Foundations of Privacy

Class |

Plan of the lectures

® Motivations, a bit of history, main problems, research
directions (3 hours)

® Quantitative Information Flow (9 hours)
e Differential Privacy and Extensions (9 hours)

® Location Privacy (3 hours)

Motivations

In the “Information Society”,
each individual constantly leaves
digital traces of his actions that
may allow to infer a lot of
information about himself

Request to a LBS = location.
History of requests = interests.
Activity in social networks = political opinions, religion, hobbies, . ..

Power consumption (smart meters) = activities at home.

Example:
Personal information in exchange of a service

We don’t know how our information will be used




Concerns about privacy

Risk: collect and use of digital traces for fraudulent purposes.

Examples: targeted spam, identity theft, profiling, discrimination, ...

The news are full of problems caused by privacy breaches

The need for privacy is intrinsic to the human nature, although it
varies a lot from individual to individual, between cultures, and it
evolves with time

Privacy is recognized as one of the fundamental right of individuals:

« Universal Declaration of the Human Rights at the assembly of the United Nations
(Article 12), 1948.

¢ European Directive 95/46/EC on the Protection of Personal
Data (currently being revised towards a stricter regulation).

* Japanese Act on the Protection of Personal Information from
2003 (current discussions to amend it and make stricter).

The new European regulation
(will be enforced starting from 2018)

‘About this sie | Contact| Cookies| Legal notce | English (en)

JUSTICE

Building a European Area of Justice

Data protection > reform

{n) Home = ALLToPICS Q

DATA PROTECTION

Reform of the data protection
legal framework

Reform of EU data protection rules

( R\
What will be the key changes?

- A ‘right to be forgotten’ will help you manage data protection risks online. When you no longer want your data to be
processed and there are no legitimate grounds for retaining it, the data will be deleted. The rules are about empowering
individuals, not about erasing past events, re-writing history or restricting the freedom of the press.

- Easier access to your own personal data.

- A right to transfer personal data from one service provider to another.

« When your consent is required, you must be asked to give it by means of a clear affirmative action.

« More transparency about how your data is handled, with easy-to-understand information, especially for children.

+ Businesses and organisations will need to inform you about data breaches that could adversely affect you without
undue delay. They will also have to notify the relevant data protection supervisory authority.

- Better enforcement of data protection rights through improved administrative and judicial remedies in cases of

violations

« Increased responsibility and ility for those processing personal data - through data protection risk
assessments, data protection officers, and the principles of ‘data protection by design’ and ‘data protection by
default’.
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Different types of sensitive data

® Sensitive information about an individual :
® credit card / bank information, home access code, passwords, ...
® sensitive because it can bring to attacks to the person or his properties
® ethnicity, religious beliefs, political opinions, medical status, intimate videos ..
® Sensitive because it can lead to discrimination.
® |dentification information :information that can uniquely identify an individual.

® First and last name, social security number, physical and email address, phone
number, biometric data (such as fingerprint and DNA), ...

® Sensitive because it can be used to cross-reference databases, or to identify
him as the subject of certain actions

® Sensitive information for organizations
® |Industries: production plans, research, strategies,...
® Governments. Police. Armies...
® |n this course, we will try to encompass the various scenario. We will abstract from
the nature of the sensitive information whenever possible, and present the

common principles of information protection, but we will also show that the kind
of information (and of adversary) induces differences in the approach.
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Why it is difficult to protect
privacy

® Traditionally, privacy is protected via:

® Anonymization
® Encryption
® Access control

® However, these methods often fail:

® encryption and access control cannot protect against the
inference of private information from public information

® anonymization has been proved highly ineffective
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Privacy via anonymity

Nowadays, many institutions and

companies that collect data use L3 <__, (W]
anonymization, i.e., they remove » ? ":'

all personal identifiers: name,
address, SSN, ...

“We don’t have any raw data on the identifiable
individual. Everything is anonymous”
(CEO of NebuAd, a U.S. company that offers

Twitter, ...

targeted advertising based on browsing histories)

Similar practices are used by Facebook, MySpace,

Privacy via anonymity

However, anonymity-based
sanitization has been shown
to be highly ineffective:
Several de-anonymization
attacks have been carried out
in the last decade

® The quasi-identifiers allow to retrieve the identity in a large
number of cases.

e More sophisticated methods (k-anonymity, .£-diversity, ...) take

care of the quasi-identifiers, but they are still prone to
composition attacks

RAPPOR

ABSTRACT

Randomized Aggregatable Privacy-Preserving Ordinal Re-
sponse, or RAPPOR, is a technology for crowdsourcing statis-
tics from end-user client software, anonymously, with strong
privacy guarantees. In short, RAPPORs allow the forest of
client data to be studied, without permitting the possibil-
ity of looking at individual trees. By applying randomized
response in a novel manner, RAPPOR provides the mecha-
nisms for such collection as well as for efficient, high-utility , .
analysis of the collected data. In particular, RAPPOR per- U Ifar Er'l | ngsson
mits statistics to be collected on the population of client-side
strings with strong privacy guarantees for each client, and
without linkability of their reports. Head of the team
This paper describes and motivates RAPPOR, details its .
differential-privacy and utility guarantees, discusses its prac- on data security
tical deployment and properties in the face of different attack and privacy at Goog|e
models, and, finally, gives results of its application to both
synthetic and real-world data.

Differential privacy is the
statistical science of trying
to learn as much as possible
about a group while learning
as little as possible about
any individual in it.

Apple has been doing some

important work in this area Craig Federighi,

to enable differential Vice president of
privacy to be deployed at Software Engineering @Apple
scale.”

Keynote speech
Annual conference 2016
Apple software developers




Deanonymization attacks (1)

® |n 2006, AOL Research released a text file
containing twenty million search keywords for
over 650,000 users, intended for research
purposes.

® The file was anonymized (names where
substituted by numbers as pseudonyms), but
personally identifiable information was present in
many of the queries. The NYT was able to locate
an individual from the search records by cross
referencing them with phonebook listings

® <<No. 4417749 conducted hundreds of searches
over a three-month period on topics ranging from
"numb fingers" to "60 single men" to "dog that
urinates on everything.”, ”’landscapers in Lilburn,
Ga," several people with the last name Arnold and
"homes sold in shadow lake” It did not take much
investigating to follow that data trail to Thelma
Arnold, a 62-year-old widow with three dogs who
lives in Lilburn, Ga. >>

15

Sweeney’s de-anonymization attack by linking

Public collection of

Contains non-sensitive data
sensitive
information DB 2

Background
DB 1 auxiliary

. information

it has been

anonymized \ * ’

Algorithm to link information

De-anonymized record

Sweeney’s de-anonymization attack by linking

Name
Address

Ethnicity

Visit date
. . Date
Diagnosis registered
Procedure Party
Medication affiliation
Datedlast

DB 1: Medical data DB 2:Voter list
87 % of US population is uniquely identifiable by 5-digit ZIP, gender, DOB

This attack has lead to the proposal of k-anonymity (that | will present later)

De-anonymization attacks (ll)

Robust De-anonymization of Large Sparse Datasets.
Narayanan and Shmatikov, 2008.

Showed the limitations of K-anonymity

De-anonymization of the Netflix Prize
dataset (500,000 anonymous records of
movie ratings), using IMDB as the
source of background knowledge.

They demonstrated that an adversary
who knows just a few preferences about
an individual subscriber can identify his
record in the dataset.

The Internet Movie Database




De-anonymization attacks (lll)

De-anonymizing Social Networks.
Narayanan and Shmatikov, 2009.

By using only the network topology, they were able to show that
33% of the users who had accounts on both Twitter and Flickr
could be re-identified in the anonymous Twitter graph with only a

12% error rate.

Statistical Databases

® The problem: we want to use databases to get statistical
information (aka aggregated information), but without
violating the privacy of the people in the database

® We assume that the database itself is hidden.The only
way to access information is by querying it

® For instance, medical databases are often used for research
purposes. Typically we are interested in studying the
correlation between certain diseases, and certain other
attributes: age, sex, weight, etc.

® A typical query would be: “Among the people affected by
the disease, what percentage is over 60 ?

® Personal queries are forbidden. An example of forbidden
query would be: “ Does Don have the disease ?
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Foundations of Privacy

Lecture 6

Relation between the main topics of this course

SECURITY PROBABILISTIC PRIVACY

METHODS
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Plan of the lecture

® A brief panoramic of the main deterministic
approaches to privacy

e Differential Privacy (DP)

® The Bayesian interpretation of DP

® Compositionality and independence from prior
® The privacy budget

® [mplementation of DP: Laplacian noise

® Examples and exercises

The problem

* In general, the problem of privacy is to
protect the disclosure of sensitive
information of individuals when a collection
of data about these individuals (dataset) is
made publicly available

* The process of transforming the dataset in
order to avoid such disclosure is called
sanitization

First solution: anonymization

This is the most obvious solution: remove the identity of
individuals from the database, so that the sensitive information
cannot be directly linked to the individual

Example: assume that Disease
we have a medical

1 Jon Snow 30 cold
database, where the
sensitive information 2 Jamie Lannister 39 amputed hand
is disease that has 3 Arya Stark 16 stomac ache
been diagnosed 4 Bran Stark 14 crippled
For instance Jor‘ah 5 Sandor Clegane 45 ignifobia
Mormont may not want 6 Jorah Mormont 48 gleyscale
to reveal that he is 7 Eddad Stark 32 headache
affected by greyscale,
because he may be 8 Ramsay Bolton 32 psychopath
9 Daenerys Targaryen 25 mania of grandeur
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First solution: anonymization

® Anonymization removes the column of the name, so that, for
instance, the grayscale disease cannot be directly linked to
Jorah Mormont

Disease

® Hystorically the 1 30 cold
ﬁrstdmethoctlj, still 2 - amputed hand
used nowa ays 3 16 stomac ache

[ ] However, this 4 14 crippled
solution has been 5 = ignifobia
(already several
years ago) shown 6 “© gleyseale
to be very weak 7 32 e
and prone to de- 8 32 psychopath
anon)’mization 9 25 mania of grandeur

attacks




Sweeney’s de-anonymization attack by linking
[around year 2000]

Public collection of

Contains non-sensitive data
sensitive
information DB 2 Background
DB 1 auxiliary
information

it has been
anonymized

Sweeney’s de-anonymization attack by linking
[around year 2000]

Ethnicity
Visit date

Name
Address

Algorithm to link information

De-anonymized record

Di : Date
lagnosis registered
Procedure Party
Medication affiliation
Date last

DB 1: Medical data DB 2:Voter list

87 % of US population is uniquely identifiable by 5-digit ZIP, gender, DOB

This attack has lead to the proposal of k-anonymity

K-anonymity

¢ Quasi-identifier: Set of attributes that can be linked with
external data to uniquely identify individuals

* Make every record in the table indistinguishable from a
least k-1 other records with respect to quasi-identifiers.
This can be done by:

* suppression of attributes, and/or
* generalization of attributes, and/or

* addition of dummy records

* Linking on quasi-identifiers yields at least k records for
each possible value of the quasi-identifier

K-anonymity

Example: 4-anonymity w.r.t. the quasi-identifiers (nationality, ZIP, age)

® achieved by suppressing the nationality and generalizing ZIP and age

Non-Sensitive Sensitive Non-Sensitive Sensitive
1p Code| Age | Nationality Condition Zip Code| Age | Nationality Condition
1 S 2 Russian Heart Disease 1 130%* | <30 * Heart Disease
2 13068 | 29 | Amencan || Heart Disease 2 130** | <30 * Heart Disease
3 || 13068 | 21 | Japanese || Viral Infection 3| 130** | <30 . Viral Infection
4 || 13053 | 23 | Amencan || Viral Infection 4 || 130** [ <30 * Viral Infection
5 14853 | 50 Indian Cancer 5 1485* | > 40 * Cancer
6 14853 | 55 Russian Heart Disease 6 1485* | > 40 * Heart Disease
7 14850 | 47 | Amencan | Viral Infection 7 1485* | > 40 * Viral Infection
L I.“J A AR Y 2 l.mtl A0 Il 1o £
9 || 13053 | 31 | Amencan Cancer 9 || 130** [ 3« " Cancer
10 |f 13053 | 37 Indian Cancer 10 || 130** [ 3« * Cancer
11 || 13068 | 36 | Japanese Cancer 11 || 130** 3 * Cancer
12 || 13068 | 35 | Amencan Cancer 12 || 130%* | 3« * Cancer
Figure 1. Inpatient Microdata Figure 2. 4 yvmous Inp Microdat




Problems with k-anonymity

® Obvious problem: Non-Sensitive Sensitive
in the sanitized Rase | Age | Sex | Zip Code | Disease
dataset, all the 1| * | <40| * | 120 Cancer
individual in a group 2| * | <40 * | 120 Cancer
may the same value 80 * |<d40| * | 120% | Cancer
for the sensitive (4] - 1<) v | 1209 | OCancer
data. like in this 5 * | >50 ] * 151** Hemophilia
y + s
table 6 * =50 * | 151% Cancer
* 1>50| * | 150% Virus
® Clearly, the people 1 I
. 8 * >50 | * 151%* Virus
in that group are
not protected from 9| * | 4 | * | 120 | Hemophilia
the revelation of 10 * | 4 | * | 120 | Hemophilia
their disease | o+ | o4 | o+ [ 1200 Virus
12 * 4* * 120** Virus

Table 2: 4-anonymous inpatient microdata.

(-diversity

Non-Sensitive Sensitive
Rase | Age | Sex | Zip Code Disease
® A solution to this L * | <80| * | 120% Cancer
pr0b|em was 2 * | <50 * 120** Cancer
proposed under 9 * <50 | * 120** || Hemophilia
the name of (- 1 * [ <50 * | 120 Virus
diversity. 5| * |[>s80| * | 151** | Hemophilia
6 » > 50 * 151%* C
® The idea is to et
* * *k 3
form the groups 7 > 50 151 Virus
in such a way that 8| * [>50] * | 151%* Virus
each group 3 N <50 | * 120%* Cancer
contains a var‘lety 4 . <50 | * 1207 Conoor
of values for the
sensitive data 10 * <50 | * 120** Hemophilia
12 » <50 * 120** Virus

Table 5: 3-diverse table

t-closeness

® Also the [-diversity has problems, though:

® the requirement of (-diversity may be too strict (for
instance, certain values of the disease, like having a cold,
may not need to be protected)

® the requirement of (-diversity may not be enough. For
instance, if almost all individuals in a certain group have
cancer, the attacker will infer that information (for a given
individual in the group) with high probability

® To amend these problems, the t-closeness requirement was
proposed: the idea is that the grouping is done in such a way
that the distribution in each group is close to the general
distribution

Problems with previous methods

® High-dimensional and sparse databases.

® Example: Netflix movies preferences.
® The quasi-identifiers contain too many columns

e Composition attacks (I will come back to
these later)

® These problems (and others) have lead to the
development of Differential Privacy




Differential Privacy

® Problem of statistical databases: we want to

Example

® A medical database D1 containing correlation between a

certain disease and age.

® Query:“what is the minimal age of a person with the

make available aggregate information, but disease”
without compromising the private data of the D1 is 2-anonymous with respect to
. .. . . . . - the query. Namely, every possible
individual participating in the database name | age [ disease answer partitions the records in
Alice 30 no groups of at least 2 elements
Bob 30 no Al Bob
. . . . . . Ice o
® This is not so easy to do. Nglve deterministic Carl | 40 o
methods', sugh as k-anonymity, are vulnerable Don 40 yes Carl Don
to combination attacks Ellie 50 no
Ellie Frank
Frank 50 yes
15 16
k-anonymity is not
name | weight | disease compositional name | weight | disease
® A medical database D2 Alice 60 no Alice 60 no
containing correlation between Bob 90 P Combine with the two queries: Bob 90 no
the disease and weight. Carl % . minimal weight and the minimal Carl 90 o
age of a person with the disease
Don 100 yes A . 40. 100 Don 100 yes
® Query: “what is the T T o rewers = Elie | 60 no
minimal weight of a person Frank 100 yes Frank 100 yes
with the disease” name age disease
Alice 30 no
Bob 30 no
Alice Bob Alice Bob
Carl 40 no
Also D2 is 2-anonymous Carl Don Don 40 yes
] Ellie 50 no ]
Ellie Frank Ellie Frank
Frank 50 yes




This is a general problem of the deterministic
approaches (based on the principle of many-to-one): the
combination of observations determines smaller and
smaller intersections on the domain of the secrets, and
eventually result in singletones

Observations
Secrets

N

)

I/

This is a general problem of the deterministic
approaches (based on the principle of many-to-one): the
combination of observations determines smaller and
smaller intersections on the domain of the secrets, and
eventually result in singletones

Observations
Secrets

Q)¢

)
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A better solution name | weight | disease
Alice 60 no
Introduce some probabilistic noise
on the answer, so that the answers Bob %0 no
of minimal age and minimal weight Carl 90 no
can be given also by other people
with different age and weight Don 100 yes
Ellie 60 no
Frank 100 yes
name age | disease
Alice 30 no
Bob 30 no
Alice Bob
Carl 40 no
Don 40 yes Carl Don
Ellie 50 no
Ellie Frank
Frank 50 yes

21

Noisy answers

minimal age:

40 with probability 1/2
30 with probability 1/4
50 with probability 1/4

name age | disease
Alice 30 no
Bob 30 no
Alice Bob
Carl 40 no
Don 40 yes Carl Don
Ellie 50 no
Ellie Frank
Frank 50 yes

22




Noisy answers

minimal weight:
100 with prob. 4/7
90 with prob. 2/7
60 with prob. /7

name | weight | disease
Alice 60 no
Bob 90 no
Carl 90 no
Don 100 yes
Ellie 60 no
Frank 100 yes
Alice Bob
Carl Don
Ellie Frank

23

Noisy answers

Even if he combines the
answers, the adversary
cannot tell for sure whether
a certain person has the
disease

name age | disease
Alice 30 no
Bob 30 no
Carl 40 no
Don 40 yes
Ellie 50 no
Frank 50 yes

name | weight | disease
Alice 60 no
Bob 90 no
Carl 90 no
Don 100 yes
Ellie 60 no
Frank 100 yes
Alice Bob
Carl Don
Ellie Frank

24

Randomized mechanisms

® A randomized mechanism (for a certain query) reports an answer which

is an approximation of the true answer and is generated randomly
according to some probability distribution

® Randomized mechanisms are more robust to combination attacks than

the deterministic ones

® However, we need to choose carefully the probability distribution, in
order to get the desired degree of privacy, and in order to maintain a
certain degree of utility for the query

® There is a trade-off between utility and privacy, but it is not strict: for a
certain degree of privacy, one mechanism can give a better utility than
another. It is therefore interesting to try to find the optimal mechanism
(the mechanism with highest utility), among those that offer the desired

degree of privacy.

® To solve the above problem, and more in general to reason about privacy

and utility, we need formal, rigorous definitions of these notions.

® A definition of privacy that has become very popular: Differential Privacy

[Cynthia Dwork, ICALP 2006]
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Databases

e V is a set whose elements represent all possible values of the records
(v € V can be a tuple, i.e. it can be composed by various fields). We
assume that V' contains a special element | representing a dummy record,
or the absence of the corresponding record.

e A database of n records is an element of V™.

databases by z, z1, g, ...

We will represent the

e We assume a probability distribution 7 on the databases. We will indicate
by X the corresponding random variable.

e Two databases x1, xo are adjacent if they differ for exactly one record.
We will indicate this property with the notation xy ~ x4

e 11 ~ x5 represent the fact that x; and zo differ for the information relative
to an individual. Either this individual has been added to xs, or he has
been removed from xs, or has changed value.

e The number of records in which two databases xy, zo differ from each
other is called ”Hamming distance” between z1, x5.

26




Queries

e (The answer to) a query f can be seen as a function from the set of
databases X = V" to a set of values ). Namely,

fix =Y

e y = f(x) is the true answer of the query f on the database .

e For a given f, the distribution 7 on X also induces a distribution on ).
We will denote by Y the random variable associated to the distribution

on ).

27

Randomized mechanisms

e A randomized mechanism for the query f is any probabilistic function &

from X to a set of values Z. Namely,
K:X—>DZ

where DZ represents the set of probability distributions on Z.

e Z does not necessarily coincide with ).

e z drawn from D(z) is a reported answer of the query K on the database

Z.

e Note that 7 and K induce a probability distribution also on Z. We will

denote by Z the random variable associated to this probability distribution

28

Differential Privacy

e We are now ready to define Differential Privacy for a randomized mech-
anism /.

e Let us first consider the discrete case. Namely, K(z) is discrete, for every
database x.

¢ Definition (Differential Privacy) K is e-differentially private if
for every pair of databases x1,zo € X such that z; ~ z9, and for every
z € Z, we have:

p(Z =z X =x1) <e*p(Z = 2| X = z2)

where p(Z = z|X = x) represents the conditional probability of z given
x, namely the probability that on the database x the mechanism reports
the answer z

e This definition therefore means that the value (or the presence) of an
individual does not affect significantly the probability of getting a certain
reported value.

29

Bayesian interpretation

Let X; be the random variable representing the value of the individual 4,
and let X ipers be the random variable representing the value of all the
other individuals in the database.

Similarly, let x; and 2 ,¢pers represent possible values for X; and X thers-
Note that (x;, Zothers) represents and element in X'.

Analogously, let m; represent the component of the prior distribution that
concerns the value of the individual 4.

e-differential privacy is equivalently characterized by the following prop-
erty (we consider the discrete case, the continuous case is analogous): For
all (4, Tothers) € X, for all z € Z, and for all ;,

e < p(Xz = zi‘Xothers = $other5¢Z = Z)
p(Xz = xi‘Xothcrs = mothcw)

<ef

Namely: assuming that the adversary knows the value of all the other
individuals in the database, the reported answer does not increase signif-
icantly his probabilistic knowledge of the value of i, with respect to his
prior knowledge

Note: p(X; = 2| Xothers = Tothers) is called prior of z;, and p(X; =
i | X others = Tothers, Z = z) 1s called posterior of z;.
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Differential Privacy

e Let us now consider the continuous case. Namely, K(z) is a probability
density function on Z. The only thing that changes is that we consider a
measurable subset S of Z instead than a single z:

Definition (Differential Privacy) K is e-differentially private if
for every pair of databases x1,x9 € X such that z; ~ x5, and for every
measurable S C Z, we have:

p(Z € S|IX =x1) <ep(Z € S|X = x3)

where p(Z € S§|X = x) represents the probability that on the database x
the mechanism reports an answer in &

This definition therefore means that the value (or the presence) of an
individual does not affect significantly the probability that the reported
value satisfy a certain property.

31

Independence from the prior

The distribution 1 on the databases is called
prior, meaning: before the reported answer

T represents the knowledge that a potential
adversary (aka user, in the case of DP) has about

the database (before knowing the answer of K)

We note that the definition of DP does not
depend on . This is a very good property,
because it means that we can design mechanisms
that satisfy DP without taking the knowledge of
the adversary into account: the same mechanism

will be good for all adversaries.
32

Compositionality

e Differential privacy is compositional, namely: given two mechanisms Xy
and Ky on X that are respectively €1 and eo-differentially private, their
composition Ky x Ky is (g1 + e2)-differentially private.

Note: K; x Ky is defined by the following property: if IC(z) reports
z1 and Ka(x) reports zo, then (K1 x Ko)(z) reports (21, 22).

Proof: exercise

e Privacy budget: An user is given an initial budget . Each time he
asks a query, answered by e-differentially private mechanism, his budget
is decreased by €. When his budget is exhausted, he is not allowed to ask
queries anymore.
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Bayesian interpretation

Let X; be the random variable representing the value of the individual 4,
and let Xoipers be the random variable representing the value of all the
other individuals in the database.

Similarly, let z; and z,¢pers represent possible values for X; and X,iners-
Note that (z;, Tothers) represents and element in X.

Analogously, let 7; represent the component of the prior distribution that
concerns the value of the individual 7.

e-differential privacy in the discrete case is equivalently characterized by
the following property: For all (z;, Zomers) € X, for all z € Z, and for all
Tis

p(XL = $i‘Xothers = ZTothers, Z = Z) < esp(Xi = xi‘Xothers = $otheTs)

Namely: assuming that the adversary knows the value of all the other
individuals in the database, the reported answer does not increase signif-
icantly his probabilistic knowledge of the value of i, with respect to his
prior knowledge

Note: p(X; = xi|Xothers = Tothers) is called prior of z;, and p(X; =
i| Xothers = Tothers, Z = z) is called posterior of x;.
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Oblivious Mechanisms

® Given f:X— Y and K:X — Z, we say that K is oblivious if it depends
only on Y (not on X)

e |f Kis oblivious, it can be seen as the composition offand a randomized
mechanism H (noise) defined on the exact answers K = fx H

Utility
e
X 5 Y N V4
(dataset) (real answer) (reported answer)
H Query Rand T
K (e-Diff. Priv. Mechanism)

Leakage

®  Privacy concerns the information flow between the databases and the reported answers,
while utility concerns the information flow between the correct answer and the
reported answer
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A typical oblivious differentially private
mechanism: Laplacian noise

e Randomized mechanism for a query f:X — V.

® A typical randomized method: add Laplacian noise. If the exact answer is V,
the reported answer is Z, with a probability density function defined as:

dP,(z) =ce” A

where Af is the sensitivity of f:

Af= max |[f(z)— f(2')

zr~x' €X 006

(x ~ 2’ means z and 2’ are adjacent, o0t
i.e., they differ only for one record) 003

and ¢ is a normalization factor: T~

0 100 200 300

sensitivity =50, mean = 180

2Af itivity = 5, mean = 170

sensitivity = 20. mean = 150
36

Laplacian mechanism

The probability density function of a Laplacian mechanism is:
p(Z = 2|X = x) = dPy)(2) = ce

where c¢=—

lz—f ()]
— Ry ¢

Theorem: The Laplacian mechanism is e—differentially private
Proof: Let z; ~ x5 and y1 = f(21),y2 = f(x2) We have:

_lz=fGl,
p(Z=z|X=x1) _  ce Af
= = - [z—f(za)]
p(Z=z|X=z2) com E Af$2 -
[z—yal [z—y1|
— e ar c are

ly1—wval
e &F €

IN

IN
9}
)

Exercise

® Show that the Bayesian interpretation of differential
privacy, explained at Page 30, is indeed equivalent to
the original formulation of differential privacy
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Foundations of Privacy

Lecture 7
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Plan of the lecture

Solution of the exercise

Brief recall of the Laplacian mechanism
Discrete queries and Geometric Mechanism
Truncated mechanisms

Utility

Optimal Mechanisms
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Example of Laplacian Mechanism

e c=1
o Ay =|[f(z1) — flz2)| =10 ratio < e
e y1 = f(z1) =10, y1 = f(x2) =20
Then:
|z—10] N
o dP,, = yyge ™ 0
z—20 . = 2
o dP,, = ﬁe% ratio = et-a‘)
.l
The ratio between these distribution is /
-30 -20 -10 1 20 30 40 50 60

yi y2 z

e = ¢° outside the interval [y1, yo]

e < ¢° inside the interval [y;, ys]
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Gaussian noise

A gaussian noise would not satisfy differential privacy
(although it satisfies a more relaxed form of privacy called
(€,9)-privacy)

In fact, the formula for gaussian noise would be

_ (y—2)?

ce s £

and we can easily check that it does not satisfy DP for any
value of 6

42




Sensitivity of the query in a Laplacian

® The sensitivity of the query and the level of privacy € determine
how uniform the noise is:

® higher sensitivity = more uniform noise
® smaller € = more privacy, more uniform noise

® Intuitively, the more uniform is the noise, the less useful is the
mechanism (the reported answer is less precise)

® To reduce the sensitivity of the query, we often assume that the
database contains a minimum number of individuals

e Example: consider the query “What is the average age of the
people in the DB ?”. Assume that the age can vary from 0 to 120.
Check the sensitivity in the following two cases:

e the DB contains at least 100 records, or

® there is no restriction.
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The geometric mechanism

® The Laplacian noise is typically used in the case that Y (the set

of true answers of the query) is a dense numerical set, like the
Reals or the Rationals.

® |f Vis a discrete numerical set, like the Integers, then the typical

mechanism used in this case is the geometric mechanism,
which is a sort of discrete Laplacian.

® |n the geometric mechanism, the probability distribution of the

noise is:
_lz—y]

p(zly) = ce” 57°

® |n this expression, ¢ is a normalization factor, defined so to
obtain a probability distribution,

® Afis the sensitivity of query f

Example: Counting Queries

e Counting queries are typical examples of
discrete queries.They are of the form: How
many individuals in the database satisfy the

property P 7
e Examples:
® How many individuals are affected by diabetes?

® How many diabetic people are obese?

e Question: what is the sensitivity of a counting
query?
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Normalization constant in a geometric mechanism

® In the geometric mechanism, the probability distribution of the
noise is:

_lz—yl

p(zly) = ce” =7°F

As usual, we can compute ¢ (the normalization factor) by
imposing that the sum of the probability on all Z is 1. It turns

out that _ &
c= =2 where a=-¢e °f

hence p(zly) = ;—g al*=vl

* Examples: Compute the geometric mechanism for the following

queries:
* “ How many diabetic people weight more than 100 kilos ?
* “What is the max weight (in kilos) of a diabetic person ? ”
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Truncated geometric mechanism

* Often VY (the set of the true answers) does not coincide with
the whole set of integers, but it is just subset, for instance an interval

[a,b].
* With the geometric mechanism, however, the set of reported
answers Z is always the whole set of integers

* It is often considered that it does not make much sense to report
answers outside Y. If Y is an interval [a,b], we can truncate the
mechanism, i.e.,set Z= 1, and transfer on the extremes a and b all

the probability that (according to the geometric mechanism) would
fall outside the interval: The probability that would fall to the left of a
is transferred into a, and probability that would fall to the right of b
is transferred into b.

* The same considerations hold for the Laplacian (truncated Laplacian)

 Exercise: Compute the truncated geometric mechanism for a
counting query if the interval is [0,100]
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Post-processing

® Post-processing a mechanism XK consists in

composing K with another function P

® P can be probabilistic or deterministic

® K can be oblivious or not — it does not matter for the theorem below

X.Z.W
—_— K |— P |—

Theorem: Post processing does not harm privacy.
Namely, if K is e-differentially private, then

also P o K is e-differentially private
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Truncation

® Truncation is a typical example of post-
processing

® |n fact, assume that the true answer is in the
interval [a,b]. Then truncation can be defined
as follows: If the reported is smaller than a,
then it gets remapped into a, and if it is
greater than b, then it gets remapped into b.

® Because of the above theorem, truncation
does not decrease the level of privacy.
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Utilit
When a user sees the reported value z of the mechanism, he may take z
as it is, or, based on his prior knowledge, he may guess another value w.

We say that the user remaps z into w.
Summarizing, we have:

X, the set of databases, with associated random variable X

Y, the set of true answers to the query f. Associated random variable Y

Z, the set of reported answers to the query f (after we apply the noise).
Associated random variable Z

W, the set of guesses. Associated random variable W. W often coincides
with Y, but W usually does not coincide with Y.




e When a user sees the reported value z of the mechanism, he may take z
as it is, or, based on his prior knowledge, he may guess another value w.

‘We say that the user remaps z into w.
Summarizing, we have:

e X, the set of databases, with associated random variable X

e Y, the set of true answers to the query f. Associated random variable Y

Z, the set of reported answers to the query f (after we apply the noise).
Associated random variable Z

e W, the set of guesses. Associated random variable W. W often coincides
with Y, but W usually does not coincide with Y.

query K noise remap

Schema for an oblivious mechanism. In a non-oblivious one Z depend also on X.

Utility

g:WxY—=R

e A gain function is a function

that represents the usefulness of the guess w when the true answer is y.

e Often there is a notion of distance d between w and y, representing how
well w approximates y. Formally:

d:Wx)Y—=R

e The gain g is usually assumed to be anti-monotonic with respect to d.
Namely:

if d(w,y) < d(w',y), then g(w,y) > g(w'.y)

query K noise remap

Schema for an oblivious mechanism. In a non-oblivious one Z depend also on X.

Utility

e Given a database x, consider the expected gain over all possible reported
answers, for a certain remapping r. For an oblivious mechanism this is
given by the formula:

D pulaf(@)g(r(z), f(x))

e For a generic (possibly non oblivious) mechanism, this is given by:

D pxlzla)g(r(z), f (@)

query g noise remap

Schema for an oblivious mechanism. In a non-oblivious one Z depend also on X.

Utilit
e The utility ¢ of a mechanism is the maximum expected gain over all
possible databases. The maximum is over all possible remappings: It is
assumed that the user is rational and therefore makes the guesses that are
the most useful to him. Note that ¢/ depends also on the prior = over X

Formally, let us denote by r a remapping function. For an oblivious mech-
anism we have:

UK, m,9) = max Y _m(w) Y pu(alf(2)g(r(2), f(x)
For a general (possibly non-oblivious) mechanism, we have:

UK, 7,9) = max 3 m(x) 3 pre(lo)g(r(2), ()

query




Example

The simplest gain function is the identity relation:

1 w=zx

s ={ o w2t

It represents the situation in which we are happy only if we guess the true
answer.

With this gain function, the utility becomes (we give the formula for the obliv-
ious case, the non-oblivious one is analogous):

UK, mg) = max, > m(x) X, pu(2lf(x)) g(r(z), f(x))
= max, 3, pr(y) 22, pu(zly) 9(r(2). y)
= >, maxy(pr(y) pu(zly))

This utility function essentially gives the expected probability of guessing the
true answer. It is the converse of the Bayes risk

Example

Another typical gain function is the converse of the distance:
g(w“r) =D - d(wﬁx)

where D is the maximum possible distance between reported answers and true
answers (it works well for truncated mechanisms). If such maximum does not
exists, we can take D = 0. The only problem is that we get negative gains
With this gain function, the utility is the expected distance between our best
guess and the true answer. It gives a measure of how good is the approximated
of the true answer that we can get with the mechanism.
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Optimal mechanisms

® Given a prior m,and a privacy level €, an e-differentially private
mechanism K is called optimal if it provides the best utility
among all those which provide e-differential privacy

® Note that the privacy does not depend on the prior, but the
utility (in general) does.

® In the finite case the optimal mechanism can be computed with
linear optimization techniques, where the variables are the
conditional probabilities p(z | y)
where y is the exact answer and z is the reported answer

® A mechanism is universally optimal if it is optimal for all priors ©
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Privacy vs utility:
two fundamental results

I. [Ghosh et al., STOC 2009]
The geometric mechanism and the
truncated geometric mechanism are
universally optimal for counting queries and
any anti-monotonic gain function
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2.

Privacy vs utility:
two fundamental results

[Brenner and Nissim, STOC 2010] The counting queries are the
only kind of queries for which a universally optimal mechanism exists

This means that for other kind of queries one the optimal
mechanism is relative to a specific user.

The precise characterization is given in terms of the graph (V,~)
induced by (X, ~)

ok
not ok not ok
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Exercises

|. Define the noise density function for the Laplacian mechanism for the query
“What is the percentile of the people in the DB who earn more than 10K Euro a
month”, assuming that the database contains at least 1000 elements.

2. Define the truncated Laplacian mechanism for the above query. Note that Y is
the interval [0,100].

3. Prove that e-differential privacy can be equivalently defined as follows

K is e-differentially private if for every pair of databases z1, 22 € X' (not neces-
sarily adjacents), and for every z € Z, we have:

P(Z = 2|X = 21) < M7 = 2| X = )

where h(xy,z5) represents the Hamming distance between z; and x5
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Exercises

4. Compute the utility of the geometric mechanism for a

counting query, with privacy degree €, on the uniform prior

distribution, with the gain function defined as the identity
relation.

5. Same exercise, but with the gain function defined as the
converse of the distance.

6. Find 2 mechanism for the same counting query, with the
same degree of privacy, but lower utility.

7. Ve saw that post-processing cannot decrease privacy. Can
it decrease the utility? Motivate your answer.

Foundations of Privacy

Lecture 8




Motivation

Can differential privacy be adapted to different privacy
requirements?

Can we use differential privacy on secrets that are not databases?

Outline

» Generalization of differential privacy
» Privacy in the context of statistical databases

» Privacy in location-based systems

Differential Privacy, adjacent databases

» Adjacency: x ~p x' iff they differ in exactly one individual

x = (32,41,27)
X = (32,52,27)

» K:X — P(Z2) satisfies e-differential privacy iff

K(x)(Z) < e K(X')(2) Vx ~p X'

» ¢ : distinguishability level between adjacent databases

Differential Privacy, any databases
» Hamming distance dy(x, x"): # of elements in which x, x’
differ

x = (32,41,27)
x' = (21,52,27) dp(x,x') =2

» Differential privacy can be equivalently defined as follows:

K(x)(Z) < XK (XN (Z) Vx, X'

» edp(x, x'): distinguishability level between any databases




Differential Privacy, generalization

» Arbitrary domain of secrets X
» ¢(x, x’): distinguishability level between x, x’

» Expected properties:
» g(x,x)=0

» g(x,x) =¢(X, x)

e(x1, %) <b

- e(x3, %) < b

} = E(Xl,Xg) < f(b)

Differential Privacy, generalization

d.-privacy
K(x)(Z) < e® X)) K(x')(Z) ¥, X'

» the less distinguishable two secrets are,

the more similar the outcome should be

» There is no €, but we can just rescale the metric in order to
obtain the desired level of privacy: dy = edy’

» c-differential privacy = edy-privacy

Differential Privacy, generalization

d.-privacy
K(x)(Z) < ed X)) K(x')(Z)  Vx, X'

This notion of privacy protects the accuracy of the data

» Foundations
» Compositionality
» Implementation: Laplacian
» Optimality results
» Applications
» Statistical databases - (normalized) Manhattan distance
» |ocation privacy - Geographical distance
> In general, every domain equipped with a metric

Compositionality

If K, K" are dy and d,’ differentially private, then the composition
of the two mechanisms, (K, K’), is dy + d,’ differentially private




Answering queries

> Query f: X =Y

> f is A-sensitivite wrt dy, dy iff:

& = g AU

> If H:Y — P(2) satisfies d-privacy
then H o f satisfies Ad,-privacy

» H can be implemented in the usual way as Laplacian noise:

—dy(z.y) c

Hy)(z)=c-e &

We can easily prove that H satisfies %e—privacy , and
consequently H o f satisfies dye-privacy

The normalized Manhattan metric

» The Hamming distance is independent from the actual values

x1 = (32,0,27)
x> = (32,0.01,27)
X3 = <32, 106, 27> dh(Xl, X2) = dh(Xl, X3) =1

» the disting. level between x1, x> and xo, x3 is the same
» Many queries are insensitive to minor changes in values

> If € is “weak”, we might require higher protection for xi, x»

The normalized Manhattan metric

» Manhattan metric:

di (x, x) = 22ily dv(x[1]. X'[1])

» Normalized Manhattan metric:

di(x, x")

di(x, x') = a0

where d,(V) is the maximum distance among the values

» Stronger that Hamming: dy(x, x') < dp(x, x')

x1 = (32,0,27)
Xy = (32,0.01,27) di(x1, x2) = 1078
x3 = (32,10, 27) di(xa, x3) =1

Advantages of the normalized Manhattan
metric

Sensitivity:
» For a family of queries (sum, average, percentile, ...), the
sensitivity wrt di, dg and dy, dg coincide

» In general, d; is smaller than dj

» hence we get stronger privacy with the same noise

Optimality:
> |f the set of values is discrete, then sum, average and
percentile queries induce a graph structure which is a straight
line

» As a consequence, the Geometric mechanism is universally
optimal for sum, average and percentile queries wrt d;

» In contrast, we saw that only counting queries have
universally optimal mechanisms wrt dj,




The Manhattan metric
» We can use the Manhattan metric without normalization:

di (x, x') = 320y d(x[1]. X'[1])

» d; can be much higher that Hamming, but A will be
proportionally smaller than the usual sensitivity, so the
protection, with respect to the introduced noise, is

The Manhattan metric

» The Manhattan metric be useful when we need to prevent
the attacker from getting very precise data (for instance
because they can be used to identify an individual),

» Trade-off between privacy and utility

comparable.
Example: » Optimality results similar to d;
x1 = (32,0,27)
Xy = (32,0.01,27) di(x1, x2) = 1072
x3 = (32,10°,27) di(x1, x3) = 10°
Motivation

Geographical information is becoming essential for a variety of
services: LBS, advertising, social networks, data mining, ...
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Privacy: location data are often sensitive and need protection

L ocation-Based Systems

A location-based system is a system that uses geographical information
in order to provide a service.

» Retrieval of Points of Interest (POls). e’
, o N
» Mapping Applications. >

i
Alice Lee
s Blue Bottle Coffee @

,,,,,

» Deals and discounts applications.

» Location-Aware Social Networks.




L ocation-Based Systems

» Location information is sensitive. (it can be linked to
home, work, religion, political views, etc).

» Ideally: we want to hide our true location.

» Reality: we need to disclose some information. ®

Motivating example
Goal:
» Hide the user’s location (not identity)
from the service provider
» Formal privacy guarantee

Constraints:
» Implementable in real-time on a smartphone
» No trusted party
» Optimally: no peer-to-peer communication

Existing privacy notions
k-anonymity (or /-diversity)
Hide the user’s location among k points

» Include kK — 1 randomly generated points in the query
» Use a cloaking region including k points of interest

Problem: depends on the attacker’s side information

Existing privacy notions

Differential Privacy

Changes in a single user's value should have negligible effect on
the reported value

» Useful for publishing aggregate information about a large
number of users

» Has been used in the context of geo-location

» Inadequate for our motivating example




Towards a Definition
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Towards a Definition

» Secrets are locations.
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» Secrets are locations.
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Towards a Definition
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Towards a Definition
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In search for a new definition

» What kind of privacy does the user expect to have?
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In search for a new definition

» What kind of privacy does the user expect to have?
» Privacy depends on the accuracy of detecting x
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In search for a new definition
» What kind of privacy does the user expect to have?

» Privacy depends on the accuracy of detecting x
» A different privacy level | for each radius r

-,Es;rjé.i_km\

In search for a new definition

e-geo-indistinguishability
Require privacy for any radius r with a proportional level
I(r)y=¢€-r

First approach for defining this notion

Intuitively we would like to require:

P(12) _

Pilz) = Vrvx, x" : do(x, xX') < r

but this might fail because of the prior knowledge P(x)

“,r3:=3km\\

First approach for defining this notion

So we have to take it into account:

P(xI2) _ o P()

/. / <
P(xz) = P(x') Vrvx, x":do(x,x') <r

are require this to hold for any prior P(x)

' :‘=3.1an\




Second approach for defining this notion

Ideally we'd like the attacker’'s knowledge to be unaffected by z:

P(x|2)
P() =

er Yr, x

but z does provide information (i.e. that the user is in Paris)

e =3 T

Second approach for defining this notion

So we restrict the increase in knowledge within the radius r:

P2 B _ oy
POIB.() o

again, this should hold for any prior P(x)

Zj,r3=3km\\

Third approach for defining this notion

Nearby points should produce similar observations:

KO _ e

Ko < Vrvx, X' do(x,X') < r

which is the same as ed»-privacy.

All three formulations are equivalent

A mechanism for geo-indistinguishability

The case of one dimension:

Laplace centered in 1
— Laplace centered in 2

€
dfi = e~elz=xl
pdf: Se




A mechanism for geo-indistinguishability

Similarly in two dimensions:

A mechanism for geo-indistinguishability

Drawing from this distribution:
» use polar coordinates
» draw an angle 6 uniformly

» draw a radius r from a gamma distribution

A mechanism for geo-indistinguishability

» In practice locations are discretized
> (discretely) draw r, 8, map to the closest point on the grid

» Points correspond to differently shaped areas, leading to a
vioation of geo-indistinguishability
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A mechanism for geo-indistinguishability

Solution: adjust € to compensate for these differences
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Case study: Location-Based Services

Retrieve location-dependent information

v

Restaurants
Friends

Gas stations
Weather

Case study: Location-Based Services

Solution:
» Add noise to the location x to obtain z
» Use z to query the provider

» Some services are insensitive to “small” perturbations
(eg. weather, gas stations)

» In this case the quality of the results will not be affected

Case study: Location-Based Services

» Many LBS depend on the accuracy of the location
eg. find restaurants within 300m from x

» In this case the query needs to be extended to a larger area
eg. get restaurants within 1km from z

» Important: the area needs to be independent from z
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Obfuscation
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Privacy versus

® 9x9 = 8l “points”.
e We compare 4 mechanisms.

e Configured to the same utility.

e Optimal mechanism by [Shroki et al.,
S&P 2012] for the corresponding
prior. Obtained by linear optimization
techniques.

e Three prior independent:

Planar Laplacian (discretized).
Optimal under uniform prior.

Simple cloaking.

utility: evaluation
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Privacy versus utility: evaluation

® We fix the utility and measured the privacy.

e Utility loss measured as the expected distance between the true
location and the reported one  [Shroki et al., S&P 2012]

® Privacy measured as the expected error of the attacker (using
prior information) [Shroki et al., S&P 2012]

® Priors: uniform over colored regions
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Privacy versus utility: evaluation

The four mechanisms:

Privacy versus utility: evaluation

Location Privacy
2
2

Cloaking,

Optimal by [Shroki et al. S&P 2012] for the uniform prior
Ours (Planar Laplacian)

Optimal by [Shroki et al. S&P 2012] for the given prior

Location Privacy
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‘ 1 Cloaking =3 Optimal-unif == Planar Laplace  mm Optimal-rp ‘
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(a)

(b) (c)

‘ S Cloaking =3 Optimal-unif == Planar Laplace mm Optimal-p ‘

With respect to the privacy measures proposed by [Shokri et al, S&P 2012], our
mechanism performs better than the other mechanisms proposed in the literature
which are independent from the prior (and therefore from the adversary)

The only mechanism that outperforms ours is the optimal by [Shokri et al, S&P 2012]
for the given prior, but that mechanism is adversary-dependent




Tool:“Location Guard”
http://www.lix.polytechnique.fr/~kostas/software.html

About 50,000 active users to date
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