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A typical oblivious differentially private 
mechanism: Laplacian noise

• Randomized mechanism for a query  f : X → Y.                            

• A typical randomized method: add Laplacian noise. If the exact answer is y, 
the reported answer is z, with a probability density function defined as:
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dPy(z) = c e�
|z�y|
�f "

where �f is the sensitivity of f :

�f = max

x⇠x

02X
|f(x)� f(x

0
)|

(x ⇠ x

0
means x and x

0
are adjacent,

i.e., they di↵er only for one record)

and c is a normalization factor:

c =
"
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Gaussian noise

A gaussian noise would not satisfy differential privacy 
(although it satisfies a more relaxed form of privacy called 
(e,d)-privacy)

In fact, the formula for gaussian noise would be

and we can easily check that it does not satisfy DP for any 
value of s 
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Sensitivity of the query in a Laplacian

• The sensitivity of the query and the level of privacy e determine 
how uniform the noise is: 

• higher sensitivity ⇒ more uniform noise 

• smaller e ⇒ more privacy, more uniform noise 

• Intuitively, the more uniform is the noise, the less useful is the 
mechanism (the reported answer is less precise)

• To reduce the sensitivity of the query, we often assume that the 
database contains a minimum number of individuals

• Example: consider the query “What is the average age of the 
people in the DB ?”.  Assume that the age can vary from 0 to 120. 
Check the sensitivity in the following two cases:

• the DB contains at least 100 records, or

• there is no restriction.
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The geometric mechanism

• The Laplacian noise is typically used in the case that Y (the set 
of true answers of the query) is a dense numerical set, like the 
Reals or the Rationals. 

• If Y is a discrete numerical set, like the Integers, then the typical 
mechanism used in this case is the geometric mechanism, 
which is a sort of discrete Laplacian. 

• In the geometric mechanism, the probability distribution of the 
noise is: 

• In this expression, c is a normalization factor,  defined so to 
obtain a probability distribution, 

•  D f is the sensitivity of query f
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p(z|y) = c e�
|z�y|
� f "



Example: Counting Queries

• Counting queries are typical examples of 
discrete queries. They are of the form:  How 
many individuals in the database satisfy the 
property P ? 
• Examples: 

• How many individuals are affected by diabetes? 

• How many diabetic people are obese?

• Question: what is the sensitivity of a counting 
query?
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Normalization constant in a  geometric mechanism

• In the geometric mechanism, the probability distribution of the 
noise is: 
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c = 1�↵
1+↵ where ↵ = e

� "
�f

As usual, we can compute c (the normalization factor) by 
imposing that the sum of the probability on all Z is 1. It turns 
out that 

hence p(z|y) = 1�↵
1+↵ ↵|z�y|

p(z|y) = c e�
|z�y|
�f "

• Examples:  Compute the geometric mechanism for the following 
queries: 
• “ How many diabetic people weight more than 100 kilos ? ” 
• “ What is the max weight (in kilos) of a diabetic person ? ”



Truncated geometric mechanism

• Often Y (the set of the true answers) does not coincide with 
the whole set of integers, but it is just subset, for instance an interval 
[a,b]. 

• With the geometric mechanism, however, the set of reported 
answers Z is always the whole set of integers

• It is often considered that it does not make much sense to report 
answers outside Y.  If  Y is an interval  [a,b], we can  truncate  the 
mechanism, i.e., set Z = Y,  and  transfer on the extremes a and b all 
the probability that (according to the geometric mechanism) would 
fall outside the interval: The probability that would fall to the left of a 
is transferred into a, and probability that would fall to the right of b 
is transferred into b.

• The same considerations hold for the Laplacian (truncated Laplacian)

• Exercise: Compute the truncated geometric mechanism for a 
counting query if the interval is [0,100]
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Post-processing
• Post-processing a mechanism K consists in 

composing K with another function P

• P can be probabilistic or deterministic

• K can be oblivious or not — it does not matter for the theorem below
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K P
X Z W

Theorem:  Post processing does not harm privacy.
Namely, if K is e-differentially private, then 
also P ◦ K is e-differentially private



Truncation

• Truncation is a typical example of post-
processing

• In fact, assume that the true answer is in the 
interval [a,b]. Then truncation can be defined 
as follows: If the reported is smaller than a, 
then it gets remapped into a, and if it is 
greater than b, then it gets remapped into b. 

• Because of the above theorem, truncation 
does not decrease the level of privacy.  
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Utility
• When a user sees the reported value z of the mechanism, he may take z

as it is, or, based on his prior knowledge, he may guess another value w.
We say that the user remaps z into w.
Summarizing, we have:

• X , the set of databases, with associated random variable X

• Y, the set of true answers to the query f . Associated random variable Y

• Z, the set of reported answers to the query f (after we apply the noise).

Associated random variable Z

• W, the set of guesses. Associated random variable W . W often coincides

with Y, but W usually does not coincide with Y .
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gain g

• A gain function is a function

g : W ⇥ Y ! R

that represents the usefulness of the guess w when the true answer is y.

• Often there is a notion of distance d between w and y, representing how
well w approximates y. Formally:

d : W ⇥ Y ! R

• The gain g is usually assumed to be anti-monotonic with respect to d.
Namely:

if d(w, y)  d(w0, y), then g(w, y) � g(w0, y)
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gain g

• Given a database x, consider the expected gain over all possible reported

answers, for a certain remapping r. For an oblivious mechanism this is

given by the formula:

X

z

pH(z|f(x))g(r(z), f(x))

• For a generic (possibly non oblivious) mechanism, this is given by:

X

z

pK(z|x)g(r(z), f(x))
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gain g

• The utility U of a mechanism is the maximum expected gain over all

possible databases. The maximum is over all possible remappings: It is

assumed that the user is rational and therefore makes the guesses that are

the most useful to him. Note that U depends also on the prior ⇡ over X
Formally, let us denote by r a remapping function. For an oblivious mech-
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U(K,⇡, g) = max

r

X

x

⇡(x)

X

z

pH(z|f(x))g(r(z), f(x))



Utility

RfX

Y

Z

query remap

W
K

gain g

• The utility U of a mechanism is the maximum expected gain over all

possible databases. The maximum is over all possible remappings: It is
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the most useful to him. Note that U depends also on the prior ⇡ over X
Formally, let us denote by r a remapping function. For an oblivious mech-

anism we have:

U(K,⇡, g) = max

r

X

x
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X
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For a general (possibly non-oblivious) mechanism, we have:

U(K,⇡, g) = max

r

X

x

⇡(x)

X
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Example

The simplest gain function is the identity relation:

g(w, x) =

⇢
1 w = x

0 w 6= x

It represents the situation in which we are happy only if we guess the true

answer.

With this gain function, the utility becomes (we give the formula for the obliv-

ious case, the non-oblivious one is analogous):

U(K,⇡, g) = max

r

P
x

⇡(x)

P
z

pH(z|f(x)) g(r(z), f(x))

= max

r

P
y

p

f

(y)

P
z

pH(z|y) g(r(z), y)

=

P
z

max

y

(p

f

(y) pH(z|y))

This utility function essentially gives the expected probability of guessing the

true answer. It is the converse of the Bayes risk
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Another typical gain function is the converse of the distance:

g(w, x) = D � d(w, x)

where D is the maximum possible distance between reported answers and true

answers (it works well for truncated mechanisms). If such maximum does not

exists, we can take D = 0. The only problem is that we get negative gains

With this gain function, the utility is the expected distance between our best

guess and the true answer. It gives a measure of how good is the approximated

of the true answer that we can get with the mechanism.
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Optimal mechanisms

• Given a prior p, and a privacy level e, an e-differentially private 
mechanism K is called optimal if it provides the best utility 
among all those which provide e-differential privacy 

• Note that the privacy does not depend on the prior, but the 
utility (in general) does.

• In the finite case the optimal mechanism can be computed with 
linear optimization techniques, where the variables are the 
conditional probabilities p(z | y)  
where y is the exact answer and z is the reported answer

• A mechanism is universally optimal if it is optimal for all priors p
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1. [Ghosh et al., STOC 2009]                                                                                     
The geometric mechanism and the 
truncated geometric mechanism are 
universally optimal for counting queries and 
any anti-monotonic gain function

32

Privacy vs utility: 
two fundamental results



2. [Brenner and Nissim, STOC 2010]    The counting queries are the 
only kind of queries for which a universally optimal mechanism exists

• This means that for other kind of queries one the optimal 
mechanism is relative to a specific user. 

• The precise characterization is given in terms of the graph             
induced by 

Privacy vs utility: 
two fundamental results

not ok
ok

not ok
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Exercises

1. Define the noise density function for the Laplacian mechanism for the query 
“What is the percentile of the people in the DB who earn more than 10K Euro a 
month”, assuming that the database contains at least 1000 elements. 

2. Define the Laplacian truncated mechanism for the above query. Note that Y  is 
the interval [0,100]. 

3. Prove that e-differential privacy can be equivalently defined as follows
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K is "-di↵erentially private if for every pair of databases x1, x2 2 X (not neces-
sarily adjacents), and for every z 2 Z, we have:

p(Z = z|X = x1)  e

"h(x1,x2)
p(Z = z|X = x2)

where h(x1, x2) represents the Hamming distance between x1 and x2



Exercises

4. Compute the utility of the geometric mechanism for a 
counting query, with privacy degree e, on the uniform prior 
distribution, with the gain function defined as the identity 
relation. 

5. Same exercise, but with the gain function defined as the 
converse of the distance.

6. Find a mechanism for the same counting query, with the 
same degree of privacy, but lower utility.

7. We saw that post-processing cannot decrease privacy. Can 
it decrease the utility? Motivate your answer.


