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Utility of a mechanism



Utility

Let us start with an example. Suppose we have a medical database,
and we want to use it to do research about a certain disease.

For instance, we want to ask queries like:

|. How many people in the DB have the disease!?

2. What is the average age of the people with the disease?

Suppose we know that : 41 0
* there are 1000 people in the DB 45 yes
* the maximum age is 120 27 no

50 yes

* both queries are sanitised with DP

20 NO




Loss function

How to measure the quality of the reported answer?

Consider the first query: f(x) = number of people with the disease.
Let y = f(z) be the true answer, and z the reported answer.
Which of the following loss functions is better?

L. ly,z) = |z —y

2. £(y,2) = (2 —y)?
) ={ ] i5,
4. L(y,z) =0

5. Uy, 2)=z+y



Loss function

How to measure the quality of the reported answer?

Consider the first query: f(x) = number of people with the disease.
Let y = f(z) be the true answer, and z the reported answer.
Which of the following loss functions is better?

L. Uy,z) =z —y
2. Uy, z) = (z —y)’

0 if z =
> g(y,z):{ 1 ifz#z

4. U(y,z) =0
5. Uy, 2)=z+y

(1), (2) and (3) are all reasonable loss functions, they all measure the “precision”
of the answer. Which one is more suitable for our purposes depends on what we

want to do.
On the other hand, (4) does not measure anything, and (5) does not make sense.
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Monotonicity of the loss

In general, if V) C Z and the domain Z is equipped with a
notion of distance d, we want the loss to be monotonic w.r.t.
d. Namely:

Uy,z) < Ly',2") & |z—y|l < | =9



Utility as expected loss

Since there are many possible true answers, and even for the same true
answer we have many possible reported answer, it is reasonable to define the
utility as expectation.

Let 7 be the prior on ) (the true answers) and p the probability associated
to the mechanism. We could define:

UK. T) = Eqplly,2)

= 2,.7W)p(zly) ly, 2)
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Utility as expected loss

Since there are many possible true answers, and even for the same true
answer we have many possible reported answer, it is reasonable to define the
utility as expectation.

Let 7 be the prior on ) (the true answers) and p the probability associated
to the mechanism. We could define:

UK, m) = E;,ly,z)
= 2,.7W)p(zly) ly, 2)

Are we happy with this definition?

What if we get a negative answer? Or an answer greater than 1000, the
number of people in the DB? (it could happen, for instance, with the geo-
metric mechanism).

We are not going to believe these answers, so we could remap them in more
likely values. For instance we could remap the negative values into 0, and
those greater than 1000 into 1000



Remapping

We could use a remapping function defined as:

(0 if 2 <0
r(z) =1 =z if 0 < 2z <1000

\ 1000 if z > 1000
and define

UK, m) = > m(y)pzly) ty,r(2))



Remapping

We could use a remapping function defined as:

(0 if 2 <0

r(z) =< =z if 0 <z <1000
1000 if z > 1000

\

and define

UK, m) = > m(y)pzly) ty,r(2))

More in general, we assume that we exploit the prior knowledge, and the

knowledge of the mechanism, to define and use the best possible remapping
function:

UK, m) = min Y a(y)p(ly) Ly, 7(2))



Notes about utility

® We saw a definition for discrete mechanisms. For continuous
ones, like the Laplace, the definition is analogous except that
the expectation has to be computed via integration

® The expected loss is not the only definition of utility that has
been considered in the literature. There are others, for
instance the worst-case loss, the expected ratio of *"good"
answers, etc. For the next results, however, we will assume
that utility is defined as expected loss.



Optimal mechanisms

Given a prior T, and a privacy level g, an e-differentially private
mechanism K is called optimal if it provides the best utility among all

those which provide e-differential privacy

Note that the privacy does not depend on the prior, but the utility
(in general) does.

In the finite case the optimal mechanism can be computed with
linear optimization techniques, where the variables are the
conditional probabilities p(z | y)

where y is the exact answer and z is the reported answer

A mechanism is universally optimal if it is optimal for all priors



Counting Queries

® Counting queries are typical examples of discrete
queries. They are of the form: How many

individuals in the database satisfy the property P 7

e Examples:

e How many individuals in the DB are affected by diabetes?

e How many diabetic people are obese?

® Question: what is the sensitivity of a counting
query!?



Privacy vs utility:
Two fundamental results

[Ghosh et al., STOC 2009]

The geometric and the truncated geometric
mechanisms are universally optimal for counting
queries and any monotonic loss function

Open question: can we extend this result to the
continuous case!



Privacy vs utility:
two fundamental results

2. [Brenner and Nissim, STOC 2010] On a discrete domain, the counting
queries are the only kind of queries for which a universally optimal
mechanism exists

° This means that for other kind of queries one the optimal mechanism
is relative to a specific user.

® The precise characterization is given in terms of the graph (), ~)
induced by (X, ~)
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The Local Model



The Global Model

Mechanism

Privacy
level ¢

-

Individual records

Collected dataset



The Global Model

Individual records
Collected dataset
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The Local Model

Privacy level
€1

P eX
b
Lo
grivacy Ievg
& V —

\_ W,
Collected

~ ~ dataset o
Privacy level statistical

&n analyses
% |— @D

—

\_ J

Individual data Individual sanitized data

21



The Local Model Google

Two notions of utility
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Local Differential Privacy
[ Jordan &Wainwright 'l 3]

One of the most popular definitions of privacy in the local model is
Local Differential Privacy (LPD)

Definition Let X be a set of possible values and ) the set of noisy values. A
mechanism K is e-locally differentially private (e-LDP) if for all 1,22 € X and
for all y € Y

P[K(z) =y] < e P[K(z") = y]

or equivalently, using the conditional probability notation:

p(y | x) <ef py| )
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Example:
The Randomized Response protocol

Suppose that | want to find out how many of you find my lectures boring.
If | ask you directly you will probaly answer "no" regardless of the truth.

So, | use the following following protocol instead:
You toss a coin, without showing me the result.
If the result is head, then you answer the truth, otherwise you toss the coin

again, and answer according to the result ("Yes" if Head, "No" if Tail).

This protocol is called Randomized Response

24



Example:
The Randomized Response protocol

Truth
A H
O H @ Yes
Ya
Ya
-
Ya
T NO

Question: is the The Randomized Response protocol locally differentially
private!

Yes, it is (log 3)-LPD
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The k-RR mechanism (aka the flat m.)
[ Kairouz et al,'16 ]

The k-RR is the extension of Randomized Response
to a secret's domain of k elements e

0.164

0.14

The flat mechanism is the simplest way to implement LPD.
It is defined as follows:

0.12

0.10

g : 0.08
(y|2) cet ifx=y
ZC — . 0.06
Py C otherwise
0.04
where c is a normalization constant. 002y
0 l T T : T ; T
1 | | | T
namely ¢ = where k is the size of the domain

k— 14 ef

Privacy Properties:

* Compositionality
(if we combine two LPD mechanisms, the resulting mechanism is still LPD)

* Independence from the side knowledge of the adversary
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Another definition of privacy in the local model:

d-privacy
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d-privacy: a generalization of DP and LDP
[Chatzikokolakis et al.,"| 3]

d-privacy

On a generic domain X provided with a distance d:

\V/ZE,CC/ c X, V2 p(z|x) < esd(az,x’)

p(z|x') —
/ generalizes \
Differential Privacy Local Differential Privacy
* X, X are databases * dis the discrete distance

* d is the Hamming distance

Intuition

d-privacy protects the precision of the secret. For instance, it allows to distinguish
whetehr | am in Paris or London, but not where precisely | am in Paris

Properties

* Like LDP it can be applied at the user side

* Like DP and LDP, it is compositional and independent from side knowledge of the adversary
28
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Example of application of d-privacy:
Location Privacy for Location Based Services

Example of LBS: find the
restaurants near the user

Revealing the exact location may
be dangerous: profiling, inference
of sensitive information, etc.

Revealing an approximate
location is usually ok

The QoS decreases with the
expected distance between the
real location and the noisy one,
so there is a trade-off.

30



Geo-indistinguishability
In the case of location privacy, d-privacy is called geo=-indistinguishability

d : the Euclidean distance

x : the exact location
z . the reported location

d — privacy

p(z|a:) er
p(alz) = €

where r 1s the distance
between x and z’

Like d-privacy, geo-indistinguishability is:
|) independent from the prior,
2) compositional



Meaning of geo-indistinguishability
- P(QZ‘Z) eed(x,m' 7T(£IZ)
" E%:'\z) - }[ﬂw]

The level of distinguishability
also depends on the prior

The closer two points are,
the more they are indistinguishable

We want to be unable to tell whether the user is in
rue Pigalle or at Notre Dame, but it is ok to disclose
that he is in Paris and not in London



Tool:“Location Guard”
http://www.lix.polytechnique.fr/~kostas/software.html

Extension for Firefox, Chrome, and Opera. It has been released about two yeas ago, and nowadays it has about 60,000 active users.

5® Google Maps

3 https://maps.google.com

y Privacy level: medium

Set level for this domain ?
Memornial Options
Hide icon

Pause Location Guard
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http://www.lix.polytechnique.fr/~kostas/software.html

How it works
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Trade-off privacy-utility:
Utility as Quality of Service (QoS)

35



Trade-off privacy-QoS

Comparison with other methods for location privacy

== W Km
Four mechanisms: g-e\Ehie) ey
e Planar Laplacian ﬁjﬁffpjiiCTT?T;T;.“
® Cloaking (report a region) (a) S CAONES \
® Optimal by [Shokri et al. 2012] for uniform prior TN 7R PR \/ 1
e Optimal by [Shokri et al.2012] for a given prior \\\Q\Tr/_@ o
sssssss - RN
No need to compare with k-RR: it has a very bad QoS
A10]
(b) m‘ 11111 Lozon
Evaluation: -

* Gowalla dataset, various towns, divided ina grid 10 x 10

* The levels of privacy are calibrated so that all methods
offers the same level of privacy according to the
definition of privacy of Shokri et al (Bayesian adversary)
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Privacy versus QoS: evaluation

The four mechanisms:

® Cloaking,

e Optimal by [Shokri et al. CCS 2012] generated assuming uniform prior
® Planar Laplacian

OZOptimal by [Shokri et al. CCS 2012] generated assuming the given prior

120 120 120

Based on linear optimization: high complexity

100 100 100

0
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e
0
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Location Privacy
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1 Cloaking =3 Optimal-unif ~ = Planar Laplace = mmm Optimal-rp
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Trade-off privacy-utility:

Statistical Utility

38



Statistical utility: The problem

Consider again the Randomized Response mechanism

\'

O H .® Yes

2 X
T No

Suppose that | get 60% answer "Yes" and 40% "no"

Do these figures represent the real percentages ?

39



Statistical utility: The matrix inversion method
[ Kairouz et al,'16 ]

 Let C be the stochastic matrix associated to the mechanism

* Let g be the empirical distribution (derived from the noisy data
reported by the mecahnism).

» Compute the approximation of the true distributionas r = g C!

40



Statistical utility: The matrix inversion method
[ Kairouz et al,'16 ]

« Let C be the stochastic matrix associated to the mechanism

* Let g be the empirical distribution (derived from the noisy data reported by the mecahnism).

+ Compute the approximation of the true distributionas r = q C!

Example: Randomized Response

Y

e e 3 0~ . —
yes

%p(Yes) -+ %p(No) — 1% yes 3% 1,
i p(Yes) + 2p(No) = <5

3

From which we derive p(Yes) = 1—70 and p(No) = 10

41



Statistical utility: The matrix inversion method

The mathix inversion method is simple and easy to analize.
Howerer it has two problems:

* Problem 1: C must be invertible, and not all mechanisms are

* Problem 2: The result may not be a distribution

Example: Consider again the Randomize Response and Y

assume that ¢(Yes) = = and ¢(No) = +. Then:
yes

yes 7 Va
X
. [
1

From which we derive p( Yes) = % and p(No) = — 15

p(Yes) + 3 p(No)

p(No)

NI N (I
Ol O

N [V I AN =

p(Yes) +

42



Statistical utility: The matrix inversion method

r = g C! may not be a distribution because it may contain
negative elements. In order to try to obtain the true distribution
Tt we can either:

set to O all the negative elements, and renormalize (INV-N),
or

project r on the simplex (INV-P).

The resulting distribution however usually is not the best
approximation of the original distribution.
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Our approach: Iterative Bayesian Update

T —  X1LX2, X3,.. —» C —>  Y1L,Y2, Y3

P'\

The IBU:

* is based on the Maximization-Expectation method

* produces a Maximum Likelihood Estimator p of the true
distribution 1

* If Cis invertible, the MLE is unique and as the number of samples grows
It converges to T

44



The Iterative Bayesian Update

Define p© = any fully supported distribution (for example the uniform distribution)

Repeat: Define p(+D as the Bayesian update of p(™ weighted on the corresponding element of

g, namely:

Note that p+) = T(p( )
When C is invertible, T has unique fix point (the MLE)

Open problem: in some cases (with few samples) the MLE may not be the best estimation of
the true distribution. We are trying to devise corrective methods.
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Comparison between
the matrix inversion method

and

IBU
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Comparison between Matrix Inversion and IBU:
Mechanism: Laplace € =0.1 Data domain: {0,1,...,99}

Original

Distribution
. Gaussian Uniform on an interval
Reconstruction

0.08 T T T T T T T T 0.08 T T T T T T T T T
Method original —e— ° original —e—
007 | noisy — @ 1 007 | noisy — ¢
estimated —&— © estimated —&—
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probability

INV-N

driginél e
noisy —®—
estimated —&—

original —&—
0.07 noisy — @ - 007 |
estimated —&—

2 2005
o o
@ 0. © 0.04
INV-P 3 2
S 8 003
002
001
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0.08 T T 0.08 T T
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oo7 | _noisy —*— 1 007 | _noisy — & 4
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0.06 - 1 0.06 1
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o o
IBU © 0.04 [ © 0.04
8 8
5003 | & 003"
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Comparison between Matrix Inversion and IBU:
Mechanism: Planar Laplace € =1
Data domain: Gowalla Location Data in S. Francisco

/ lanar Laplace noise
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San Francisco area Original Empirical from noisy data
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Comparison wrt statistical utility (using IBU)
between different definitions of privacy and their
typical obfuscation mechanisms

LPD / k-RR

and

d-privacy / Laplace
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Trade-off between utility and statistical privacy
Comparison between Laplace and k-RR

Problem: Both K-RR and the geometric / laplace mechanisms are
parametrized by g, but it has a different meaning.

Therefore, in order to make a fair comparison, we need to calibrate &,
in such a way that the requested ratio is satisfied in the “area of
interest” (area in which we want to be indistinguishable)

0.04 -

0.03-

0.02-

0.01

0 20 | 40 | 60 | 30 | 100
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Comparison between LPD and d-privacy
Experiments on the Gowalla dataset

® Gowalla is a dataset of geographical checkins in several cities in the world

® We compare the statistical utility of kRR and Planar Laplace with the respective € calibrated so
to provide the same level of privacy within about 1 Km?
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n=>0.

The kKRR
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Measuring the quality of the approximation

There are many measures of distance between distributions.

A typical metric is the total variation distance. If we are interested in
statistic related to the ground distance, however, a more appropriate metric
is the Kantorovich distance (aka Earth Movers distance).

® The Total Variation distance measures only the area
between the two probability distributions

® The Kantorovich takes into account also the ground
distance; it measures the "transportation effort" to

make the two distributions equal. Cfr. "Earth moving
distance”

® |In these two examples the TV is the same, while the x —

Kantorovich is larger in the second case

® The Kantorovich metric is particularly suitable
when we are interested in statistics that are Ki(p,v) = sup Z fo f(x) — Z Ve f(x)
sensitive to the underlying distance. feLip x
Example: placement of hotspots.

X

where Lip is the set of Lipshitz functions wrt d
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KantorovichDistance
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KantorovichDistance
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