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Differential Privacy
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• Definition (Di↵erential Privacy, discrete case) K is "-

di↵erentially private if for every pair of databases x1, x2 2 X such that

x1 ⇠ x2 (i.e., x1 and x2 di↵er for only one record), and for every reported

answer z 2 Z, we have:

p(Z = z|X = x1)  e

"
p(Z = z|X = x2)

where p(Z = z|X = x) represents the conditional probability of z given x.

• Definition (Di↵erential Privacy, general case)K is "-di↵erentially

private if for every pair of databases x1, x2 2 X such that x1 ⇠ x2 and for

every measurable set S ✓ Z, we have:

p(Z 2 S|X = x1)  e

"
p(Z 2 S|X = x2)



Bayesian interpretation
• Let Xi be the random variable representing the value of the individual i,

and let X

others be the random variable representing the value of all the

other individuals in the database.

• "-di↵erential privacy is equivalent to the following property (we consider

here the discrete case, the continuous case is analogous): For all (xi, xothers

) 2
X , for all z 2 Z, and for all possible distributions,

p(Xi = xi|Xothers

= x

others

, Z = z)  e

"
p(Xi = xi|Xothers

= x

others

)

and

p(Xi = xi|Xothers

= x

others

)  e

"
p(Xi = xi|Xothers

= x

others

, Z = z)

Namely: the reported answer does not a↵ect significantly the probabilistic

knowledge of the value of i, with respect to the prior knowledge

Note: p(Xi = xi|Xothers

= x

others

) is called prior of xi,

and p(Xi = xi|Xothers

= x

others

, Z = z) is called posterior of xi.



Properties of DP
• The degree of privacy is determined by e. The 

smaller e is, the more privacy we have. e is non-negative 
by definition, thus the minimal possible value is 0, which 
gives total indistinguishability because e0= 1 means that a 
given answer can be obtained with the same probability 
from any database

• DP does not depend on the prior distribution. This 
means that a mechanism satisfying DP will be DP 
independently from the knowledge of the adversary.

• DP is compositional: combining the answers of two 
mechanisms which are respectively e1 and e2 
differentially private, yields a mechanism that is (e1 + e2)-
differentially private. 
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Oblivious Mechanisms
• Given  f : X → Y  and   K : X → Z,  we say that K is oblivious if it depends 

only on Y  (not on X)

• If K is oblivious, it can be seen as the composition of f and a randomized 
mechanism H  (noise) defined on the exact answers    K = f x H
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• Privacy concerns the information flow between the databases and the reported answers, 
while utility concerns the information flow between the correct answer and the 
reported answer



A typical way to obtain an oblivious e-DP 
mechanism: adding Laplacian noise

• Query  f : X → Y.                            

• Add Laplacian noise to the query: If the exact answer is y,  report answer 
z, with a probability density function defined as:
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dPy(z) = c e�
|z�y|
�f "

where �f is the sensitivity of f :

�f = max

x⇠x

02X
|f(x)� f(x

0
)|

(x ⇠ x

0
means x and x

0
are adjacent,

i.e., they di↵er only for one record)

and c is a normalization factor:

c =
"

2�f



Example
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y2y1

• " = 1

• �f = |f(x1)� f(x2)| = 10

• y1 = f(x1) = 10, y1 = f(x2) = 20

Then:

• dPy1 = 1
2·10e

|z�10|
10

• dPy2 = 1
2·10e

|z�20|
10

z
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y2y1

• " = 1

• �f = |f(x1)� f(x2)| = 10

• y1 = f(x1) = 10, y1 = f(x2) = 20

Then:

• dPy1 = 1
2·10e

|z�10|
10

• dPy2 = 1
2·10e

|z�20|
10

z

ratio = e

The ratio between these distribution is

• = e" outside the interval [y1, y2]

•  e" inside the interval [y1, y2]
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• �f = |f(x1)� f(x2)| = 10

• y1 = f(x1) = 10, y1 = f(x2) = 20

Then:

• dPy1 = 1
2·10e

|z�10|
10

• dPy2 = 1
2·10e

|z�20|
10

z

ratio < e

The ratio between these distribution is

• = e" outside the interval [y1, y2]

•  e" inside the interval [y1, y2]



Example

11

y2y1

• " = 1

• �f = |f(x1)� f(x2)| = 10

• y1 = f(x1) = 10, y1 = f(x2) = 20

Then:

• dPy1 = 1
2·10e

|z�10|
10

• dPy2 = 1
2·10e

|z�20|
10

z

ratio = e

The ratio between these distribution is

• = e" outside the interval [y1, y2]

•  e" inside the interval [y1, y2]



The geometric mechanism

• The geometric mechanism is a sort of discrete Laplacian. 

• Assume that Y and Z are sets of integers.   In the geometric 
mechanism, the probability distribution of the noise is: 
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c = 1�↵
1+↵ where ↵ = e

� "
�f

where c is a normalization factor,  defined so to obtain a 
probability distribution. It turns out that 

hence p(z|y) = 1�↵
1+↵ ↵|z�y|

p(z|y) = c e�
|z�y|
�f "



Counting Queries

• A counting query is a query of the form:  
How many individuals (tuples) in the database 
satisfy the property P ? 

• The sensitivity of a counting query is 1
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Plan of the lecture

• Postprocessing

• Truncation

• Revision of the exercises

• The utility of a mechanism

• Trade-off between utility and privacy

• Optimal and universally optimal mechanisms

• Existence and non-existence of u.o. mechanisms

• Examples and exercises

14



Post-processing
• Post-processing a mechanism K consists in 

composing K with another function P

• P can be probabilistic or deterministic

• K can be oblivious or not — it does not matter for the theorem below
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K P
X Z W

Theorem:  Post processing does not harm privacy.
Namely, if K is e-differentially private, then 
also P ◦ K is e-differentially private



Truncation

• Truncation is typically applied to a geometric 
mechanism. 

• If the true answer is in the interval [0,n], 
truncation remaps all the elements smaller 
than 0 into 0, and all the elements greater 
than n into n. 

• Because of the above theorem, truncation 
does not decrease the level of privacy.  
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Exercises
1. Define the noise probability distribution for the geometric mechanism for a 

counting query when Y is the interval [0,n].

An example of a counting query:   “How many people in the database 
are affected by the disease?”

2. Define the truncated geometric mechanism for a counting query when Y 
and Z are the the interval [0,n]. 

3. Prove that the laplacian mechanism is e-differentially private.

4.  John knows that Sue is checking in in a hospital specialized in a certain 
disease. The hospital keeps a DB of the patients, containing various 
information including the weight, the age, and the disease status.  One can 
ask statistical query on the DB such as “average height of people with the 
disease” and counting queries, and they are not sanitized. Find a sequence 
of queries that John can ask in order to figure out, with a large probability 
of success, whether Sue has the disease of not. 
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Utility
• When a user sees the reported value z of the mechanism, he may take z

as it is, or, based on his prior knowledge, he may guess another value w.
We say that the user remaps z into w.
Summarizing, we have:

• X , the set of databases, with associated random variable X

• Y, the set of true answers to the query f . Associated random variable Y

• Z, the set of reported answers to the query f (after we apply the noise).

Associated random variable Z

• W, the set of guesses. Associated random variable W . W often coincides

with Y, but W usually does not coincide with Y .



Utility

H RfX Y Z

query noise remap

W

Schema for an oblivious mechanism. In a non-oblivious one Z depend also on X. 
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Utility

H RfX Y Z

query noise remap

W

K
Schema for an oblivious mechanism. In a non-oblivious one Z depend also on X. 

gain g

• A gain function is a function

g : W ⇥ Y ! R

that represents the usefulness of the guess w when the true answer is y.

• Often there is a notion of distance d between w and y, representing how
well w approximates y. Formally:

d : W ⇥ Y ! R

• The gain g is usually assumed to be anti-monotonic with respect to d.
Namely:

if d(w, y)  d(w0, y), then g(w, y) � g(w0, y)



Utility

H RfX Y Z

query noise remap

W

K
Schema for an oblivious mechanism. In a non-oblivious one Z depend also on X. 

gain g

• Given a database x, consider the expected gain over all possible reported

answers, for a certain remapping r. For an oblivious mechanism this is

given by the formula:

X

z

pH(z|f(x))g(r(z), f(x))

• For a generic (possibly non oblivious) mechanism, this is given by:

X

z

pK(z|x)g(r(z), f(x))



Utility

H RfX Y Z

query noise remap

W

K
Schema for an oblivious mechanism. In a non-oblivious one Z depend also on X. 

gain g

• The utility U of a mechanism is the maximum expected gain over all

possible databases. The maximum is over all possible remappings: It is

assumed that the user is rational and therefore makes the guesses that are

the most useful to him. Note that U depends also on the prior ⇡ over X
Formally, let us denote by r a remapping function. For an oblivious mech-

anism we have:

U(K,⇡, g) = max

r

X

x

⇡(x)

X

z

pH(z|f(x))g(r(z), f(x))



Utility

RfX

Y

Z

query remap

W
K

gain g

• The utility U of a mechanism is the maximum expected gain over all

possible databases. The maximum is over all possible remappings: It is

assumed that the user is rational and therefore makes the guesses that are

the most useful to him. Note that U depends also on the prior ⇡ over X
Formally, let us denote by r a remapping function. For an oblivious mech-

anism we have:

U(K,⇡, g) = max

r

X

x

⇡(x)

X

z

pH(z|f(x))g(r(z), f(x))

For a general (possibly non-oblivious) mechanism, we have:

U(K,⇡, g) = max

r

X

x

⇡(x)

X

z

pK(z|x)g(r(z), f(x))



Example

The simplest gain function is the identity relation:

g(w, x) =

⇢
1 w = x

0 w 6= x

It represents the situation in which we are happy only if we guess the true

answer.

With this gain function, the utility becomes (we give the formula for the obliv-

ious case, the non-oblivious one is analogous):

U(K,⇡, g) = max

r

P
x

⇡(x)

P
z

pH(z|f(x)) g(r(z), f(x))

= max

r

P
y

p

f

(y)

P
z

pH(z|y) g(r(z), y)

=

P
z

max

y

(p

f

(y) pH(z|y))

This utility function essentially gives the expected probability of guessing the

true answer. It is the converse of the Bayes risk



Example
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Another typical gain function is the converse of the distance:

g(w, x) = D � d(w, x)

where D is the maximum possible distance between reported answers and true

answers (it works well for truncated mechanisms). If such maximum does not

exists, we can take D = 0. The only problem is that we get negative gains

With this gain function, the utility is the expected distance between our best

guess and the true answer. It gives a measure of how good is the approximated

of the true answer that we can get with the mechanism.



Optimal mechanisms

• Given a prior p, and a privacy level e, an e-differentially private 
mechanism K is called optimal if it provides the best utility 
among all those which provide e-differential privacy 

• Note that the privacy does not depend on the prior, but the 
utility (in general) does.

• In the finite case the optimal mechanism can be computed with 
linear optimization techniques, where the variables are the 
conditional probabilities p(z | y)  
where y is the exact answer and z is the reported answer

• A mechanism is universally optimal if it is optimal for all priors p
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1. [Ghosh et al., STOC 2009]                                                                                     
The geometric mechanism and the 
truncated geometric mechanism are 
universally optimal for counting queries and 
any anti-monotonic gain function
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Privacy vs utility: 
two fundamental results



2. [Brenner and Nissim, STOC 2010]    The counting queries are the 
only kind of queries for which a universally optimal mechanism exists

• This means that for other kind of queries one the optimal 
mechanism is relative to a specific user. 

• The precise characterization is given in terms of the graph             
induced by 

Privacy vs utility: 
two fundamental results

not ok
ok

not ok
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Exercises

1.Compute the utility of the geometric mechanism for 
a counting query, with privacy degree e, on the 
uniform prior distribution, with the gain function 
defined as the identity relation. 

2.Same exercise, but with the gain function defined as 
the converse of the distance.

3.Find a mechanism for the same counting query, with 
the same degree of privacy, but lower utility

4.We saw that post-processing cannot decrease privacy. 
Can it decrease the utility? Motivate your answer


