computing fn = arg min
f∈F

En(f ) is often costly.

Since we already optimize a surrogate function

why should we compute its optimum fn exactly?

Let’s assume our optimizer returns f̃n

such that En(f̃n) < En(fn) + ρ.

For instance, one could stop an iterative

optimization algorithm long before its convergence.
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LEARNING WITH APPROXIMATE OPTIMIZATIONDecomposition of the Error (i)

E(f̃n)− E(f∗) = E(f∗F)− E(f∗) Approximation error

+ E(fn)− E(f∗F) Estimation error

+ E(f̃n)− E(fn) Optimization error

Problem:

Choose F, n, and ρ to make this as small as possible,

subject to budget constraints

{

max number of examples n
max computing time T
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LEARNING WITH APPROXIMATE OPTIMIZATIONDecomposition of the Error (ii)

Approximation error bound: (Approximation theory)

– decreases when F gets larger.

Estimation error bound: (Vapnik-Chervonenkis theory)

– decreases when n gets larger.

– increases when F gets larger.

Optimization error bound: (Vapnik-Chervonenkis theory plus tricks)

– increases with ρ.

Computing time T : (Algorithm dependent)

– decreases with ρ

– increases with n

– increases with F
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LEARNING WITH APPROXIMATE OPTIMIZATION
Small-scale vs. Large-scale Learning

We can give rigorous definitions.

• Definition 1:
We have a small-scale learning problem when the active
budget constraint is the number of examples n.

• Definition 2:
We have a large-scale learning problem when the active
budget constraint is the computing time T .
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LEARNING WITH APPROXIMATE OPTIMIZATION

STATISTICAL AND COMPUTATIONAL TRADEOFFS

Small-scale Learning

The active budget constraint is the number of examples.

• To reduce the estimation error, take n as large as the budget allows.

• To reduce the optimization error to zero, take ρ = 0.

• We need to adjust the size of F.

Size of F

Estimation error

Approximation error

See Structural Risk Minimization (Vapnik 74) and later works.
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OPTIMIZATION

REVIEW OF CONVEX FUNCTIONS

Optimization

• Much of  machine learning can be written as an optimization problem

• Example loss functions: logistic regression, linear regression, principle 
component analysis, neural network loss

min
x

NX

i=1

f(x; yi)model

loss function

training 
examples
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TYPES OF OPTIMIZATIONTypes of  Optimization

•Convex optimization
• The easy case
• Includes logistic regression, linear regression, SVM

• Non-convex optimization
•NP-hard in general
• Includes deep learning
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REVIEW OF CONVEX FUNCTIONSConvex Functions

8↵ 2 [0, 1], f(↵x+ (1� ↵)y)  ↵f(x) + (1� ↵)f(y)
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f(x) = x2
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REVIEW OF CONVEX FUNCTIONS

Example: Quadratic

f(x) = x2

(↵x+ (1� ↵)y)2 = ↵2x2 + 2↵(1� ↵)xy + (1� ↵)2y2

= ↵x2 + (1� ↵)y2 � ↵(1� ↵)(x2 + 2xy + y2)

 ↵x2 + (1� ↵)y2
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REVIEW OF CONVEX FUNCTIONS

Example: Abs

f(x) = |x|

|↵x+ (1� ↵)y|  |↵x|+ |(1� ↵)y|
= ↵|x|+ (1� ↵)|y|
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REVIEW OF CONVEX FUNCTIONS

Example: Exponential

f(x) = ex

e↵x+(1�↵)y = eye↵(x�y) = ey
1X

n=0

1

n!
↵n(x� y)n

 ey
 
1 + ↵

1X

n=1

1

n!
(x� y)n

!

= ey
�
(1� ↵) + ↵ex�y

�

= (1� ↵)ey + ↵ex

(if x > y)
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PROPERTIES OF CONVEX FUNCTIONS (CONTINUED)Properties of  convex functions (continued)

• Non-negative combinations of  convex functions are convex

• Affine scalings of  convex functions are convex

• Compositions of  convex functions are NOT generally convex
• Neural nets are like this

h(x) = af(x) + bg(x)

h(x) = f(Ax+ b)

h(x) = f(g(x))
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CONVEX FUNCTIONS: ALTERNATIVE DEFINITIONSConvex Functions: Alternative Definitions

• First-order condition

• Second-order condition

• This means that the matrix of  second derivatives is positive semidefinite 

r2f(x) ⌫ 0

A ⌫ 0 , 8x, hx,Axi � 0

hx� y,rf(x)�rf(y)i � 0
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Example: Quadratic

f(x) = x2

f 00(x) = 2 � 0

CONVEX FUNCTIONS: EXAMPLES
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CONVEX FUNCTIONS: EXAMPLES

Example: Exponential

f(x) = ex

f 00(x) = ex � 0

REVIEW OF CONVEX FUNCTIONS �30



CONVEX FUNCTIONS: EXAMPLES

Example: Logistic Loss

f(x) = log(1 + ex)

f 0(x) =
ex

1 + ex
=

1

1 + e�x

f 00(x) = � �e�x

(1 + e�x)2
=

1

(1 + ex)(1 + e�x)
� 0.
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STRONGLY CONVEX FUNCTIONSStrongly Convex Functions

• Basically the easiest class of  functions for optimization
• First-order condition:

• Second-order condition:

• Equivalently:

hx� y,rf(x)�rf(y)i � µkx� yk2

r2f(x) ⌫ µI

h(x) = f(x)� µ
2 kxk

2 is convex
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CONCAVE FUNCTIONSConcave functions

• A function is concave if  its negation is convex

• Example:

f is convex , h(x) = �f(x) is concave

f(x) = log(x)

f 00(x) = � 1

x2
 0
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WHY CARE ABOUT CONVEX FUNCTIONS?Convex Optimization

• Goal is to minimize a convex function
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GRADIENT DESCENT

GRADIENT DESCENT

Gradient Descent

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x x� ↵rf(x)
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GRADIENT DESCENT CONVERGESGradient Descent Converges

• Iterative definition of  gradient descent

• Assumptions/terminology:

xt+1 = xt � ↵rf(xt)

Global optimum is x⇤

Bounded second derivative µI � r2f(x) �  LI
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GRADIENT DESCENT CONVERGESGradient Descent Converges (continued)

• Taking the norm

xt+1 � x⇤ = xt � x⇤ � ↵(rf(xt)�rf(x⇤))

= xt � x⇤ � ↵r2f(zt)(xt � x⇤)

= (I � ↵r2f(zt))(xt � x⇤).

kxt+1 � x⇤k 
��I � ↵r2f(zt)

�� kxt � x⇤k
 max (|1� ↵µ|, |1� ↵L|) kxt � x⇤k
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GRADIENT DESCENT CONVERGESGradient Descent Converges (continued)

• So if  we set                                    then

• And recursively

• Called convergence at a linear rate or sometimes (confusingly) exponential rate

↵ = 2/(L+ µ)

kxt+1 � x⇤k  L� µ

L+ µ
kxt � x⇤k

kxT � x⇤k 
✓
L� µ

L+ µ

◆T

kx0 � x⇤k
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THE PROBLEM WITH GRADIENT DESCENTThe Problem with Gradient Descent

• Large-scale optimization

• Computing the gradient takes O(N) time

h(x) =
1

N

NX

i=1

f(x; yi)

rh(x) =
1

N

NX

i=1

rf(x; yi)
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GRADIENT DESCENT WITH MORE DATAGradient Descent with More Data

• Suppose we add more examples to our training set
• For simplicity, imagine we just add an extra copy of  every training example

• Same objective function
• But gradients take 2x the time to compute (unless we cheat)

• We want to scale up to huge datasets, so how can we do this?

rh(x) =
1

2N

NX

i=1

rf(x; yi) +
1

2N

NX

i=1

rf(x; yi)
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STOCHASTIC GRADIENT DESCENT

STOCHASTIC GRADIENT DESCENT

Stochastic Gradient Descent

• Idea: rather than using the full gradient, just use one training example
• Super fast to compute

• In expectation, it’s just gradient descent:
This is an example 

selected uniformly at 
random from the dataset.

xt+1 = xt � ↵rf(xt; yĩt)

E [xt+1] = E [xt]� ↵E [rf(xt; yit)]

= E [xt]� ↵
1

N

NX

i=1

rf(xt; yi)
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STOCHASTIC GRADIENT DESCENT CONVERGENCE

STOCHASTIC GRADIENT DESCENT

Stochastic Gradient Descent Convergence

• Can SGD converge using just one example to estimate the gradient?

• How do we handle this extra noise term?

• Answer: bound it using the variance!
• Variance of  a constant plus a random variable is just the variance of  that random 

variable, so we don’t need to think about the rest of  the expression.

xt+1 � x⇤ = xt � x⇤ � ↵ (rh(xt)�rh(x⇤))� ↵ (rf(xt; yit)�rh(xt))

=
�
I � ↵r2h(zt)

�
(xt � x⇤)� ↵ (rf(xt; yit)�rh(xt))
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STOCHASTIC GRADIENT DESCENT CONVERGENCE

STOCHASTIC GRADIENT DESCENT

Stochastic Gradient Descent Convergence

Var (xt+1 � x⇤|xt)

= Var
��
I � ↵r2h(zt)

�
(xt � x⇤)� ↵ (rf(xt; yit)�rh(xt))

��xt

�

= Var (↵ (rf(xt; yit)�rh(xt))|xt)

= ↵2Var (rf(xt; yit)�rh(xt)|xt)

= ↵2E
⇥
krf(xt; yit)�rh(xt)k2

��xt

⇤

 ↵2M.
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STOCHASTIC GRADIENT DESCENT CONVERGENCE

STOCHASTIC GRADIENT DESCENT

Stochastic Gradient Descent Convergence

• So by the law of  total expectation

E
⇥
kxt+1 � x⇤k2

��xt

⇤

= kE [xt+1 � x⇤|xt]k2 +Var (xt+1 � x⇤|xt)

 (1� ↵µ)2kxt � x⇤k2 + ↵2M (for ↵ ⌧ 1)

E
⇥
kxt+1 � x⇤k2

⇤
 (1� ↵µ)2E

⇥
kxt � x⇤k2

⇤
+ ↵2M
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STEP SIZES AND CONVERGENCE

STOCHASTIC GRADIENT DESCENT

Where we left off

• Stochastic gradient descent

• Much faster per iteration than gradient descent
• Because we don’t have to process the entire training set

• But converges to a noise ball

xt+1 = xt � ↵rf(xt; yĩt)

lim
T!1

E
⇥
kxT � x⇤k2

⇤
 ↵M

2µ� ↵µ2
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CONTROLLING THE ACCURACY

STOCHASTIC GRADIENT DESCENT

Controlling the accuracy

• Want the noise ball to be as small as possible for accurate solutions

• Noise ball proportional to the step size/learning rate

• So should we make the step size as small as possible?

lim
T!1

E
⇥
kxT � x

⇤k2
⇤
 ↵M

2µ� ↵µ2
= O(↵)
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EFFECT OF STEP SIZE ON CONVERGENCE

STOCHASTIC GRADIENT DESCENT

Effect of  step size on convergence

• Let’s go back to the convergence rate proof  for SGD
• From the previous lecture, we have

• If  we’re far from the noise ball i.e.

E
h
kxt+1 � x⇤k2

���xt

i
 (1� ↵µ)2 kxt � x⇤k2 + ↵2M.

kxt � x⇤k2 � 2↵M

µ

E
h
kxt+1 � x⇤k2

���xt

i
 (1� ↵µ)2 kxt � x⇤k2 + ↵µ

2
kxt � x⇤k2 .
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EFFECT OF STEP SIZE ON CONVERGENCE

STOCHASTIC GRADIENT DESCENT

Effect of  step size on convergence (continued)

• So to contract by a factor of  C, we need to run T steps, where

E
h
kxt+1 � x⇤k2

���xt

i
 (1� ↵µ)2 kxt � x⇤k2 + ↵µ

2
kxt � x⇤k2


⇣
1� ↵µ

2

⌘
kxt � x⇤k2 (if ↵µ < 1)

 exp
⇣
�↵µ

2

⌘
kxt � x⇤k2 .

1 = exp

✓
�↵µT

2

◆
C , T =

2

↵µ
logC
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THE FULL EFFECT OF STEP SIZE

STOCHASTIC GRADIENT DESCENT

The Full Effect of  Step Size

• Noise ball proportional to the step size

• Convergence time inversely proportional to the step size

• So there’s a trade-off !

lim
T!1

E
⇥
kxT � x

⇤k2
⇤
 ↵M

2µ� ↵µ2
= O(↵)

T =
2

↵µ
logC
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CAN WE GET THE BEST OF BOTH WORLDS?

STOCHASTIC GRADIENT DESCENT

Can we get the best of  both worlds?

• When do we want the step size to be large?
• At the beginning of  execution?      Near the end?    Both?

• When do we want the step size to be small?
• At the beginning of  execution?      Near the end?    Both?

• What about using a decreasing step size scheme?

At the beginning of  execution! 

Near the end! 
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STOCHASTIC GRADIENT DESCENT IS SUPER POPULAR

STOCHASTIC GRADIENT DESCENT

But how SGD is implemented in 
practice is not exactly what I’ve 
just shown you…

…and we’ll see how it’s different 
in the upcoming lectures.
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GRADIENT DESCENT VERSUS SGD

MINI-BATCHING

Gradient Descent vs. SGD

• Gradient descent: all examples at once

• Stochastic gradient descent: one example at a time

• Is it really all or nothing? Can we do something intermediate?

xt+1 = xt � ↵t
1

N

NX

i=1

rf(xt; yi)

xt+1 = xt � ↵trf(xt; yit)
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MINI-BATCH STOCHASTIC GRADIENT DESCENTMini-Batch Stochastic Gradient Descent

• An intermediate approach

where Bt is sampled uniformly from the set of  all subsets of  {1, … , N} 
of  size b.

• The b parameter is the batch size
• Typically choose b << N.

• Also called mini-batch gradient descent

xt+1 = xt � ↵t
1

|Bt|
X

i2Bt

rf(xt; yi)

MINI-BATCHING �56



ADVANTAGES OF MINI-BATCHAdvantages of  Mini-Batch 

• Takes less time to compute each update than gradient descent
• Only needs to sum up b gradients, rather than N

• But takes more time for each update than SGD
• So what’s the benefit?

• It’s more like gradient descent, so maybe it converges faster than SGD?

xt+1 = xt � ↵t
1

|Bt|
X

i2Bt

rf(xt; yi)

MINI-BATCHING �57



MINI-BATCH SGD CONVERGESMini-Batch SGD Converges

• Start by breaking up the update rule into expected update and noise

• Variance analysis

xt+1 � x⇤ = xt � x⇤ � ↵t (rh(xt)�rh(x⇤))

� ↵t
1

|Bt|
X

i2Bt

(rf(xt; yi)�rh(xt))

Var (xt+1 � x⇤) = Var

 
↵t

1

|Bt|
X

i2Bt

(rf(xt; yi)�rh(xt))

!

MINI-BATCHING �58



MINI-BATCH SGD CONVERGESMini-Batch SGD Converges (continued)

Var (xt+1 � x⇤) =
↵2
t

|Bt|2
Var

 
X

i2Bt

(rf(xt; yi)�rh(xt))

!

=
↵2
t

|Bt|2
Var

 
NX

i=1

�i�i

!

=
↵2
t

|Bt|2
NX

i=1

NX

j=1

�i�j�i�j

Let �i = rf(xt; yi)�rh(xt), and �i =

(
1 i 2 Bt

0 i /2 Bt
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MINI-BATCH SGD CONVERGESMini-Batch SGD Converges (continued)

• Because we sampled B uniformly at random, for i ≠ j

• So we can write the variance as

E [�i�j ] = P (i 2 B ^ j 2 B) = P (i 2 B)P (j 2 B|i 2 B) =
b

N
· b� 1

N � 1

E
⇥
�2
i

⇤
= P (i 2 B) =

b

N

Var (xt+1 � x⇤) =
↵2
t

|Bt|2

0

@
X

i 6=j

b(b� 1)

N(N � 1)
�i�j +

NX

i=1

b

N
�2

i

1

A
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MINI-BATCH SGD CONVERGESMini-Batch SGD Converges (continued)

Var (xt+1 � x⇤) =
↵2
t

b2

0

@
X

i 6=j

b(b� 1)

N(N � 1)
�i�j +

NX

i=1

b

N
�2

i

1

A

=
↵2
t

bN

0

@ b� 1

N � 1

NX

i=1

NX

j=1

�i�j +
NX

i=1

✓
1� b� 1

N � 1

◆
�2

i

1

A

=
↵2
t

bN

0

@ b� 1

N � 1

 
NX

i=1

�i

!2

+
N � b

N � 1

NX

i=1

�2
i

1

A

=
↵2
t (N � b)

bN(N � 1)

NX

i=1

�2
i
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MINI-BATCH SGD CONVERGESMini-Batch SGD Converges (continued)

• Compared with SGD, variance decreased by a factor of  b

Var (xt+1 � x⇤) =
↵2
t (N � b)

b(N � 1)
· 1

N

NX

i=1

�2
i

=
↵2
t (N � b)

b(N � 1)
E
h
krf(xt; yit)�rh(xt)k2

���xt

i

 ↵2
t (N � b)

b(N � 1)
M

 ↵2
t
M

b
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MINI-BATCH SGD CONVERGESMini-Batch SGD Converges (continued)

• Recall that SGD converged to a noise ball of  size

• Since mini-batching decreases variance by a factor of  b, it will have

• Noise ball smaller by the same factor! 

lim
T!1

E
⇥
kxT � x⇤k2

⇤
 ↵M

2µ� ↵µ2

lim
T!1

E
h
kxT � x⇤k2

i
 ↵M

(2µ� ↵µ2)b
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ADVANTAGES OF MINI-BATCHAdvantages of  Mini-Batch (reprise) 

• Takes less time to compute each update than gradient descent
• Only needs to sum up b gradients, rather than N

• Converges to a smaller noise ball than stochastic gradient descent

xt+1 = xt � ↵t
1

|Bt|
X

i2Bt

rf(xt; yi)

lim
T!1

E
h
kxT � x⇤k2

i
 ↵M

(2µ� ↵µ2)b
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HOW TO CHOOSE THE BATCH SIZE?How to choose the batch size?

• Mini-batching is not a free win
• Naively, compared with SGD, it takes b times as much effort to get a b-times-as-

accurate answer
• But we could have gotten a b-times-as-accurate answer by just running SGD for 

b times as many steps with a step size of  ⍺/b.

• But it still makes sense to run it for systems and statistical reasons
• Mini-batching exposes more parallelism
• Mini-batching lets us estimate statistics about the full gradient more accurately

• Another use case for metaparameter optimization
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MINI-BATCH SGD IS VERY WIDELY USEDMini-Batch SGD is very widely used

• Including in basically all neural network training

• b = 32 is a typical default value for batch size
• From “Practical Recommendations for Gradient-Based Training of  Deep 

Architectures,” Bengio 2012.
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OUTLINE

Statistical and computational tradeoffs 

Review of Convex Functions 

Gradient Descent (GD) 

Stochastic Gradient Descent (SGD + GSD) 

SDG with Mini-Batching  

Regularization 
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MINIMIZING TRAINING LOSS IS NOT OUR REAL GOAL

REGULARIZATION

Minimizing Training Loss is Not our Real Goal

• Training loss looks like

• What we actually want to minimize is expected loss on new examples
• Drawn from some real-world distribution ɸ

• Typically, assume the training examples were drawn from this distribution

h(x) =
1

N

NX

i=1

f(x; yi)

h̄(x) = Ey⇠� [f(x; y)]
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OVERFITTING

REGULARIZATION

Overfitting

• Minimizing the training loss doesn't generally minimize the expected 
loss on new examples
• They are two different objective functions after all

• Difference between the empirical loss on the training set and the 
expected loss on new examples is called the generalization error

• Even a model that has high accuracy on the training set can have terrible 
performance on new examples
• Phenomenon is called overfitting
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REGULARIZATION

REGULARIZATION

Regularization

• Add an extra regularization term to the objective function

• Most popular type: L2 regularization

• Also popular: L1 regularization

h(x) =
1

N

NX

i=1

f(x; yi) + �2 kxk22 =
1

N

NX

i=1

f(x; yi) + �2
dX

k=1

x2
i

h(x) =
1

N

NX

i=1

f(x; yi) + � kxk1 =
1

N

NX

i=1

f(x; yi) + �
dX

k=1

|xi|
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BENEFITS OF REGULARIZATION

REGULARIZATION

Benefits of  Regularization

• Cheap to compute
• For SGD and L2 regularization, there’s just an extra scaling

• Makes the objective strongly convex
• This makes it easier to get and prove bounds on convergence

• Helps with overfitting

xt+1 = (1� 2↵t�
2)xt � ↵trf(xt; yit)
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MOTIVATION FROM BAYES

REGULARIZATION

Motivation

• One way to think about regularization is as a Bayesian prior

• MLE interpretation of  learning problem:

• Taking the logarithm:

P (yi|x) =
1

Z
exp(�f(x; yi))

P (x|y) = P (y|x)P (x)

P (y)
=

P (y|x)P (x)

P (y)

NY

i=1

1

Z
exp(�f(x; yi))

logP (x|y) = � log(Z)�
NX

i=1

f(x; yi) + logP (x)� logP (y)
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REGULARIZATION

Motivation (continued)

• So the MLE problem becomes

• Now we need to pick a prior probability distribution for x
• Say we choose a Gaussian prior

max
x

logP (x|y) = �
NX

i=1

f(x; yi) + logP (x) + (constants)

max
x

logP (x|y) = �
NX

i=1

f(x; yi) + log

 
1p
2⇡�

exp

 
��2 kxk2

2

!!
+ (C)

= �
NX

i=1

f(x; yi)�
�2

2
kxk2 + (C) There’s our 

regularization term!
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MOTIVATION

REGULARIZATION

Motivation (continued)

• By setting a prior, we limit the values we think the model can have

• This prevents the model from doing bad things to try to fit the data
• Like the polynomial-fitting example from the demo
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Many of the practical claims and tricks about SGD: 


