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Motivations
• A language as expressive as the π-calculus with mixed-choice, and 

suitable for a distributed implementation

– Used also as an intermediate language for the fully distributed implementation of the π-
calculus with mixed-choice. The mixed choice mechanism of the π-calculus cannot be 
implemented in a fully distributed way deterministically, but can be done in a randomized 
way. Correctness is achieved with probability 1

• Applications in distributed computing: Some problems can only be 
solved with the use of randomization 

– Dining Philosophers, Leader Election, ...

• Applications in Security: some protocols use randomization 

– Anonymity: Crowds, Onion Routing, FreeNet, Dining Cryptographers, ...

– Fair exchange: Contract signing, Non-repudiation, Partial-Secret exchange, ...
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Plan of the lecture

• Overview of the basic notions of Probability 
theory and Measure theory

• Probabilistic automata

• Probabilistic π-calculus

• Examples
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Probability and measure theory

References
– Prakash Panangaden, Measure and probability for Concurrency Theorists. TCS. 253(2): 

287-309. www.lix.polytechnique.fr/~catuscia/teaching/papers_and_books/
panangaden.ps 

– Prakash Panangaden, Stochastic techniques in Concurrency. Lecture notes. 
www.lix.polytechnique.fr/~catuscia/teaching/papers_and_books/notes.ps 

• Probability in the finite case 
• An experiment with a finite set  S  of possible results
• Event: a subset  A  of  S
• Assuming that all outcomes are equally likely, the probability of event A is defined by  

pb(A) = |A| / |S|

• Example: tossing a fair dice
• Set of possible results  S = { 1,2,3,4,5,6 }
• Event “the result is even”: A = { 2,4,6 } ,  pb(A) = 1/2
• Event “the result is at least 5” : B = { 5,6 } , pb(B) = 1/3
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Probability and measure theory
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•Example: tossing 3 three times a fair coin

•Event “all coins are H”:    
pb(HHH) = p(H--) x pb(-H-) x  pb(--H)   independent
=  1/2 x 1/2 x 1/2 = 1/8

•“all coins are H or all coins are T” : 
pb(HHH or TTT) = pb(HHH) + pb(TTT) = 1/4           disjoint 

•“at least one coin is H”: 
pb(not TTT) = 1 – pb(TTT)  =  7/8

•“at least one coin is H and at least one coin is T”
pb(not TTT and not HHH)  =  6/8                       not independent

•“at least one coin is H or at least one coin is T” 
pb(not TTT or not HHH)                                         not disjoint
 = pb(not TTT) + pb(not HHH) – pb(not TTT and not HHH)
 = 7/8 + 7/8 – 6/8  =  1                        
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Probability and measure theory

• The need for measure theory
• Some “experiments”  have infinititary nature

• Example: tossing infinitely many time a fair coin
• The set S of all infinite sequences of H/T is infinite 

(uncountable)
• The probability of each sequence is 0, so we cannot expect 

that the single result will be enough  as “building 
blocks” (i.e. we cannot expect to be able to define the 
probability of every event by summing up the probability of 
the singletones) 

• When S is uncountable, we cannot expect of being able to 
define the probability of every set of results. 
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Probability and measure theory
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Probability and measure theory
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Probability and measure theory
Example 

• S =  the set of all infinite sequences of a fair coin tossing

• From elementary finite probability theory: Each finite 
sequence of H/T  x0,x1,…,xn-1 (xi=H or xi=T) has 
probability 1/2n (independence)

• Each infinite sequence has probability 0

• Cone: given a sequence s =  x0,x1,…,xn-1 [,…], the set A 
of all sequences which have s as prefix is called cone 

• We assign to A the probability measure of its prefix: m(A) = 1/2n 

• Define  B  (base) as the set of all cones. Note that they 
are All disjoint
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Probability and measure theory
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Consider the space (S,SB) generated by S and the set B of all 
cones, with probability measure induced by  m

What is the probability that a sequence has infinitely many H?   

Probability of exactly one H in any position: 0  (countable disjoint union 
of sets with measure 0)

Probability of exactly n H in any position: 0 (same reason)

Probability of finitely many H in any position: 0 (same reason)

Probability of infinitely many H: 

 1 – pb(finitely many H) = 1 – 0  (complementation property)
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The probabilistic π-calculus

References: 

• Roberto Segala and Nancy Lynch. Probabilistic simulations for 
probabilistic processes. Nordic Journal of Computing, 2(2):250--273, 
1995.

• C. Palamidessi, O.M. Herescu. A Randomized Distributed Encoding 
of the π-Calculus with Mixed Choice. Theoretical Computer Science 
335(2-3): 373-404, 2005 
www.lix.polytechnique.fr/~catuscia/papers/prob_enc/report.ps
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The probabilistic π-calculus: syntax

Similar to the asynchronous p-calculus of Amadio,Castellani and Sangiorgi, 
the only difference is that the input-guarded choice is probabilistic

input | silent action

inaction
probabilistic choice
output 
parallel
new name
replication
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The probabilistic π-calculus: operational sem

• Based on the probabilistic 
automata of Segala and 
Lynch

• nondeterministic and 
probabilistic behavior

• nondeterminism associated 
to a scheduler (adversary)

• probabilistic behavior 
associated to the choice of 
the process 
– groups, probabilistic 

distributions, steps

1/2

1/2
1/3

1/3
1/3

1/3
2/3

1/2

1/2
1/3

1/3
1/3

1/3
2/3

1/2

1/2
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1/3
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The probabilistic π-calculus: operational sem

 

…

µ1
µ2 µn

p1 p2

pn
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The probabilistic π-calculus: operational sem
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The probabilistic π-calculus: operational sem
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The probabilistic π-calculus: operational sem
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The probabilistic π-calculus: operational sem

 



           PPS, 24 Nov 05 Probabilistic and Nondeterministic Aspects of Anonymity

Master =
P2

i=0 τ . mip . mi⊕1n . mi⊕2n . 0

+ τ.m0n . m1n . m2n . 0

Crypt i = mi(x) . ci,i(y) . ci,i⊕1(z) .

if x = p

then pay i . if y = z

then out idisagree

else out iagree

else if y = z

then out iagree

else out idisagree

Coini = τ .Head i + τ .Tail i

Head i = ci,ihead . ci"1,ihead . 0

Tail i = ci,itail . ci"1,itail . 0

DCP = (ν #m)(Master

| (ν#c)(Π2
i=0Crypt i | Π2

i=0Coini) )

Table 1. The dining cryptographer protocol specified in π-calculus.

uniformity we use here the π-calculus ([18]). We recall that + (
∑
) is the nondetermin-

istic sum and | (Π) is the parallel composition. 0 is the empty process. τ is the silent
(or internal) action. cm and c(x) are, respectively, send and receive actions on channel
c, where m is the message being transmitted and x is the formal parameter. ν is an
operator that, in the π-calculus, has multiple purposes: it provides abstraction (hiding),
enforces synchronization, and generates new names. For more details on the π-calculus
and its semantics, we refer to [18, 17].

In the code, given in Table 1,⊕ and" represent the sum and the subtractionmodulo
3. Messages p and n sent by the master are the requests to pay or to not pay, respectively.
pay i is the action of paying for cryptographer i.

We remark that we do not need all the expressive power of the π-calculus for this
program.More precisely, we do not need guarded choice (all the choices are internal be-

cause they start with τ ), and we do not need neither name-passing nor scope extrusion,
thus ν is used just like the restriction operator of CCS ([16]).

Let us consider the point of view of an external observer. The actions that are to be

hidden (set C) are the communications of the decision of the master and the results of
the coins (%m, %c). These are already hidden in the definition of the system DCP . The
anonymous users are of course the cryptographers, and the anonymous actions (set A)
is constituted by the pay i actions, for i = 0, 1, 2. The set B is constituted by the actions

of the form out iagree and out idisagree , for i = 0, 1, 2.

5

Example: D.C. in the probabilistic asynchronous π-calculus
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Nondeterministic choice

Anonymous actions

Observables

Probabilistic choice

We start by considering a nondeterministicmaster, which is in a sense the basic case:

the fact that the master is nondeterministic means that we cannot assume any regularity

in its behavior, nobody has any information about it, not even a probabilistic one. The

anonymity system must then assure that this complete lack of knowledge be preserved

through the observations of the possible outcomes (except, of course, for gaining the

information on whether the payer is one of the cryptographers or not).

We use the probabilistic π-calculus (πp) introduced in [12, 19] to represent the prob-

abilistic system. The essential difference with respect to the π-calculus is the presence
of a probabilistic choice operator of the form

∑
i piαi.Pi, where the pi’s represents

probabilities, i.e. they satisfy pi ∈ [0, 1] and
∑

i pi = 1, and the αi’s are non-output

prefixes, i.e. either input or silent prefixes. (Actually, for the purpose of this paper, only

silent prefixes are used.) For the detailed presentation of this calculus we refer to [12,

19, 4].

The only difference with respect to the program presented in Section 3.1 is the

definition of the Coin i’s, which is as follows (ph and pt represent the probabilities of

the outcome of the coin tossing):

Coin i = phτ .Head i + ptτ .Tail i

It is clear that the system obtained in this way combines probabilistic and nondeter-

ministic behavior, not only because the master is nondeterministic, but also because the

various components of the system and their internal interactions can follow different

scheduling policies, selected nondeterministically (although it can be proved that this

latter form of nondeterminism is not relevant for this particular problem).

This kind of systems (combining probabilistic and nondeterministic choices) is by

now well established in literature, see for instance the probabilistic automata of [25],

and have been provided with solid mathematical foundations and sophisticated tools

for verification. In particular, we are interested here in the definition of the probability

associated to a certain observable. The canonical way of defining such a probability is

the following: First we solve the nondeterminism, i.e. we determine a function (sched-

uler) which, for each nondeterministic choice in the the computation tree, selects one

alternative. After pruning the tree from all the non-selected alternatives, we obtain a

fully probabilistic automaton, and we can define the probabilities of (measurable) sets

of runs (and therefore of the intended observables) in the standard way. See [4] for the

details.

One thing that should be clear, from the description above, is that in general the

probability of an observable depends on the given scheduler.

4 Probabilistic anonymity for nondeterministic users

In this section we propose our notion of probabilistic anonymity for the case in which

the anonymous user is selected nondeterministically.

The system in which the anonymous users live and operate is modeled as a prob-

abilistic automaton M ([25], see [4]. Following [24, 22] we classify the actions of M
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Probabilistic automaton associated to the 
probabilistic π program for the D.C.
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