
MPRI 2.3.2, Foundations of Privacy
Exercises

It is hightly recommended to try to solve the exercises before looking at the answers. In the exam answers don’t have
to be long: sort and to the point answers are enough, but the have to provide clear and sufficient arguments. In the answers
below, places where the answer needs further expansion are mentioned.

1 Quantitative Information Flow
Exercise 1

Let C be a channel from X to Y .

1 Show that for any prior π and gain function g:

L×g (π,C) ≤ |Y| and

L×g (π,C) ≤ |X |

2 Let πu be the uniform prior. Show that
(∀g : L×g (πu, C) = 1)

if and only if C is non-interfering.

Answer Recall that the (multiplicative) leakage for any π, g is bounded by the Bayes-capacity, which has a simple
expression: it is given by the sum of the column maxima. That is:

L×g (π,C) ≤ML×(C) =
∑
y maxx Cxy

1
∑
y maxx Cxy ≤ |Y| holds because Cxy ≤ 1 for all x, y (they’re probabilities).

Moreover, the sum of each row of C is 1 (each row is a probability distribution), hence the sum of all elements of C
is |X |. The expression of Bayes capacity sums a subset of all elements, so it has to be vounded by |X |. Concretely:∑
y maxx Cxy ≤

∑
y

∑
x Cxy = |X |.

2 Recall that C is non-interfering iff all secrets x, x′ produce each y with the same probability, i.e. Cxy = Cx′y .

Assuming non-interference, maxx Cxy is always equal to Cx∗y for some fixed secret x∗, so the Bayes-capacity is∑
y maxx Cxy =

∑
y Cx∗y = 1, and L×g (πu, C) is always bounded by it.

Assuming (∀g : L×g (πu, C) = 1), we know that Bayes-capacity must be 1 since it’s equal to L×gid(πu, C) where
gid is the identity gain function. With a similar reasoning we conclude that maxx Cxy has to be equal to Cx∗y for
any fixed x∗ which implies non-interference.

Exercise 2

1 Consider an instance of the Dining Cryptographers protocol with 3 cryptographers on a line:

Crypt1 —– Crypt2 —– Crypt3

That is, there is a coin between Crypt1/Crypt2 and Crypt2/Crypt3, but not between Crypt1/Crypt3.

Model the system as a channel. Is it non-interfering? Compute its multiplicative Bayes-capacity.

2 Now consider the usual instance of 3 Dining Cryptographers on a ring, but assume that the coin shared between
Crypt1/Crypt3 is observable (i.e. visible to the adversary).

Repeat the question (1) for this variant.

3 Can we avoid computing the multiplicative Bayes-capacity in question (2) directly, but obtain it by comparing the
channel of question (2) with that of question (1)?

1

Answer

1 Assume that the bit to be sent is 1. Similarly to the case of a ring shown in the slides, there are 3 secrets and 4
observations 001, 010, 100, 111 (written in the same order as the cryptographers). A case-analysis of the 2 coins
needs to be done (for every possible sender), showing that Cxy = 1/4 for all cases, exactly like the case of a ring
(Expand). This is a non-interfering channel hence its Bayes-capacity must be 1.

2 This makes the observations more informative, y’s are now of the form (announcement, coin). All previous an-
nouncements are still possible, with both values of the visible coin, i.e.:

(001, 0) (001, 1) (010, 0) (010, 1) (100, 0) (100, 1) (111, 0) (111, 1)

A case analysis of the two non-visible coins needs to be done (for every possible sender), showing that Cxy = 1/8
in all cases (Expand). So it’s still a non-interfering channel, hence its Bayes-capacity must be one.

3 Let C1, C2 be the channels of questions (1),(2) respectively. The main observation here is that C2 can be obtained
from C1 using a suitable (probabilistic) post-processing, i.e. C2 = C1R for a suitable channel R. Intuitively,
C1 provides the output of the system when there is no coin between Crypt1 and Crypt3. In question (2) such
a coin exists, so in the post-processing we can select its value with uniform probability, then update the value of
Crypt1,Crypt3 by adding the value of the visible coin, and output the updated announcements plus the value of the
visible coin.

More precisely R is a channel with inputs of the form 001 and outputs of the form 001, 1.

(001, 0) (001, 1) (010, 0) (010, 1) (100, 0) (100, 1) (111, 0) (111, 1)

001 1/2 0 0 0 0 1/2 0 0
010 0 0 1/2 0 0 0 0 1/2
100 0 1/2 0 0 1/2 0 0 0
111 0 0 0 1/2 0 0 1/2 0

In each row a probabilistic choice is made (for the visible coin), with probability 1/2 the coin lands 0 and the
announcements stay the same, and with probability 1/2 the coin lands 1 and Crypt1,Crypt3 flip their announcement.

From C2 = C1R we get that C2 v◦ C1, hence C2’s Bayes-capacity is less than C1’s, but C1 has capacity 1 (the
minumum possible) so C2 Bayes-capacity must be also 1.

Exercise 3

In the Crowds protocol, due to the probabilistic routing, each request could pass through corrupted users multiple times
before arriving to the server, as shown in the figure below. However, in the security analysis, we only considered as
“detected” the first user who forwards the request to a corrupted one.

To perform a more precise analysis, let us consider the first two detected users, instead of only the first one. Let n,m
be the number of honest and total users respectively. The set of secrets is still X = {1, . . . , n} (we are only interested in
the privacy of honest users).

On the other hand, the information available to the adversary is now more detailed. Observations are of the form
y = (d1, d2) where d1 ∈ {1, . . . , n,⊥} (the first detected user, similarly to the original analysis) and d2 ∈ {1, . . . ,m,⊥}
(the second detected user, who might be corrupted himself).

Show that this extra information is in fact useless to the adversary. More precisely, show that for any prior π and gain
function g:

Vg(π,C
1) = Vg(π,C

2)

where C2 is the channel obtained by the detailed analysis, considering two detected users, and C1 is the channel of the
original analysis, considering a single detected user.

web server

2

Answer The easiest way of showing Vg(π,C
1) = Vg(π,C

2) for all π, g is to show that C1, C2 are composition-
refinements of each other, i.e.

C1 v C2 and C2 v C1

So we need to post-process C1 into C2 and vice-versa.
The one direction is easy: if we have y = (d1, d2) we simply need to “forget” d2 and keep only d1 (expand the

definition of this post-processing channel).
The other direction is a bit more involved. Starting from d1 we need to construct d2. The key observation is that,

after the first detection, the message is now at the possesion of a corrputed user, and the route from this point on does not
depend on the initial sender. So we just need to finish the protocol from the first detection until the end. First we select
randomly one of the c = m− n corrupted users to continue the route from there (the first detection happened by any one
of them with equal probability). Then we select whether to forwaward (prob. pf) or not (prob. 1 − pf), and if we select
to forward essentially a new instance of Crowds starts, only with m instead of n users.

The values of the post-processing channel can be computed as a function of the values α, β, γ of the original Crowds
channel (expand, but no need to compute actual numbers).

Exercise 4

The Monty Hall problem
You are presented with three doors: one contains a price, the two others a goat. You choose one of the doors, and then

the host (who knows which door contains the price), opens one goat door among the two that were not chosen. (he never
opens the price, always a goat among the two non-chosen ones).

You now have two options:

• keep your original choice, or

• change it for the other closed door.

What should you do?

This is a truly great puzzle, if you never heard of it before don’t spoil the answer, think about it! Questions are in the
next page.

3

1 Answer the question using solely Quantitative Information Flow concepts

2 What if we only know which door was opened, not the player’s choice?

3 What if the host does not know where the price is, he just happened to open a goat?

Answer

1 The secret information in this problem is clearly the door containing the price. After the first phase of the prob-
lem we learn two pieces of information: the door that the player chooses and the door that the host opens. The
problem can be then modelled by a channel with input X = {1, 2, 3} (the door with the price) and outputs
Y = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)} where (1, 2) means the player selected door 1 and the host opened
door 2 (note that the host never opens the door selected by the player).

To construct the channel, let’s assume that the player’s choise is made uniformly and that, if the host has two doors
with a goat that he can open - i.e. the player chose the right one - he also picks one uniformly. Hence the channel
is the following one:

(1, 2) (1, 3) (2, 1) (2, 3) (3, 1) (3, 2)[]1 1/6 1/6 0 1/3 0 1/3
2 0 1/3 1/6 1/6 1/3 0
3 1/3 0 1/3 0 1/6 1/6

Note that some probabilities are 0 because the host never opens the correct door. And some are 1/6 because the
player chose the correct door so the host has two possible goats to choose from.

Now recall that Bayes vulnerability gives the adversary’s (in this case the player) probability of guessing correctly,
and the Bays-leakage compares his prior probability (before playing the game) with the posterior one (after com-
pleting the first phase). Assuming a uniform prior (the selection of the door where the price is put is uniform) the
prior Bayes-vulnerability is 1/3.

The Bays-leakage, for a uniform prior, coincides with the Bayes-capacity, which is given by the sum of the column
maxima, in this case 1/3 · 6 = 2. Hence the ratio between prior and posterior vulnerability is 2, which means that
the posterior vulnerability is 2 · 1/3 = 2/3: after the first phase, the player has now 2/3 chances of a correct guess
(given by a strategy that changes his choice for the other door)!

This might sound counter-intuitive (and it is what makes the puzzle famous) but its true, and the above reasoning
provides a proof.

2 If we only know the door opened by the host, not the player’s choice, the channel becomes as follows:

1 2 3[]1 0 1/2 1/2
2 1/2 0 1/2
3 1/2 1/2 0

The Bayes-capacity is now 3 ·1/2 = 3/2, hence the posterior Bayes-vulnerability is 3/2 ·1/3 = 1/2. Which means
that after the first phase the player has probability 1/2 of a correct guess (by uniformly picking one of the remaining
two doors).

Intuitively, in the standard case, when the player choses wrong (i.e. 2 out of 3 times), the host has no choice, he has
to pick the only available goat, effectively revealing the location of the price (the “third door”, selected by neither
the player nor the host). But if we don’t know the player’s choice we have strictly less information, we don’t know
which one is the “third door”.

3 If the host does not know where the price is, but just happened to open a goat, we need to start from a distribution
where all 6 possible outcomes have equal probability, and then condition on the event that the host did not choose
the price.

(1, 2) (1, 3) (2, 1) (2, 3) (3, 1) (3, 2)[]
1 1/4 1/4 0 1/4 0 1/4
2 0 1/4 1/4 1/4 1/4 0
3 1/4 0 1/4 0 1/4 1/4

Now all possible outcomes in each row have equal probability, and the capacity is 6 · 1/4 = 3/2. So, similarly to
the previous case, the player has probability 1/2 to guess correctly. In this case the host is not forced to reveal the
price by showing the only available goat, he just happened to do so.

4

Exercise 5 Consider two programs on uniformly distributed 64-bit integers

• C1: if x % 8 == 0 then y = x else y = 1
completely reveals x one-eighth of the time

• C2: y = x | 00 . . . 0111
always reveals all but the last three bits of x

1 Show that both channels have the same Bayes-leakage

2 Consider an adversary that has 3 tries to guess the secret. Model such an adversary by a suitable gain function and
show that C2 leaks more than C1 under that gain function.

2 Utility
The utility of an oblivious mechanism, mapping query outcomes Y to reported values Z , under a gain function g with set
of guessesW , is given by:

U =
∑
z∈Z

max
w∈W

∑
y∈Y

p(y)p(z|y)g(w, y) (1)

Note that an oblivious mechanism can be seen as a channel (in the sense of Quantitative Information Flow) from Y to Z ,
and the formula above is exactly the posterior g-vulnerability of this channel, taking as prior the probability distribution
p(y) over the query outcomes.

For the “identity” gain function, having W = Y as the set of guesses, and defined as g(w, y) = 1 if w = y and
0 otherwise, the above formula can be simplified. We notice that p(y)p(z|y)g(w, y) = p(w)p(z|w) if y = w and 0
otherwise, so the formula becomes:

U =
∑
z∈Z

max
y∈Y

p(y)p(z|y) (2)

(which is the posterior Bayes-vulnerability of the channel).

1. Compute the utility of the geometric mechanism for a counting query, with privacy degree ε, on the uniform
prior distribution, with the gain function defined as the identity relation

Let n be the number of users, the result of a counting query is between 0 and n, hence Y = {0, . . . , n}.
The uniform distribution could be considered either as the distribution of the query outcomes (i.e. p(y)), or as the

distribution of the users’ value (in which case p(y) becomes a binomial distribution). For simplicity we consider here
p(y) to be uniform, that is p(y) = 1

n+1 .
The geometric mechanism can output any integer (i.e. Z = Z), and for a counting query (i.e. for ∆f = 1) it is given

by

p(z|y) = cα|z−y| where α = e−ε, c =
1− α
1 + α

Hence the utility under the identity gain function, given by (2), becomes:

U =
c

n+ 1

∑
z∈Z

max
y∈Y

α|z−y| (3)

Now let’s consider the quantity maxy∈Y α
|z−y| for different values of z. Since α < 1, the maximum is given by the y

that minimizes |z − y|, i.e. the y that is closer to z. So for 0 ≤ z ≤ n we pick y = z, for z ≤ 0 we pick y = 0 and for
z ≥ n we pick y = n. Hence we have:

max
y∈Y

α|z−y| =

α|z−z| = 1 if 0 ≤ z ≤ n
α|z−0| if z ≤ 0

α|z−n| if z ≥ n

So we can expand the sum of (3):

∑
z∈Z

max
y∈Y

α|z−y| =

0∑
z=−∞

α|z| +

n−1∑
z=1

1 +

∞∑
z=n

α|z−n|

= n− 1 + 2

∞∑
d=0

αd

= n− 1 + 2
1

1− α
(geometric series for α < 1)

5

so from (3) we finally get:

U =
c

n+ 1
(n+

2

1− α
− 1)

=
c

n+ 1
(n+

2

1− α
− 1− α

1− α
)

=
c

n+ 1
(n+

1

c
)

=
c n+ 1

n+ 1

It’s worth taking a look at this quantity as a function of c. The utility under the identity gain function is simply the
probability to correctly guess the query outcome (that is, the posterior Bayes-vulnerability). Recall that

c =
1− e−ε

1 + e−ε

Since c ≤ 1 we have U ≤ 1, as expected (it’s a probability).
Consider the one extreme case: perfect privacy. The geometric mechanism is well-defined for ε > 0, but as ε → 0

the noise increases and p(z|y), p(z|y′), y 6= y′ become closer to each other. At the limit we have c = 0 hence U = 1
n+1 .

Intuitively, the output of the mechanism is useless, we still have 1
n+1 probability of guessing the correct value.

At the other extreme case (no privacy at all), when ε→∞ then p(·|y) becomes a point distribution, giving p(y|y) = 1
and p(z|y) = 0 for z 6= y. At the limit c becomes 1, hence U = 1: as expected we can now guess the correct value with
probability 1.

2. Same exercise, but with the gain function defined as the converse of the distance.

The goal here is not to come up with an exact closed-form formula, but to see how the utility changes because of the
gain function. Under this gain function we still haveW = Y but the gain is given by

g(w, y) = n− |y − w|

The closer our guess w is to the real answer y, the higher the gain.
From (1) we get

U =
∑
z∈Z

max
w∈W

∑
y∈Y

p(y)p(z|y)(n− |y − w|)

= n−
∑
z∈Z

min
w∈W

∑
y∈Y

p(y)p(z|y)|y − w|

= n− c

n+ 1

∑
z∈Z

min
w∈W

∑
y∈Y

α|y−z||y − w|

We need to investigate the value w that gives the minimum:∑
y∈Y

α|y−z||y − w|

for each z. To minimize this quantity we need that the factor |y − w| is as small as possible when α|y−z| is big, which
happens if w is as close as possible to z. Hence, similarly to the previous case, for 0 ≤ z ≤ n we pick w = z, for z ≤ 0
we pick w = 0 and for z ≥ n we pick w = n.

Finally we can expand the formula of utility to:

U = n− c

n+ 1

(−1∑
z=−∞

n∑
y=0

αy−zy +

n∑
z=0

n∑
y=0

α|y−z||y − z|+
∞∑

z=n+1

n∑
y=0

αz−y(n− y)
)

6

3. Find a mechanism for the same counting query, with the same degree of privacy, but lower utility

Intuitively, the geometric mechanism is optimal because the noise is exactly as much as required by ε, not more. That
is, the constraints of differential privacy for adjacent y’s are satisfied with equality:

p(z|y) = eεp(z|y + 1) 0 ≤ y < n, z ∈ Z

To degrade its utility, we could, for instance, add more noise to a certain query outcome. For instance, for y = 0 we can
use the same distribution that we use for y = 1 (i.e. p(z|0) = p(z|1)). This modified version of the geometric mechanism
is given by:

p(z|y) = cα|z−max{1,y}|

That is, p(z|0) = p(z|1) = cα|z−1| and p(z|y) = cα|z−y| for y > 1.
Overall, the mechanism still satisfies differential privacy for the same ε, since the constraints for p(z|1) and (z|2) are

still matched with equality. For any ε′ < ε we would have p(z|1) > eε
′
p(z|2).

On the other hand, utility is now lower, because we cannot distinguish 0 from 1: any value z ≤ 1 should be mapped
to either 0 or 1. Redoing the computation of the first exercise, we have:

max
y∈Y

α|z−max{1,y}| =

α|z−z| = 1 if 1 ≤ z ≤ n
α|z−1| if z ≤ 1

α|z−n| if z ≥ n

So the sum of (3) becomes:

∑
z∈Z

max
y∈Y

α|z−y| =

1∑
z=−∞

α|z−1| +

n−1∑
z=2

1 +

∞∑
z=n

α|z−n|

= n− 2 + 2

∞∑
d=0

αd

= n− 2 + 2
1

1− α
(geometric series for α < 1)

and continuing similarly to the exercise 1, we get

U =
c(n− 1) + 1

n+ 1

Even under no privacy, when ε → ∞ and c → 1, we have U = n
n+1 (compared to U = 1 for the original geometric

mechanism), since two out of the n+ 1 elements are still completely indistinguishable!

4. We saw that post-processing cannot decrease privacy. Can it decrease the utility? Motivate your answer

Post-processing can create more confusion between the reported values. This does not decrease privacy (it can only
become harder to infer the value of an individual) but it can decrease utility (it also becomes harder to infer the real
outcome of the query).

A trivial example would be a constant post-processing function mapping every z to 0. The result of applying this
post-processing is a non-interferent channel: it outputs 0 independently from the 0. This has perfect privacy but clearly
no utility at all.

7

