Why Probability and Nondeterminism? Concurrency Theory

- Nondeterminism
 - Scheduling within parallel composition
 - Unknown behavior of the environment
 - Underspecification
- Probability
 - Environment may be stochastic
 - Processes may flip coins

Automata

Example: Automata

 $A = (Q, q_0, E, H, D)$

Execution: $q_0 n q_1 n q_2 ch q_3 coffee q_5$ Trace:n n coffee

Probabilistic Automata

Example: Probabilistic Automata

Example: Probabilistic Automata

Example: Probabilistic Automata

What is the probability of beeping?

Example: Probabilistic Executions

MPRI 3 Dec 2007

Example: Probabilistic Executions

Measure Theory

- <u>Sample set</u>
 - Set of objects Ω
- <u>Sigma-field</u> (σ-field)
 - Subset F of 2^{Ω} satisfying
 - Inclusion of Ω
 - Closure under complement
 - Closure under countable union
 - Closure under countable intersection
- <u>Measure on</u> (Ω, F)
 - Function μ from F to $\Re^{\geq 0}$
 - For each countable collection $\{X_i\}_I$ of pairwise disjoint sets of F, $\mu(\bigcup_I X_i) = \sum_I \mu(X_i)$
- <u>(Sub-)probability measure</u>
 - Measure μ such that $\mu(\Omega) = 1$ ($\mu(\Omega) \le 1$)
- Sigma-field generated by $C \subseteq 2^{\Omega}$
 - Smallest σ -field that includes C

Example: set of executions

Study probabilities of sets of executions which sets can I measure?

Measure Theory

Why not $F = 2^{\Omega}$? Flip a fair coin infinitely many times $\Omega = \{h, t\}^{\infty}$ $\mu(\omega) = 0$ for each $\omega \in \Omega$ $\mu(\text{first coin } h) = 1/2$

Theorem: there is no probability measure on 2^{Ω} such that $\mu(\omega) = 0$ for each $\omega \in \Omega$.

Cones and Measures

- Cone of α
 - Set of executions with prefix α
 - Represent event " α occurs"
- Measure of a cone
 - Product edges of α

 q_0

Examples of Events

- Eventually action a <u>occurs</u>
 - Union of cones where action a occurs once
- Action a <u>occurs at least</u> n times
 - Union of cones where action a occurs n times
- Action a <u>occurs at most</u> n times
 - Complement of action a occurs at least n+1 times
- Action a <u>occurs exactly</u> n times
 - Intersection of previous two events
- Action a <u>occurs infinitely</u> many times
 - Intersection of action a occurs at least n times for all n
- Execution α occurs and <u>nothing is scheduled after</u>
 - Set consisting of $\boldsymbol{\alpha}$ only
 - C_{α} intersected complement of cones that extend α

Schedulers - Resolution of nondeterminism

<u>Scheduler</u>

Function

$$\sigma : exec^{*}(A) \rightarrow Q \times (E \cup H) \times Disc(Q)$$

if
$$\sigma(\alpha) = (q, a, v)$$
 then $q = lstate(\alpha)$

<u>Probabilistic execution</u> generated by σ from state r

Measure
$$\mu_{\sigma,r}(C_s) = 0$$
if $r \neq s$ $\mu_{\sigma,r}$ $\mu_{\sigma,r}(C_r) = 1$ $\mu_{\sigma,r}(C_{\alpha aq}) = \mu_{\sigma,r}(C_{\alpha}) \bullet v(q)$ if $\sigma(\alpha) = (q, a, v)$

Probabilistic CCS

$$P ::= 0 | P|P | \alpha P | P + P | (v\alpha) P$$
$$| X | let X = P in X | P \oplus_{p} P$$

Prefix

$$\alpha.P \xrightarrow{\alpha} \delta(P)$$

Probabilistic processes

$$P \xrightarrow{\alpha} \mu$$

$$P + Q \xrightarrow{\alpha} \mu$$

$$P_1 \oplus_p P_2 \xrightarrow{\tau} p\mu_1 + (1-p)\mu_2$$

Probabilistic CCS

Communication

$$\begin{array}{ccc} P_1 \xrightarrow{a} \delta(P'_2) & P_2 \xrightarrow{\hat{a}} \delta(P'_2) \\ P_1 \mid P_2 \xrightarrow{\tau} \delta(P'_2 \mid P'_2) \end{array}$$

Recursion

$$P[let X = P in X / X] \xrightarrow{\alpha} \mu$$

let
$$X = P$$
 in $X \xrightarrow{\alpha} \mu$

MPRI 3 Dec 2007

Catuscia Palamidessi

Bisimulation Relations

- We have the following objectives
- They should extend the corresponding relations in the non probabilistic case
- Keep definitions simple
- Where are the key differences?

Strong Bisimulation on Automata

Strong bisimulation between A_1 and A_2 Relation $\mathbf{R} \subseteq Q \ge Q$, $\forall q, s, a, q' \exists$ $Q = Q_1 \cup Q_2$, such thatq = a

Strong Bisimulation on Probabilistic Automata

MPRI 3 Dec 2007

Probabilistic Bisimulations

• These two Probabilistic Automata are not bisimilar

- Yet they satisfy the same formulas of a logic PCTL
 - The logic observes probability bounds on reachability properties
- Bisimilar if we match transitions with convex combinations of transitions

Weak Bisimulation on Automata

Weak bisimulation between A_1 and A_2 Relation $\mathbf{R} \subseteq Q \ge Q$, $\forall q, s, a, q'$ $Q=Q_1 \cup Q_2$, such thatq

Weak bisimulation on Probabilistic Automata

Weak bisimulation between A_1 and A_2 Relation $\mathbf{R} \subseteq Q \ge Q$, $\forall q, s, a, \mu$ $Q = Q_1 \cup Q_2$, such thatq = a

Weak Transition

There is a probabilistic execution μ such that

- $\mu(exec^*) = 1$ (it is finite)
- $trace(\mu) = \delta(a)$ (its trace is a)
- $fstate(\mu) = \delta(q)$ (it starts from q)
- $lstate(\mu) = \rho$ (it leads to ρ)

 $q \stackrel{a}{\Rightarrow} s$ iff $\exists \alpha: trace(\alpha) = a, fstate(\alpha) = q, lstate(\alpha) = s$

- Prove that the probabilistic CCS is an extension of CCS (to define what this means is part of the exercise)
- Prove that probabilistic bisimulation is an extension of bisimulation
- Write the Lehmann-Rabin algorithm in probabilistic
 CCS (without using guarded choice)