
Paris, 26 January 2007 MPRI Course on Concurrency

MPRI – Course on Concurrency

Lecture 16

The need for randomization:
examples in distributed computing and

in security
Kostas Chatzikokolakis

LIX, Ecole Polytechnique
kostas@lix.polytechnique.fr

www.lix.polytechnique.fr/~kostas

Page of the course:
http://mpri.master.univ-paris7.fr/C-2-3.html

mailto:catuscia@lix.polytechnique.fr
mailto:catuscia@lix.polytechnique.fr
http://www.lix.polytechnique.fr/~catuscia
http://www.lix.polytechnique.fr/~catuscia
http://pauillac.inria.fr/~leifer/teaching/mpri-concurrency-2004/
http://pauillac.inria.fr/~leifer/teaching/mpri-concurrency-2004/

Paris, 26 January 2007 MPRI Course on Concurrency 2

Plan of the lecture

• The power of randomization
– Some problems in distributed systems that can only be

solved with the use of randomization
• Dining Philosophers

• Randomized protocols for security (in particular
anonymity)
– The dining cryptographers

• Correctness of the protocol
• Anonymity analysis

– Crowds (a protocol for anonymous web surfing)

Paris, 26 January 2007 MPRI Course on Concurrency 3

πa

πic πop

πs

π

πIccsvp

πop

Honda-Tokoro
Boudol

Nestmann-Pierce

Nestmann

πa : asynchronous π
πic : asynchronous π + input-guarded choice
πop : asynchronous π + output prefix
πs : asynchronous π + separate choice
πI : π with internal mobility (Sangiorgi)
ccsvp : value-passing ccs

: Language inclusion

: Encoding

: Non-encoding

The π-calculus hierarchy
 (partly discussed in previous lecture)

Paris, 26 January 2007 MPRI Course on Concurrency 4

The separation between π and πs
(seen in previous lecture)

This separation result is based on the fact that it is not possible to solve
the symmetric leader election problem in πs, while it is possible in π

Leader Election Problem (LEP): All the nodes of a distributed system must
agree on who is the leader. This means that in every possible computation, all
the nodes must eventually output the name of the leader on a special channel
out

No deadlock
No livelock
No conflict (only one leader must be elected, every process outputs its
name and only its name)

Paris, 26 January 2007 MPRI Course on Concurrency

The power of Randomization

Some problems in distributed systems can only be
solved with the use of randomization

- This is the case of the symmetric leader election
problem in an asynchronous network

- We will see an analogous problem: the dining
philosophers

5

Paris, 26 January 2007 MPRI Course on Concurrency 6

(1) The dining philosophers
• Each philosopher needs exactly two forks
• Each fork is shared by exactly two philosophers
• A philosopher can access only one fork at the time

Paris, 26 January 2007 MPRI Course on Concurrency 7

• Deadlock freedom (aka progress): if there is a hungry
philosopher, a philosopher will eventually eat

• Starvation freedom: every hungry philosopher will eventually
eat (but we won’t consider this property here)

• Robustness wrt a large class of adversaries: Adversaries
decide who does the next move (schedulers)

• Fully distributed: no centralized control or memory
• Symmetric:

– All philosophers run the same code and are in the same initial
state

– The same holds for the forks

Intended properties of solution

Paris, 26 January 2007 MPRI Course on Concurrency 8

Non-existence of a “deterministic” solution

• Lehman and Rabin have shown that there does not exist a
“deterministic” (i.e. non-probabilistic) solution to the dining
philosophers, satisfying all properties listed in previous slide.

• The proof proceeds by proving that for every possible program
we can define an adversary (scheduler) which preserves the
initial symmetry

• Note: Francez and Rodeh did propose a “deterministic” solution
using CSP. The solution to this apparent contradiction is that
CSP cannot be implemented in a fully distributed way

Paris, 26 January 2007 MPRI Course on Concurrency 9

The algorithm of Lehmann and Rabin

1. Think
2. randomly choose fork in {left,right} %commit
3. if taken(fork) then goto 3
4. else take(fork)
5. if taken(other(fork)) then {release(fork); goto 2}
6. else take(other(fork))
7. eat
8. release(other(fork))
9. release(fork)
10. goto 1

Paris, 26 January 2007 MPRI Course on Concurrency 10

Correctness of the algorithm of Lehmann
and Rabin

• Theorem: for every fair adversary, if a philosopher
becomes hungry, then a philosopher (not necessarily
the same) will eventually eat with probability 1.

• Question: why the fairness requirement? Can we
write a variant of the algorithm which does not
require fairness?

Paris, 26 January 2007 MPRI Course on Concurrency

Anonymity

• Hide the identity of a user performing a given
action

• The action itself might be revealed

• Many applications

• Anonymous web-surfing (Crowds)

• Elections

• Donations

11

Paris, 26 January 2007 MPRI Course on Concurrency

The dining cryptographers

• A simple anonymity problem

• Introduced by Chaum in 1988

• Chaum proposed a solution satisfying the so-
called “strong anonymity”

• Extensions of the protocol are used in
practice

12

Paris, 26 January 2007 MPRI Course on Concurrency

The problem
• Three cryptographers share a meal with a

master

• In the end the master decides who pays

• It can be himself, or a cryptographer

• The master informs each cryptographer
individually

• The cryptographers want to find out if

- one of them pays, or

- it is the master who pays

• Anonymity requirement: the identity of
the paying cryptographer (if any) should
not be revealed

C1

C2

Master

PayDon’t
pay

C3

13

Paris, 26 January 2007 MPRI Course on Concurrency

The protocol

C1

C2 C3

Coin

Coin Coin

agree /
disagree

agree /
disagree

agree /
disagree• Each pair of adjacent cryptographers

flips a coin

• Each cryptographer has access only to
its adjacent coins

• Each cryptographer looks at the coins
and declares agree if the coins have the
same value and disagree otherwise

• If a cryptographer is the payer he will
say the opposite

• Consider the number of disagrees:

• odd: a cryptographer is paying

• even: the master is paying

14

Paris, 26 January 2007 MPRI Course on Concurrency

Examples

C1

C2

Heads

Tails Heads

disagree agree

disagree

C3

the master
pays

C1

C2

Tails

Heads Heads

agree disagree

agree

C3

payer

15

Paris, 26 January 2007 MPRI Course on Concurrency

Correctness of the protocol

C1

C2 C3

v2

v1 v3

v1+v2+1 v2+v3

v1+v3

• Let vi ∈{0,1} be the value of coin i

• Each cryptographer announces vi+vi+1
where + is the sum modulo 2:

- 0 means agree

- 1 means disagree

• The payer announces vi+vi+1+1

• The total sum is

- (v1+v2)+v2+v3+v3+v1 = 0
if the master pays

- v1+v2+v2+v3+v3+v1+1 = 1
if a cryptographer pays

payer

16

Paris, 26 January 2007 MPRI Course on Concurrency

Correctness of the protocol
• The protocol is correct for any

(connected) network graph

• The key idea is that all coins
are added twice, so the cancel
out

• Only the extra 1 added by the
payer (if there is a payer)
remains

• Question: can we extend this
protocol to transfer actual
data?

17

Paris, 26 January 2007 MPRI Course on Concurrency

Anonymity of the protocol

• How can we define the notion of anonymity?

• First we have to answer these questions:

• What type of anonymity?

- Strong anonymity: all cryptographers appear
equally likely to be the payer

- Weaker notions

• With respect to whom?

- An external observer

- One of the cryptographers

18

Paris, 26 January 2007 MPRI Course on Concurrency

Anonymity of the protocol

• For an external observer the only visible actions are
sequences of agree/disagree (daa, ada, aad, ...)

• For strong anonymity we would like different payers to
produce these actions with equal probability

p(daa | C1 pays) = p(daa | C2 pays)
p(daa | C1 pays) = p(daa | C3 pays)

...
• This is equivalent to requiring that

p(C1 pays) = p(C1 pays | daa)

• Exercise: prove it

19

Paris, 26 January 2007 MPRI Course on Concurrency

Anonymity of the protocol

• Assuming fair coins, we compute these
probabilities

• Strong anonymity is satisfied

daa ada aad ddd

c1 1/4 1/4 1/4 1/4
c2 1/4 1/4 1/4 1/4
c3 1/4 1/4 1/4 1/4

20

Paris, 26 January 2007 MPRI Course on Concurrency

Anonymity of the protocol

• If the coins are unfair this is no longer true

• For example, if p(heads) = 0.7

• Now if we see daa, we know that c1 is more
likely to be the payer

daa ada aad ddd

c1 0.37 0.21 0.21 0.21
c2 0.21 0.37 0.21 0.21
c3 0.21 0.21 0.37 0.21

21

Paris, 26 January 2007 MPRI Course on Concurrency

Anonymity of the protocol

• Even if we don’t know the fact that the coins are
unfair, we could find out using statistical analysis

• Exercise: suppose we see almost all the time one
of the following announcements

ada aad ddd

- what can we infer about the coins?

- then can we find the payer?

22

Paris, 26 January 2007 MPRI Course on Concurrency

Crowds

• A protocol for anonymous web surfing

• goal: send a request from a user
(initiator) to a web serer

• problem: sending the message
directly reveals the user’s identity

• more efficient that the dining
cryptographers: involves only a small
fraction of the users in each
execution

server

23

Paris, 26 January 2007 MPRI Course on Concurrency

Crowds

server

• A “crowd” of n users participates in
the protocol

• The initiator forwards the message
to a randomly selected user
(forwarder)

• A forwarder:

• With probability 1-pf forwards
again the message

• With probability pf send the
message directly to the server

24

Paris, 26 January 2007 MPRI Course on Concurrency

Anonymity of the protocol

server
• Wrt the server: strong anonymity.

The server sees only the last user

• More interesting case: some user
is corrupted

• Information gathered by the
corrupted user can be used to
detect the initiator

25

Paris, 26 January 2007 MPRI Course on Concurrency

Anonymity of the protocol

• In presence of corrupted users:

• strong anonymity is no longer satisfied

• A weaker notion called “probable innocence” can
be achieved, informally defined as:

“the detected user is less likely to be the initiator
than not to be the initiator”

26

