
Foundations of Privacy

Lecture 4 - Part II



Motivation

Can differential privacy be adapted to different privacy

requirements?

Can we use differential privacy on secrets that are not databases?



Outline

I Generalization of differential privacy

I Privacy in the context of statistical databases

I Privacy in location-based systems



Differential Privacy, adjacent databases

I Adjacency: x ∼h x ′ iff they differ in exactly one individual

x = 〈32, 41, 27〉
x ′ = 〈32, 52, 27〉

I K : X → P(Z) satisfies ε-differential privacy iff

K (x)(Z ) ≤ eε K (x ′)(Z ) ∀x ∼h x ′

I ε : distinguishability level between adjacent databases



Differential Privacy, any databases

I Hamming distance dh(x , x
′): # of elements in which x , x ′

differ

x = 〈32, 41, 27〉
x ′ = 〈21, 52, 27〉 dh(x , x

′) = 2

I Differential privacy can be equivalently defined as follows:

K (x)(Z ) ≤ eεdh(x ,x ′)K (x ′)(Z ) ∀x , x ′

I εdh(x , x
′): distinguishability level between any databases

I the less distinguishable two databases are,

the more similar the outcome should be
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Differential Privacy, generalization

I Arbitrary domain of secrets X

I ε(x , x ′): distinguishability level between x , x ′

I Expected properties:

I ε(x , x) = 0

I ε(x , x ′) = ε(x ′, x)

I
ε(x1, x2) ≤ b
ε(x3, x2) ≤ b

}
⇒ ε(x1, x3) ≤ f (b)

I We take ε(x , x ′) to be a metric, denoted dX

dX (x1, x3) ≤ dX (x1, x2) + dX (x3, x2)
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Differential Privacy, generalization

dX -privacy

K (x)(Z ) ≤ edX (x ,x ′) K (x ′)(Z ) ∀x , x ′

I the less distinguishable two secrets are,

the more similar the outcome should be

I There is no ε, but we can just rescale the metric in order to

obtain the desired level of privacy: dX = εdX
′

I ε-differential privacy = εdh-privacy



Differential Privacy, generalization

dX -privacy

K (x)(Z ) ≤ edX (x ,x ′) K (x ′)(Z ) ∀x , x ′

This notion of privacy protects the accuracy of the data

I Foundations
I Compositionality
I Implementation: Laplacian
I Optimality results

I Applications
I Statistical databases - (normalized) Manhattan distance
I Location privacy - Geographical distance
I In general, every domain equipped with a metric



Compositionality

If K , K ′ are dX and dX
′ differentially private, then the composition

of the two mechanisms, (K ,K ′), is dX + dX
′ differentially private



Answering queries
I Query f : X → Y

I f is ∆-sensitivite wrt dX , dY iff:

∆ = max
x ,x ′

dY(f (x), f (x ′))

dX (x , x ′)

I If H : Y → P(Z) satisfies dY-privacy

then H ◦ f satisfies ∆dX -privacy

I H can be implemented in the usual way as Laplacian noise:

H(y)(z) = c · e
−dY (z ,y)

∆ ε

We can easily prove that H satisfies
dY
∆ ε-privacy , and

consequently H ◦ f satisfies dXε-privacy
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The normalized Manhattan metric

I The Hamming distance is independent from the actual values

x1 = 〈32, 0, 27〉
x2 = 〈32, 0.01, 27〉
x3 = 〈32, 106, 27〉 dh(x1, x2) = dh(x1, x3) = 1

I the disting. level between x1, x2 and x2, x3 is the same

I Many queries are insensitive to minor changes in values

I If ε is “weak”, we might require higher protection for x1, x2
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The normalized Manhattan metric
I Manhattan metric:

d1(x , x
′) =

∑n
i=1 dV(x [i ], x ′[i ])

I Normalized Manhattan metric:

d̃1(x , x
′) =

d1(x , x
′)

dV(V)

where dV(V) is the maximum distance among the values

I Stronger that Hamming: d̃1(x , x
′) ≤ dh(x , x ′)

x1 = 〈32, 0, 27〉

x2 = 〈32, 0.01, 27〉 d̃1(x1, x2) = 10−8

x3 = 〈32, 106, 27〉 d̃1(x1, x3) = 1



Advantages of the normalized Manhattan
metric

Sensitivity:
I For a family of queries (sum, average, percentile, . . . ), the

sensitivity wrt d̃1, dR and dh, dR coincide

I In general, d̃1 is smaller than dh

I hence we get stronger privacy with the same noise

Optimality:
I If the set of values is discrete, then sum, average and

percentile queries induce a graph structure which is a straight

line

I As a consequence, the Geometric mechanism is universally

optimal for sum, average and percentile queries wrt d̃1

I In contrast, we saw that only counting queries have

universally optimal mechanisms wrt dh



The Manhattan metric

I We can use the Manhattan metric without normalization:

d1(x , x
′) =

∑n
i=1 dV(x [i ], x ′[i ])

I d1 can be much higher that Hamming, but ∆ will be

proportionally smaller than the usual sensitivity, so the

protection, with respect to the introduced noise, is

comparable.

Example:

x1 = 〈32, 0, 27〉

x2 = 〈32, 0.01, 27〉 d̃1(x1, x2) = 10−2

x3 = 〈32, 106, 27〉 d̃1(x1, x3) = 106



The Manhattan metric

I The Manhattan metric be useful when we need to prevent

the attacker from getting very precise data (for instance

because they can be used to identify an individual),

I Trade-off between privacy and utility

I Optimality results similar to d̃1



Outline

I Generalization of differential privacy

I Privacy in the context of statistical databases

I Privacy in location-based systems



Motivation

Geographical information is becoming essential for a variety of

services: LBS, advertising, social networks, data mining, . . .

Privacy: location data are often sensitive and need protection



Location-Based Systems
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‣ Retrieval of Points of Interest (POIs). 

‣Mapping Applications. 

‣Deals and discounts applications. 

‣ Location-Aware Social Networks.

A location-based system is a system that uses geographical information 
in order to provide a service.



Location-Based Systems

‣ Location information is sensitive. (it can be linked to 
home, work, religion, political views, etc). 

‣ Ideally: we want to hide our true location. 

‣ Reality: we need to disclose some information.

3



Motivating example

Locate a restaurant close to my location



Motivating example
Goal:

I Hide the user’s location (not identity)

from the service provider

I Formal privacy guarantee

Constraints:

I Implementable in real-time on a smartphone

I No trusted party

I Optimally: no peer-to-peer communication



Existing privacy notions
k-anonymity (or l-diversity)

Hide the user’s location among k points

I Include k − 1 randomly generated points in the query
I Use a cloaking region including k points of interest

Problem: depends on the attacker’s side information



Existing privacy notions

Differential Privacy

Changes in a single user’s value should have negligible effect on

the reported value

I Useful for publishing aggregate information about a large

number of users

I Has been used in the context of geo-location

I Inadequate for our motivating example



Towards a Definition

‣ Secrets are locations. 

‣ Attacker’s goal: distinguish 
location x from x’. 

‣ The closer two locations are, 
the more indistinguishable 
they should be.

14
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Towards a Definition
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mildly distinguishable



Towards a Definition
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I What kind of privacy does the user expect to have?

I Privacy depends on the accuracy of detecting x

I A different privacy level l for each radius r
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In search for a new definition

ε-geo-indistinguishability

Require privacy for any radius r with a proportional level

l(r) = ε · r



First approach for defining this notion

Intuitively we would like to require:

P(x |z)

P(x ′|z)
≤ eεr ∀r ∀x , x ′ : d2(x , x

′) ≤ r

but this might fail because of the prior knowledge P(x)



First approach for defining this notion

So we have to take it into account:

P(x |z)

P(x ′|z)
≤ eεr

P(x)

P(x ′)
∀r ∀x , x ′ : d2(x , x

′) ≤ r

are require this to hold for any prior P(x)



Second approach for defining this notion

Ideally we’d like the attacker’s knowledge to be unaffected by z :

P(x |z)

P(x)
≤ eεr ∀r , x

but z does provide information (i.e. that the user is in Paris)



Second approach for defining this notion

So we restrict the increase in knowledge within the radius r :

P(x |z ,Br (x))

P(x |Br (x))
≤ eεr ∀r , x

again, this should hold for any prior P(x)



Third approach for defining this notion
Nearby points should produce similar observations:

K (x)(z)

K (x ′)(z)
≤ eεr ∀r ∀x , x ′ : d2(x , x

′) ≤ r

which is the same as εd2-privacy.

All three formulations are equivalent



A mechanism for geo-indistinguishability

The case of one dimension:

pdf:
ε

2
e−ε|z−x |



A mechanism for geo-indistinguishability
Similarly in two dimensions:

pdf:
ε2

2π
e−ε d2(~x ,~z)



A mechanism for geo-indistinguishability

Drawing from this distribution:

I use polar coordinates

I draw an angle θ uniformly

I draw a radius r from a gamma distribution

pdf: ε2 r e−ε r



A mechanism for geo-indistinguishability
I In practice locations are discretized

I (discretely) draw r , θ, map to the closest point on the grid

I Points correspond to differently shaped areas, leading to a

vioation of geo-indistinguishability



A mechanism for geo-indistinguishability

Solution: adjust ε to compensate for these differences

ε′ = ε+
1

u
ln
q − 2 + 3 eε v

√
2

q − 5



Case study: Location-Based Services
Retrieve location-dependent information

I Restaurants

I Friends

I Gas stations

I Weather

I . . .



Case study: Location-Based Services
Solution:

I Add noise to the location x to obtain z

I Use z to query the provider

I Some services are insensitive to “small” perturbations

(eg. weather, gas stations)

I In this case the quality of the results will not be affected



Case study: Location-Based Services
I Many LBS depend on the accuracy of the location

eg. find restaurants within 300m from x

I In this case the query needs to be extended to a larger area

eg. get restaurants within 1km from z

I Important: the area needs to be independent from z



Obfuscation
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Obfuscation

7

area of interest
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•9x9 = 81 “points”.

•We compare 4 mechanisms.

•Configured to the same utility.

1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27
28 29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45
46 47 48 49 50 51 52 53 54
55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72
73 74 75 76 77 78 79 80 81

• Optimal mechanism by [Shroki et al., 
S&P 2012] for the corresponding 
prior. Obtained by linear optimization 
techniques. 

• Three prior independent:

Planar Laplacian (discretized).

Optimal under uniform prior.

Simple cloaking.

Privacy versus utility: evaluation



• We fix the utility and measured the privacy.

• Utility loss measured as the expected distance between the true 
location and the reported one     [Shroki et al., S&P 2012]

• Privacy measured as the expected error of the attacker (using 
prior information) [Shroki et al., S&P 2012]

• Priors: uniform over colored regions
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The four mechanisms:   

• Cloaking,   

• Optimal by [Shroki et al. S&P 2012] for the uniform prior

• Ours (Planar Laplacian)

• Optimal by [Shroki et al. S&P 2012] for the given prior

53

(a) (b) (c)

Cloaking Optimal-unif Planar Laplace Optimal-rp

Privacy versus utility: evaluation



Privacy versus utility: evaluation
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(a) (b) (c)

Cloaking Optimal-unif Planar Laplace Optimal-rp

With respect to the privacy measures proposed by [Shokri et al, S&P 2012], our 
mechanism performs better than the other mechanisms proposed in the literature 
which are independent from the prior (and therefore from the adversary)

The only mechanism that outperforms ours is the optimal by [Shokri et al, S&P 2012] 
for the given prior, but that mechanism is adversary-dependent



Tool: “Location Guard”
http://www.lix.polytechnique.fr/~kostas/software.html

55

About 50,000 active users to date



Location Guard: goals

Provide a simple solution, for sporadic, real-time LBS access

Can we make it simple enough so that people actually use it?

Understandable, configurable by human beings

Low-level, application-agnostic solution

OS-level on smartphones (problem: rooting the phone)

Browser level (desktop & mobile)
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HTML5 geo-location API

Asking the browser for the user’s location



Location Guard: adding noise

navigator.geolocation.getCurrentPosition(function(pos)

alert(

”Latitude: ” + pos.coords.latitude +

”Longitude:” + pos.coords.longitude

);

);

Intercept the javascript call

Content-script, running in separate javascript enviroment

Inject code in the page, replace navigator.geolocation

Transparent to the user
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User adoption

Timeline

Nov 2013: Chrome

Jul 2014: Firefox

Feb 2015: Firefox Mobile

Feb 2015: Opera

Current users

Chrome: 6224 active

Firefox: 4642 active

Firefox Mobile: 370 active

Opera: 2134 downloads
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How do users discover Location Guard?

No publicity

Huge number of extensions (1367 in Firefox privacy category alone!)

Occasional promotion by Google/Mozilla

Mostly by searching (users care about privacy!)

“location”: position 1-2

“privacy”: position 35-40
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Chrome: linear growth



Questions?


