Foundations of Privacy

Class I

The teachers of the course

Kostas Chatzikokolakis CNRS & Ecole Polytechnique

Catuscia Palamidessi INRIA & Ecole Polytechnique

Logistic Information

- The course will be in English
- There will be a written exam at the end of the course
- We will give exercises during the course, leave you some time to solve them, and then show the solution. You should try to solve them, as they will help to prepare for the exam
- We will put the slides on line after every class
- Please feel free to ask questions any time. We love questions, they help to make the class more interactive and lively

Plan of the lectures

- Motivations, a bit of history, main problems, research directions (3 hours)
- Differential Privacy and Extensions (9 hours)
- Quantitative Information Flow (9 hours)
- Location Privacy (3 hours)

Motivations

In the "Information Society", each individual constantly leaves digital traces of his actions that may allow to infer a lot of information about himself

IP address \Rightarrow location.

History of requests \Rightarrow interests.

Activity in social networks \Rightarrow political opinions, religion, hobbies, ...

Power consumption (smart meters) \Rightarrow activities at home.

Motivations

Risk: collect and use of digital traces for fraudulent purposes.

Examples: targeted spam, identity theft, profiling, discrimination, ...

The need for privacy is intrinsic to the human nature, although it varies a lot from individual to individual, between cultures, and it evolves with time

Privacy is recognized as one of the fundamental right of individuals:

- Universal Declaration of the Human Rights at the assembly of the United Nations (Article 12), 1948.
- European Directive 95/46/EC on the Protection of Personal Data (currently being revised towards a stricter regulation).
- Japanese Act on the Protection of Personal Information from 2003 (current discussions to amend it and make stricter).

Different types of sensitive data

• Sensitive information about an individual :

- credit card / bank information, valuable belongings, vulnerable behaviors, ...
 - sensitive because it can bring to attacks to the person or his properties
- ethnicity, religious beliefs, political opinions, medical status, ...
 - Sensitive because it can lead to discrimination.
- Identification information : information that can uniquely identify an individual.
 - First and last name, social security number, physical and email address, phone number, biometric data (such as fingerprint and DNA), . . .
 - Sensitive because it can be used to cross-reference databases, or to identify him as the subject of certain actions
- Sensitive information for organizations
 - Industries: production plans, research, strategies,...
 - Governments. Police. Armies...
- In this course, we will try to encompass the various scenario. We will abstract from the nature of the sensitive information whenever possible, and present the common principles of information protection, but we will also show that the kind of information (and of adversary) induces differences in the approach.

Why it is difficult to protect privacy

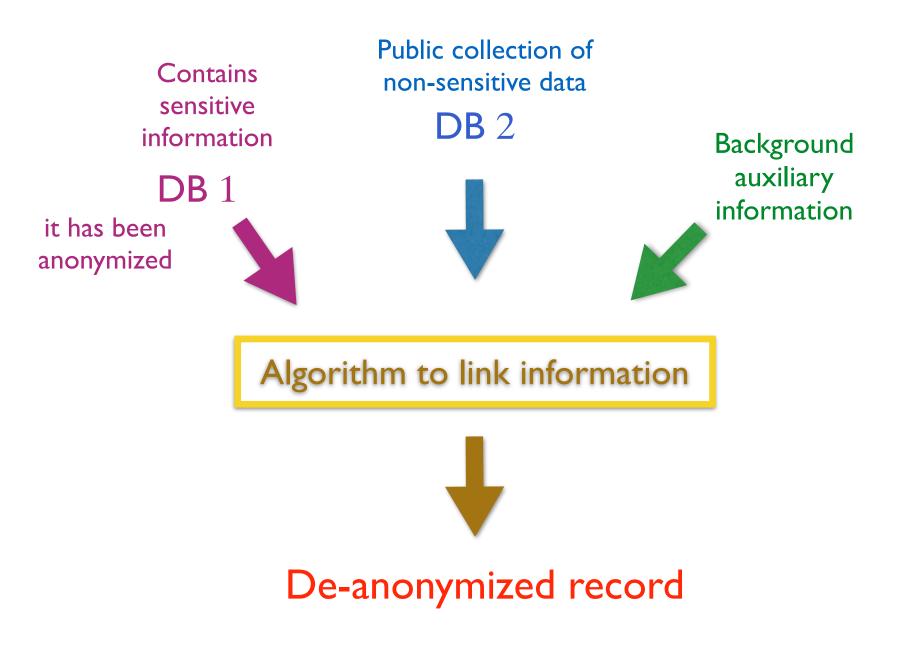
- Traditionally, privacy is protected via:
 - anonymization
 - encryption
 - access control
- However, these methods often fail:
 - encryption and access control cannot protect against the inference of private information from public information
 - anonymization has been proved highly ineffective

Privacy via anonymity

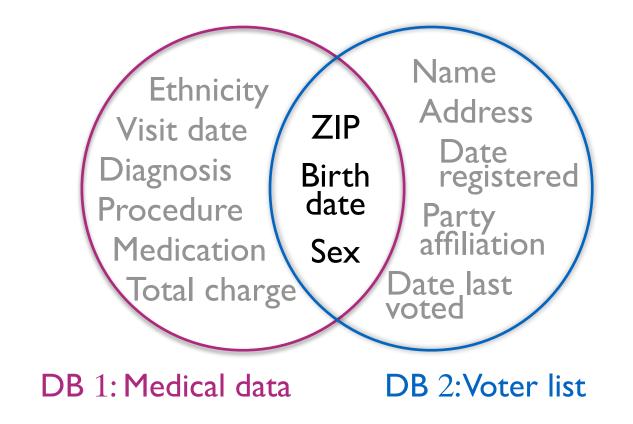
• Organizations that collect / release large collections sanitize the data by removing all personal identifiers: name, address, SSN, ... Thus the data are anonymous and they claim that there is no risk for privacy.

- This method has been proved highly ineffective. The quasi-identifiers allow to retrieve the identity in a large number of cases.
 - Several famous de-anonymization attacks have been carried out in the last decade.

Sweeney's de-anonymization attack by linking



Sweeney's de-anonymization attack by linking



87 % of US population is uniquely identifiable by 5-digit ZIP, gender, DOB

This attack has lead to the proposal of k-anonymity (that I will present later)

Denonymization attacks

Another famous attack is that by Narayanan et Smatikov. They showed that by combining the information of two popular social network (Twitter and Flickr) they were able to de-anonymize a large percentage of the users (about 80%) and retrieve their private information with only a small probability of error (12%).

De-anonymizing Social Networks, Arvind Narayanan and Vitaly Shmatikov. Security & Privacy '09.

Statistical Databases

- The problem: we want to use databases to get statistical information (aka aggregated information), but without violating the privacy of the people in the database
 - We assume that the database itself is hidden. The only way to access information is by querying it
- For instance, medical databases are often used for research purposes. Typically we are interested in studying the correlation between certain diseases, and certain other attributes: age, sex, weight, etc.
 - A typical query would be: "Among the people affected by the disease, what percentage is over 60?"
 - Personal queries are forbidden. An example of forbidden query would be: "Does Don have the disease?"

The problem

- Statistical queries should not reveal private information, but it is not so easy to prevent such privacy breaches.
- Example: in a medical database, we may want to ask queries that help to figure the correlation between a disease and the age, but we want to keep private the info whether a certain person has the disease.

name	age	disease
Alice	30	no
Bob	30	no
Don	40	yes
Ellie	50	no
Frank	50	yes

Query:

What is the youngest age of a person with the disease?

Answer:

40

Problem:

The adversary may know that Don is the only person in the database with age 40

The problem

- Statistical queries should not reveal private information, but it is not so easy to prevent such privacy breach.
- Example: in a medical database, we may want to ask queries that help to figure the correlation between a disease and the age, but we want to keep private the info whether a certain person has the disease.

name	age	disease
Alice	30	no
Bob	30	no
Carl	40	no
Don	40	yes
Ellie	50	no
Frank	50	yes

A famous approach to solve this problem: **k-anonymity**. The idea is that the answer should always partitions the space in groups of at least k elements

Alice	Bob
Carl	Don
Ellie	Frank

K-anonymity

- Quasi-identifier: Set of attributes that can be linked with external data to uniquely identify individuals
- Make every record in the table indistinguishable from a least k-1 other records with respect to quasi-identifiers. This can be done by:
 - suppression of attributes, and/or
 - generalization of attributes, and/or
 - addition of dummy records
- Linking on quasi-identifiers yields at least k records for each possible value of the quasi-identifier

K-anonymity

Example: 4-anonymity w.r.t. the quasi-identifiers (nationality, ZIP, age)

• achieved by suppressing the nationality and generalizing ZIP and age

	Non-Sensitive		Sensitive	
	Zip Code	Age	Nationality	Condition
1	13053	28	Russian	Heart Disease
2	13068	29	American	Heart Disease
3	13068	21	Japanese	Viral Infection
4	13053	23	American	Viral Infection
5	14853	50	Indian	Cancer
6	14853	55	Russian	Heart Disease
7	14850	47	American	Viral Infection
0	14850	40	American	Viral Infaction
9	13053	31	American	Cancer
10	13053	37	Indian	Cancer
11	13068	36	Japanese	Cancer
12	13068	35	American	Cancer

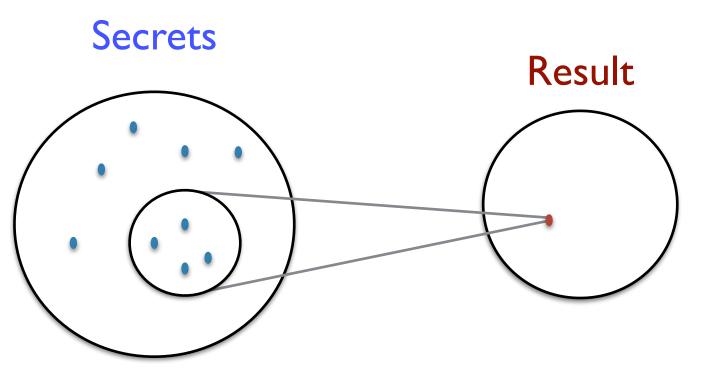
Figure 1. Inpatient Microdata

		N	Non-Sensitive		Sensitive
		Zip Code	Age	Nationality	Condition
	1	130**	< 30	*	Heart Disease
	2	130**	< 30	*	Heart Disease
	3	130**	< 30	*	Viral Infection
	4	130**	< 30	*	Viral Infection
	5	1485*	≥ 40	*	Cancer
	6	1485*	≥ 40	*	Heart Disease
	7	1485*	≥ 40	*	Viral Infection
	0	1/105*	≥ 40		Visal Infection
I	9	130**	3*	*	Cancer
	10	130**	3*	*	Cancer
	11	130**	3*	*	Cancer
	12	130**	3*	*	Cancer

Figure 2.	4-anonymous	Inpatient	Microdata
-----------	-------------	-----------	-----------

Correlation: Many-to-one

- Principle: Ensure that there are many secret values that correspond to one (publicly available) result
- This is the general principle of most deterministic approaches to protection of confidential information (group anonymity, k-anonymity, cloacking, etc.)



The problem

Unfortunately, the many-to-one approach is not robust under **composition**:

name	age	disease
Alice	30	no
Bob	30	no
Carl	40	no
Don	40	yes
Ellie	50	no
Frank	50	yes

Alice	Bob
Carl	Don
Ellie	Frank

The problem of composition

Consider the query:

What is the minimal weight of a person with the disease?

Answer: 100

name	weight	disease
Alice	60	no
Bob	90	no
Carl	90	no
Don	100	yes
Ellie	60	no
Frank	100	yes

Alice	Bob
Carl	Don
Ellie	Frank

The problem of composition

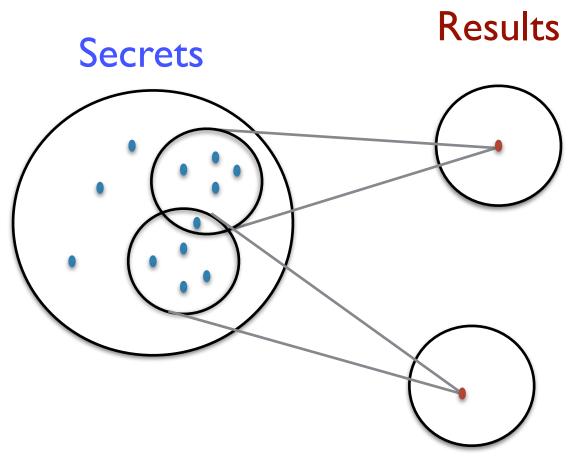
Combine with the two queries: minimal weight and the minimal age of a person with the disease Answers: 40, 100

name	age	disease
Alice	30	no
Bob	30	no
Carl	40	no
Don	40	yes
Ellie	50	no
Frank	50	yes

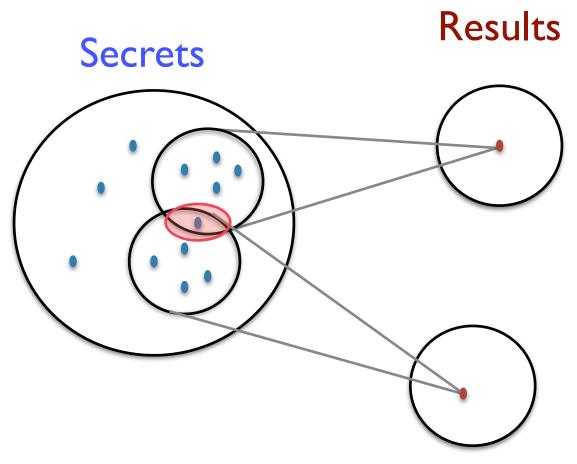
name	weight	disease
Alice	60	no
Bob	90	no
Carl	90	no
Don	100	yes
Ellie	60	no
Frank	100	yes

Alice	Bob
Carl	Don
Ellie	Frank

This is a general problem of the deterministic approaches (based on the principle of many-to-one): the combination of observations determines smaller and smaller intersections on the domain of the secrets, and eventually result in singletones



This is a general problem of the deterministic approaches (based on the principle of many-to-one): the combination of observations determines smaller and smaller intersections on the domain of the secrets, and eventually result in singletones



Question : suppose that Alice's employer knows that she is 28 years old, she lives in ZIP code 13012 and she visits both hospitals. What does he learn?

	Non-Sensitive		Sensitive	
	Zip code	Age	Nationality	Condition
1	130**	<30		AIDS
2	130**	<30	•	Heart Disease
3	130**	<30	•	Viral Infection
4	130**	<30	•	Viral Infection
5	130**	≥40		Cancer
6	130**	≥40	•	Heart Disease
7	130**	≥40	•	Viral Infection
8	130**	≥40	•	Viral Infection
9	130**	3*		Cancer
10	130**	3*	•	Cancer
11	130**	3*	•	Cancer
12	130**	3*	•	Cancer
	(a)			

(a)				
	Non-Sensitive		Sensitive	
	Zip code	Age	Nationality	Condition
1	130**	<35	•	AIDS
2	130**	<35	•	Tuberculosis
3	130**	<35	•	Flu
4	130**	<35	•	Tuberculosis
5	130**	<35	•	Cancer
6	130**	<35	•	Cancer
7	130**	≥35	•	Cancer
8	130**	\geq 35	•	Cancer
9	130**	≥35	•	Cancer
10	130**	≥35	•	Tuberculosis
11	130**	≥35	•	Viral Infection
12	130**	≥35	•	Viral Infection

A better solution

Introduce some probabilistic noise on the answer, so that the answers of minimal age and minimal weight can be given also by other people with different age and weight

name	age	disease
Alice	30	no
Bob	30	no
Carl	40	no
Don	40	yes
Ellie	50	no
Frank	50	yes

name	weight	disease
Alice	60	no
Bob	90	no
Carl	90	no
Don	100	yes
Ellie	60	no
Frank	100	yes

Alice	Bob
Carl	Don
Ellie	Frank

Noisy answers

minimal age:
40 with probability 1/2
30 with probability 1/4
50 with probability 1/4

name	age	disease
Alice	30	no
Bob	30	no
Carl	40	no
Don	40	yes
Ellie	50	no
Frank	50	yes

Alice	Bob
Carl	Don
Ellie	Frank

Noisy answers

minimal weight:100 with prob. 4/790 with prob. 2/760 with prob. 1/7

name	weight	disease
Alice	60	no
Bob	90	no
Carl	90	no
Don	100	yes
Ellie	60	no
Frank	100	yes

Alice	Bob
Carl	Don
Ellie	Frank

Noisy answers

Combination of the answers The adversary cannot tell for sure whether a certain person has the disease

name	age	disease
Alice	30	no
Bob	30	no
Carl	40	no
Don	40	yes
Ellie	50	no
Frank	50	yes

name	weight	disease
Alice	60	no
Bob	90	no
Carl	90	no
Don	100	yes
Ellie	60	no
Frank	100	yes

Alice	Bob
Carl	Don
Ellie	Frank

Noisy mechanisms

- The mechanisms reports an approximate answer, typically generated randomly on the basis of the true answer and of some probability distribution
- The probability distribution must be chosen carefully, in order to not destroy the utility of the answer
- A good mechanism should provide a good trade-off between privacy and utility. Note that, for the same level of privacy, different mechanisms may provide different levels of utility.

Randomization

- In this course, we will consider the general case of probabilistic systems (note that the deterministic oness can be seen as a special case), and develop quantitative (probabilistic) foundations
 - Randomization is often used in protection mechanisms, as it is quite effective in obfuscating the link between public and private information (aka observables and secret information)
 - We need to reason about the knowledge of the adversary, which can often be represented in terms of a probability distribution on the set of the possible values of the secret (probabilistic knowledge)

Research internships

We have various internship (stage) subjects, ranging from rather theoretical to rather practical

- Privacy-friendly Machine Learning
 - Focus on the Bayesian methods for ML (also DP is based on Bayesian principles)
- Bisimulation metrics for analysis of leakage in concurrent systems
- Location privacy: various research directions
 - Some of these will be driven by an industrial partner who has a strong potential for collecting location data, and wants to offer various location-based services in a privacy-friendly way.

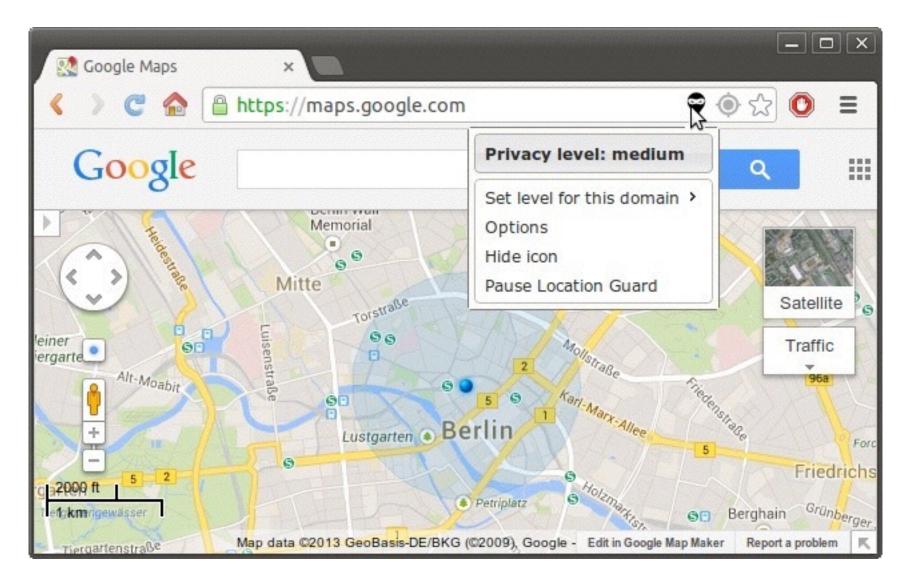
Research internships

- Location of the internship : LIX, Ecole Polytechnique, within an Equipe INRIA
- The internships will be "remunerés"
- It will be possible to continue the research as a PhD student

Tool: "Location Guard"

http://www.lix.polytechnique.fr/~kostas/software.html

About 50,000 active users to date



Location guard for Chrome

