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Part I
Quantitative Information Flow

1. Motivations

2. Information-theoretic view 

3. Notions of entropy and operational interpretation 

4. Focus on Shannon leakage and min-entropy leakage

5. g-Leakage
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Protection of sensitive information

• Protecting the confidentiality of sensitive information is a 
fundamental issue in computer security and in privacy

• Access control and encryption are not sufficient! Systems 
could leak secret information through correlated 
observables.
• The notion of  “observable” depends on the situation and adversary

• Often, secret-leaking observables are public, and therefore available to 
the adversary
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Leakage through correlated observables
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Password checking

Election tabulation

Timings of decryptions



Quantitative Information Flow

Information Flow:  Leakage of secret information via 
correlated observables 

Ideally:  No leak 

• No interference [Goguen & Meseguer’82]

In practice:  There is almost always some leak

• Intrinsic to the system (public observables, part of the design)

• Side channels 

 need quantitative ways to measure the leak 
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Password checker 1

Password: K1K2 . . .KN

Input by the user: x1x2 . . . xN

Output: out (Fail or OK)

Intrinsic leakage
By learning the result of the 
check the adversary learns 
something about the secret
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Example 1



Example 1

Password checker 2

Password: K1K2 . . .KN

Input by the user: x1x2 . . . xN

Output: out (Fail or OK)

More efficient, but what about 
security?
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Password checker 2

Password: K1K2 . . .KN

Input by the user: x1x2 . . . xN

Output: out (Fail or OK)

Side channel attack
If the adversary can measure 
the execution time, then he can 
also learn the longest correct 
prefix of the password
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• A set of nodes with some 
communication channels (edges).

• One of the nodes (source) wants to 
broadcast one bit b of information

• The source (broadcaster) must 
remain anonymous

Example 2
DC Nets

(Extended Dining Cryptographers) 
[Chaum’88] 



• A set of nodes with some 
communication channels (edges).

• One of the nodes (source) wants to 
broadcast one bit b of information

• The source (broadcaster) must 
remain anonymous

b=1

DC Nets
(Extended Dining Cryptographers) 

[Chaum’88] 



Chaum’s solution

• Associate to each edge a fair 
binary coin

b=1



Chaum’s solution
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• Associate to each edge a fair binary 
coin

• Toss the coins

• Each node computes the binary 
sum of the incident edges.  The 
source adds b. They all broadcast 
their results

b=1



Chaum’s solution
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• Associate to each edge a fair binary 
coin

• Toss the coins

• Each node computes the binary 
sum of the incident edges.  The 
source adds b. They all broadcast 
their results

• Achievement of the goal:                             
Compute the total binary sum:       
it coincides with b 

b=1



Anonymity of DC Nets

Observables:  An (external) attacker 
can only see the declarations of the nodes

Question: Does the protocol protects 
the anonymity of the source? 
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• If the graph is connected and the 
coins are fair,  then for an external 
observer,  the protocol satisfies 
strong anonymity: 

the a posteriori probability that a 
certain node is the source is equal 
to its a priori probability

• A priori / a posteriori   =              
before / after observing the 
declarations

Strong anonymity (Chaum)
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Example 3: Crowds [Rubin and Reiter’98]

• Problem:  A user (initiator) wants to send a 
message anonymously to another user (dest.)

• Crowds:   A group of n users who agree to 
participate in the protocol. 

• The initiator selects randomly another user 
(forwarder) and forwards the request to her

• A forwarder randomly decides whether to 
send the message to another forwarder or 
to dest.

• ... and so on

dest.



Example 3: Crowds [Rubin and Reiter’98]

• Problem:  A user (initiator) wants to send a 
message anonymously to another user (dest.)

• Crowds:   A group of n users who agree to 
participate in the protocol. 

• The initiator selects randomly another user 
(forwarder) and forwards the request to her

• A forwarder randomly decides whether to 
send the message to another forwarder or 
to dest.

• ... and so on

dest.

Probable innocence: under 
certain conditions, an attacker 
who intercepts the message from 
x cannot attribute more than 0.5 
probability to x to be the initiator 



Common features

• Secret information

• Password checker: The password

• DC: the identity of the source 

• Crowds: the identity of the initiator 

• Public information (Observables)

• Password checker: The result (OK / Fail) and the execution time

• DC: the declarations of the nodes

• Crowds: the identity of the agent forwarding to a corrupted user 

• The system may be probabilistic

• Often the system uses randomization to obfuscate the relation between secrets 
and observables

• DC: coin tossing 

• Crowds: random forwarding to another user 
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The basic model: 
Systems = Information-Theoretic channels

Observables

......

o1

on

System

Secret Information

Input Output

s1

sm



Probabilistic systems are noisy channels:   
an output can correspond to different inputs, and  
an input can generate different outputs, according to a prob. distribution 

p(oj|si):   the conditional probability to observe oj given the secret si

 

...

s1 o1

on

......
sm

p(o1|s1)

p(on|s1)



A channel is characterized by its matrix: the array of conditional probabilities 

In a information-theoretic channel these conditional probabilities are 
independent from the input distribution 

This means that we can model systems abstracting from the input 
distribution

......

s1

sm

o1 on

p(on|s1)p(o1|s1)

p(o1|sm) p(on|sm)

...

...

p(o|s) = p(o and s)

p(s)



Particular case: Deterministic systems 
In these systems an input generates only one output 
Still interesting: the problem is how to retrieve the input from the output 

The entries of the channel matrix can be only 0 or 1

 

...

s1
o1

on

...
...

sm
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Example: DC nets (ring of 3 nodes, b=1)

Secret Information Observablesn0

n2 n1
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Example: DC nets (ring of 3 nodes, b=1)
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Secret Information Observablesn0
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Example: DC nets (ring of 3 nodes, b=1)

n1

Secret Information Observablesn0

n2 n1

26



Example: DC nets (ring of 3 nodes, b=1)

n2

Secret Information Observablesn0

n2 n1
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Example: DC nets (ring of 3 nodes, b=1)

n2 111

Secret Information Observables

n0

n1
n2

n0

n2 n11

01

1
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Example: DC nets (ring of 3 nodes, b=1)

n2

Secret Information Observablesn0
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Example: DC nets (ring of 3 nodes, b=1)
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Example: DC nets (ring of 3 nodes, b=1)
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fair coins: Pr(0) = Pr(1) = ½
strong anonymity

biased coins:  Pr(0) = ⅔ , Pr(1) = ⅓
The source is more likely to declare 1 than 0
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Quantitative Information Flow

• Intuitively, the leakage is the (probabilistic) 
information that the adversary gains about the 
secret through the observables

• Each observable changes the prior probability 
distribution on the secret values into a posterior 
probability distribution according to the Bayes 
theorem (Bayesian update)

• In the average, the posterior probability distribution 
gives a better hint about the actual secret value



Bayesian update:  prior ⇒ posterior
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Bayesian update:  prior ⇒ posterior
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Bayesian update:  prior ⇒ posterior
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Bayesian update:  prior ⇒ posterior
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A graphical representation of the Bayesian update
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A graphical representation of the Bayesian update
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Information theory: useful concepts

• Entropy H(X) of a random variable X  
• A measure of the degree of uncertainty of the events

• It can be used to measure the vulnerability of the secret, i.e. how 
“easily” the adversary can discover the secret

• Mutual information    I(S;O)
• Degree of correlation between the input S and the output O

• formally defined as difference between:

• H(S), the entropy of S before knowing, and 

• H(S|O), the entropy of S after knowing O

• It can be used to measure the leakage:

• H(S) depends only on the prior;  H(S|O) can be computed using the 
prior and the channel matrix

41

Leakage  =  I(S;O)  =  H(S)  −  H(S|O)



Entropy and Operational Interpretation

A general model of adversary [Köpf and Basin, CCS’07]:            

• Assume an oracle that answers yes/no to questions of a certain form.  

• The adversary is defined by the form of the questions, and by how we 
measure of success of the attack.

• In general we consider the best strategy for the attacker, with respect 
to a given measure of success.  
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In the realm of security,  there is no unique notion of entropy.                     
A suitable notion of entropy should have an operational 
interpretation in terms of the kind of adversary we want to 
model , namely: 

• the kind of attack (how he attacks, the means at his disposal), and 

• the goal of the attack and how we measure its success in achieving them



Example of adversary: 

• The questions are of the form:  “is S ∈ P ?”

• The measure of success is:  the expected number of questions 
needed to find the value of S in the attacker’s best strategy
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It is possible to prove that the best strategy 
for the adversary is to split each time the 
search space in two  subspaces with same 
probability masses.                                
This gives a perfectly balanced tree.

Entropy
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Example:   S ∈ { a, b, c, d, e, f, g, h }

Entropy

One possible way to split the tree: 
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Since in the best strategy the tree is balanced, the number of questions 
needed to determine the value s of the secret is:   − log p(s)                 
(log is in base 2)

H(S) = �
X

s

p(s) log p(s)

Hence the expected number of questions is:

Uncertainty:  Shannon entropy 

Entropy



Shannon entropy: properties

46

If |S| = n, and the distribution is uniform, then H(S) = log n

In general, the entropy is highest when the distribution is uniform

p(a) = p(b) = 1
4 p(c) = p(d) = 1

8 p(e) = p(f) = p(g) = p(h) = 1
16

H(S) = �
P

s p(s) log p(s)

= �2

1
4 log

1
4 � 2

1
8 log

1
8 � 4

1
16 log

1
16

= 1 +

3
4 + 1

=

11
4

S = {a, b, c, d, e, f, g, h} p(a) = p(b) = . . . = p(f) = 1
8

H(S) = �8

1
8 log

1
8 = log 8 = 3



Shannon entropy: properties
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H(S)

x

S = {a, b}
p(a) = x p(b) = 1� x

S = {a, b, c}
p(a) = x p(b) = y p(c) = 1� (x+ y)

H(S)

x

y

The entropy is a concave function of the probability distribution



Shannon conditional entropy
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The conditional entropy is the expected value of the updated 
entropies:

H(S|O) =

X

o

p(o) H(S|O = o)

= �
X

o

p(o)
X

s

p(s|o) log p(s|o)



Shannon leakage
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• In general  H(S) ≥ H(S|O) 

• the entropy may increase after one single observation, but in the average it 
cannot increase

• H(S) = H(S|O) if and only if S and O are independent
• This is the case if and only if all rows of the channel matrix are the same

• This case corresponds to strong anonymity in the sense of Chaum

• Shannon capacity C = max I(S;O) over all priors  (worst-case leakage)

A priori

A posteriori H(S | O) = �
X

o

p(o)
X

s

p(s|o) log p(s|o)

H(S) = �
X

s

p(s) log p(s)

Leakage  =  Mutual Information I(S;O) = H(S)�H(S|O)



Entropy:  Alternative notions
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As we argued before, there is no unique notion of vulnerability.            
It depends on: 

• the model of attack, and 

• how we measure its success
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However, this model of attack does not seem so natural in security,  and 
alternatives have been considered. In particular, the limited-try attacks

• The adversary has a limited number of attempts at its disposal

• The measure of success is the probability that he discovers the secret 
during these attempts (in his best strategy)

Entropy:  Alternative notions
We saw that if

• the questions are of the form:  “is S ∈ P ?”,  and

• the measure of success is:  the expected number of questions 
needed to find the value of S in the adversary’s best strategy

then the natural measure of protection is Shannon’s entropy

Obviously the best strategy for the adversary is to try first 
the values which have the highest probability 
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 One-try attacks  

• The questions are of the form:   

• The measure of success is:    � log(max

s
p(s))

“is S = s ?”

One try attacks:  Rényi min-entropy

Rényi min-entropy: H1(S) = � log(max

s
p(s))

Like in the case of Shannon entropy,               is highest 
when the distribution is uniform, and it is 0 when the 
distribution is a delta of Dirac (no uncertainty). 

H1(S)



Conditional min-entropy

53

Now define H1(S|O) = � log Prsucc(S|O) [Smith 2009]

The expected value of the prob. of success (aka converse of the Bayes risk):

Prsucc(S|O) =

X

o

p(o) Prsucc(S|O = o)

=

X

o

p(o)max

s

p(s|o)

=

X

o

max

s

(p(o|s) p(s))



Leakage in the min-entropy approach
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A priori

A posteriori

Leakage  =  min-Mutual Inf.

H1(S) = � logmax

s
p(s)

H1(S|O) = � log

X

o

max

s

(p(o|s) · p(s))

I1(S;O) = H1(S)�H1(S|O)



Properties of the min-entropy leakage
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• In	general		I∞(S;O)	≥	0		

• I∞(S;O)	=	0	if		all	rows	are	the	same	(but	not	viceversa)	

• Define	min-capacity:		C∞	=		max	I∞(S;O)	over	all	priors.		We	have:	

1. C∞	=	0	if	and	only	if	all	rows	are	the	same		

2. C∞	=		C		in	the	deterministic	case	

3. C∞	≥	C		in	general		

4. C∞	is	obtained	on	the	uniform	distribution	(but,	in	general,	there	can	

be	other	distribution	that	give	maximum	leakage)	

5. C∞	=	the	log	of	the	sum	of	the	max	of	each	column			



H∞(S)

x

y

H(S)

y

x

H∞(S)

Rényi min-entropy vs. Shannon entropy
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x

S = {a, b}
p(a) = x p(b) = 1� x

S = {a, b, c}
p(a) = x p(b) = y p(c) = 1� (x+ y)

Rényi min entropy and conditional entropy are the log of piecewise linear functions



Shannon capacity vs. Rényi min-capacity
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� ���

� ���

Shannon capacity Rényi min-capacity

binary channel

In general, Rényi min capacity is an upper bound for Shannon capacity



Thank you !


