Modal Logics for Mobile Processes

Robin Milner* Joachim Parrowfand David Walker?*

Abstract

In process algebras, bisimulation equivalence is typically de-
fined directly in terms of the operational rules of action; it also
has an alternative characterization in terms of a simple modal logic
(sometimes called Hennessy-Milner logic). This paper first defines
two forms of bisimulation equivalence for the w-calculus, a process
algebra which allows dynamic reconfiguration among processes; it
then explores a family of possible logics, with different modal op-
erators. It is proven that two of these logics characterize the two
bisimulation equivalences. Also, the relative expressive power of
all the logics is exhibited as a lattice. The results are applicable
to most value-passing process algebras.

1 Introduction

This paper presents a logical characterization of process equivalences in
the 7-calculus [6], a process algebra in which processes may change their
configuration dynamically. In this introduction we place the results in
context. First we review the corresponding results for process calculi
which do not allow this dynamic re-configuration. Then we give plausible
reasons for introducing modalities and an equality predicate into the logic,
in order to extend these results to the w-calculus. In the later sections, we
prove that these new connectives do indeed provide the characterization.

For a typical process algebra without mobility, the equivalence relation
of strong bisimilarity [8] can be characterized by a modal process logic,

*University of Edinburgh, Scotland. Supported by a Senior Research Fellowship
awarded by the British Science and Engineering Research Council.

TSwedish Institute of Computer Science, Sweden. Supported by the Swedish Board
of Technical Development under project 89-01218P CONCUR and by Swedish Telecom
under project PROCOM.

tUniversity of Technology, Sydney, Australia.

sometimes called Hennessy-Milner logic [2]. To be specific, let P consist
simply of the processes P given by

P = aP | O | P+P | C

where « ranges over actions, and (' over process constants. We assume
that for each C' there is a defining equation C L p.. (Usually there will
also be parallel composition and other operators, but we do not need them
for this discussion.) We also assume that a labelled transition relation ——
is defined over P in the usual way. Then strong bisimilarity is the largest
symmetric relation ~ over P for which, whenever P ~) and P =~ P,
there exists Q' such that Q —— @’ and P' ~ Q"

The process logic PL has formulae A given by

A = (@A | NA | -4
el
where [stands for any denumerable set. (The smallest formula is the
empty conjunction, written true.) PL is given meaning by defining the

satisfaction relation |= between processes and formulae; in particular, one

defines
P = (a)A if, for some P/, P - P'and P' = A

It may be shown that two processes are strongly bisimilar iff they satisty
the same formulae of PL; this is the sense in which PL characterizes ~.
Under mild restrictions, such as when every FPr in a defining equation is
guarded (i.e. contains no process constant except within a term of the
form a.P), only finite conjunctions in PL are needed.

Before considering what should be included in a logic to characterize
equivalences over the w-calculus, we must discuss an issue about equiva-
lence which arises in any value-passing calculus, of which the m-calculus is
a rather special case. In general, in any value-passing calculus, an action
« may “carry a value”. By this, we mean that there are input actions
a(x), where a is a link-name and x a value variable, and x is bound in
a(x).P; there are also output actions @e, where e is an expression denot-
ing a value. Such calculi have been studied in depth [3, 1], and many
different equivalences have been defined over them. The choice of equiva-
lence is complicated by the passing of values. Consider the following two
processes:

R = a(x).(if x =3 then P else Q)+ a(x).0 (1)
S = a(x).(if =3 then P) + a(2).(if # 3 then Q)

We understand the one-armed conditional process “if b then P” to be
equivalent to 0 if b is false. (The full conditional “if b then P else)" can
be expressed as the sum of two one-armed conditionals with conditions b
and —b.) Now, is R equivalent to S7 Both answers are possible.

They are strongly bisimilar in Milner [5], where the calculus with
value-passing is reduced by translation to a value-free calculus — but with
infinite sums. In fact R reduces to

Y anRy+ > a,.0 (2)
new new
where R3 = P, and R, = @ for n # 3. (We assume for simplicity that
P and @) do not involve value-passing, so do not contain the variable z.)
Correspondingly, S reduces to

Z%-Pn + Z%-Qn (3)
new new
where P; = P and (3 = 0, while P, = 0 and @),, =) for n # 3; this sum
is equivalent to (2).

But there is a different view, according to which R and S are not
equivalent. ' In this view we do not consider R capable of an infinity of
actions a,, one for each natural number, but essentially only two actions,
one of which is

Jras if © =3 then P else () (4)

yielding a family of processes indexed by the variable x. For another
process to be equivalent to R, it must yield under 2 an indexed family
which is element-wise equivalent to the above family — i.e. equivalent for
each value of . But S does not have this property; it yields two indexed

families, both different, namely:

S b if & =3 then P (5)
S i 4 £ 3 then Q

These two equivalences can both be expressed as forms of bisimilarity.
For the mw-calculus we concentrated on the second — finer — equivalence
in our original paper [7], but also commented on the coarser equivalence.
Both seem reasonable. In this paper we shall show that both bisimilarities
can be elegantly characterized by appropriate process logics. Actually, we

!This view amounts to equating processes iff they denote identical communication
trees, as defined in Milner[4], Chapter 6. The view was not pursued thoroughly there.

shall examine a family of 2° logics, defined by including any combination
of five logical connectives — mostly modalities — over and above a fixed set
of connectives. It turns out that these yield eleven equivalences (several
logics being equipotent), including our two bisimilarities. We are not yet
interested in most of these equivalences per se; but the lattice which they
form gives insight into the power of the various logical connectives.

Now, what logical connectives should we expect in a logic for the
w-calculus? Here, value expressions and value variables are themselves
nothing but link-names. All computation is done with names x,vy,.. .
thus, input and output actions take the form z(y) and ZTy. It is natural
to include some modality for each form of action; in particular, a modal
formula

(z(y))A

for input actions where 3 is bound. In fact, to characterize the finer of
our two bisimilarities, we shall define a modality (x(y))* such that

P E (z(y)*A iff for some P/, P W prand for all z, P{*ly} E A{¥y}

The superscript L here stands for “late”. It refers to the lateness of
instantiation of the variable y; P’ is chosen first, and then for all instances
of y it must satisfy the corresponding instantiation of A. The coarser
equivalence will be reflected by a modality with superscript E for “early”;
this refers to the fact that the instance z of y is chosen first, and then a
different P’ may be chosen for each z.

It may be expected that, once we have included in our logic a suitable
modality for each form of action, our characterization will be achieved.
But this is not so, due to the special role of names in the w-calculus.

At first sight the 7-calculus may appear to be just a degenerate form
of value-passing calculus, which can then be translated (as above) to a
value-free calculus, and hence characterized essentially by the logic PL,
for suitable actions «. But this neglects a crucial ingredient of 7-calculus,
namely the process form ()P, known as restriction. This combinator
gives scope to names — in other words, it allows the creation of private
names; it is responsible for much of the power of the 7w-calculus, and
prevents us from treating names as values in the normal way.

Thus the algebra of names cannot be “translated away” from the
m-calculus, in the same way that the algebra of (say) integers can be
translated away from CCS. But what is this algebra of names? It is al-
most empty! There are no constant names, and no operators over names;
this explains why the only value expressions are names themselves (as

4

variables). But what of boolean expressions, and the conditional form
“if b then P”? Well, names have no properties except identity; thus the
only predicate over names is equality — and indeed the 7-calculus contains
the match expression®

[x=y]P

which is another way of writing “if @ =y then P”. It is therefore rea-
sonable to expect that, by including an equality predicate in the form of
a match formula

in our logics, we succeed in characterizing the bisimilarities. This indeed
turns out to be the case. Moreover, the match formula is strictly neces-
sary; furthermore — which is not obvious — it is needed in the logic even
if the match expression is omitted from the calculus.

In the next section we present the w-calculus and its operational se-
mantics; the reader therefore need not refer to previous papers, although
familiarity with the w-calculus will certainly help; we also define the two
bisimilarities. In the third section we define all the logical connectives we
wish to consider, and derive a complete picture for the relative power of
their different combinations.

2 Mobile Processes

In this section we will recapitulate the syntax of agents from [7] and give
agents two kinds of transitional semantics, corresponding to late and early
instantiation of input parameters. Based on these we will define late and
early bisimulation equivalences.

2.1 Syntax

Assume an infinite set N of names and let 2, y, z, w, v, u range over names.
We also assume a set of agent identifiers ranged over by (', where each
agent identifier C' has a nonnegative arity r(C).

Definition 1 The set of agents is defined as follows (we use P, @, R to
range over agents):

2Hitherto we have not given much consideration to the negative form [z # y] P; it
requires further investigation.

P =0 (inaction)
| Ty. P (output prefix)
| a(y). P (input prefix)
| P (silent prefix)
| (y)P (restriction)
| [e=ylP (match)
| PlQ (composition)
| P+Q (summation)
| Cy1s - Yne)) (defined agent)

In each of z(y). P and (y)P the occurrence of y in parentheses is a bind-
ing occurrence whose scope is P. We write fn(P) for the set of names

occurring free in P. It £ = x4,...,x, are distinct and § = v1,...,y, then
P{9/#} is the result of simultaneously substituting y; for all free occur-
rences of ; (¢ = 1,...,n) with change of bound names if necessary. Each

agent constant C' has a unique defining equation of the form

def

C(21,...,200)) = P
where the z; are distinct and fn(P) C {z1,..., 2} O

The order of precedence among the operators is the order listed in Det-
inition 1. For a description of the intended interpretation of agents see [6].
In examples we will frequently omit a trailing .0; for example 7.0 + Ty. 0
will be abbreviated 7+Ty. Also we sometimes write fn(P,Q,...,z,y,...)
as an abbreviation for fn(P)Ufn(Q)U ... U{x,y,...}.

2.2 Transitions

A transition is of the form
P = Q

Intuitively, this transition means that P can evolve into (), and in doing
so perform the action a. In our calculus there will be five kinds of action
« as follows. The silent action 7 corresponds to an internal computation,
and the free output action Ty and free input action xy correspond to
the transmission and reception of the free name y along x. The bound
input action x(y) means that any name can be received along x, and (y)
designates the places where the received name will go. The bound output
Z(y) means that a local name designated by y is exported along x. A

summary of the actions, their free names fn(«) and bound names bn(«)
can be found in Table 1. We write n(«) for fn(a) U bn(a).

« Kind fn(a) | bn(a)
T Silent 0 0

Ty | Free Output {z,y} | 0
Z(y) | Bound Output | {z} {y}
ry | Free Input {z,y} | 0
z(y) | Bound Input | {«} {y}

Table 1: The actions.

The silent and free actions are familiar from CCS. In particular a free
input action corresponds to an early instantiation of an input parameter,
since it carries both the port name and received value. In contrast a
bound input action carries only a port name, implying that the bound
parameter will be instantiated at a later stage. The bound output actions
are used to infer so-called scope extrusions; their parameters will never be
instantiated to free names so the issue of “late vs. early” does not arise.

In order to define the transitions between agents we first introduce the
notions of structural congruence and variant:

Definition 2 The structural congruence = on agents is the least congru-
ence satisfying the following clauses:

1. If P and @ differ only in the choice of bound names, i.e. they are
alpha-equivalent in the standard sense, then P = (@),

2. PlQ =QIP,

3. P+Q=Q + P,

1 [z=z]P =P,

5. If C(2) & P then C() = P{U}.

A variant of the transition P == () is a transition which only differs in
that P and () have been replaced by structurally congruent agents, and
a has been alpha-converted, where a name bound in « includes () in its
scope. O

As an example the following transitions are variants of each other:

A
_/

w(y).72 = 7
x(y). gz M uz
e=ale(y).5e "2 gz
[z=ale(y). 7z " w2

The second transition differs from the first in that the name y has been
alpha-converted to u in the action and in the agent after the arrow. The
third transition differs from the first in that #(y). 7z has been replaced by
a structurally congruent agent, and the fourth transition combines these
changes.

Below we will give two sets of rules for inferring transitions, one set
corresponding to early and one corresponding to late instantiation. In
each rule, the transition in the conclusion stands for all variants of the
transition. We begin with the set of rules in [7] which can now be rendered
as follows:

Definition 3 The set of rules LATE consists of the following:

ACT: ——— sum: —L LQYP/
aP — P P+@Q = P

. _ P =P _
PAR : PO PO bn(a) N (Q) =0

Ty / z(z) / #(y) / z(y) /
Lcon: L—= 1P Q@ — @ crosg: L — 1 Q@ — O
PIQ — PQY{Yz} PIQ — (y)(P|Q")

P = p

RES : = = Yy
()P =5 P

()P — (y)P

P — P y € n(a) OPEN :

We write P -1, () to mean that the transition P —— () can be inferred
from LATE. O

A reader familiar with the rules in [7] will note that LATE is more concise,
yet it generates the same transitions. The use of variants and struc-
tural congruence makes it possible to formulate the rules without explicit
alpha-conversions in rules generating bound actions, and special rules for

identifiers and matching are unnecessary because of clauses 4 and 5 in
Definition 2. For example, we can infer

[e=z]z(y). 72 == Tz
since this transition is a variant of x(y).yz =) 7z which is an instance of

ACT. This effect of “factoring” all issues related to structural congruence
from the rules of action can also be obtained by a special structural rule

P=P P2 Q Q=
Pl i} Q/
For example, the transition above can be inferred with this rule since
x(u). uz ") %2 is an instance of ACT and [x=2]2(y). Tz = x(u).uz.
In LATE the name bound by an input prefix form x(y). P becomes
instantiated in L-COM when a communication between two agents is in-
ferred. Note that no rule in LATE generates a free input action. In con-

trast, with an early instantiation scheme the bound name ¥ is instantiated
when inferring an input transition from x(y). P:

Definition 4 The set of rules EARLY is obtained from LATE by replacing
the rule L-coOM with the following two rules:

Ty ’ Yy ’
pcom: L— P & — @

E-INPUT: — _
x(y).P — P{w/y} PlQ — P’|Q/

We write P ——=g () to mean that the transition P —— () can be inferred
from EARLY. O

The new rule E-INPUT admits an instantiation to any name w, so
there will always be a suitable free input action available as a premise
in E-COM. Note that the rule ACT remains in EARLY, so an input prefix
may still generate bound input actions — these are needed with the rules
OPEN and CLOSE to achieve scope extrusions such as

x(y). Pl (y)Ty.Q —x(y)(P|Q)

The following example highlights the different operations of LATE and
EARLY. Assume that we want to infer a communication in the agent

z(y). P(y) | Qy,u) | Tu. R

(We write “P(y)” to signify that P depends on y, and similarly for @.)
Using LATE we need a new name z in the PAR rule to avoid conflicts with
the free names in Q(y, u):

t(y). Py) "y P(2) -

2(y) Py) | Qy,u) 221 P(2) | Qy,u) Tu.RTHLR
z(y). P(y) | Q(y,u) |Tu. R =1, P(u)|Q(y,u)| R

Using EARLY the same communication can be inferred:

(y). Ply) —>eP(u) B
2(y). P(y) | Qly,u) —>e P(u)|Q(y,u) zu.RZS5pR
2(y). P(y) | Qy,u) |Tu. R ——g P(u)|Q(y,u)| R

The following lemma shows how ——p and —, are related.

Lemma 1
1. P2y Priff P25 P
2. P2 L it p I, P
3. P2 L p P, P
4. P g P 3P w s P P with PP = P {Yw)
5. P g P iff Py P’

Proof: A standard induction over LATE and EARLY. The proof of 2 uses
1, and the proof of 5 uses all of 1-4. O

In view of this lemma it will not be necessary to distinguish between
—p and —p,, and we will simply write — for — g from now on.

2.3 Late and Early Bisimulations
We first recall the definition of bisimulation in [7]:

Definition 5 A binary relation S on agents is a late simulation if PS(Q)
implies that

10

1. If P =5 P'and ais 7,7z or T(y) with y € fn(P, Q),
then for some @', Q —— Q' and P'SQ’

2. It P =) P and y ¢ fn(P,Q),
then for some @', (@ =), Q" and for all w, P{Wy}SQ{Wy}

The relation S is a late bisimulation if both S and S™! are late simulations.
We define late bisimilarity P ~1, () to mean that PS() for some late
bisimulation S. O

Note that late simulations do not require anything of free input ac-
tions. Instead, there is a strong requirement on bound input actions: the
resulting agents P’ and @’ must continue to simulate for all instances
w of the bound name. The term “late” refers to the fact that these w
are introduced after the simulating derivative)’ has been chosen. The
algebraic theory of ~1, is explored in [7].

The natural bisimulation equivalence for early instantiation will use
free input actions rather than the extra requirement (clause 2) on bound
input actions:

Definition 6 A binary relation § on agents is an early simulation if PS(Q)
implies that

If P =5 P’ and « is any action with bn(a) N (P, Q) = 0,
then for some), @ - Q' and P'SQ’

The relation S is an early bisimulation if both & and S™! are early simu-
lations. We define early bisimilarity P ~g () to mean that PSQ) for some
early bisimulation S. O

So, in an early simulation different instances of an input transition (i.e.
different free inputs) may be simulated by different (). Late and early
bisimilarity represent the two different views of equivalence presented in
the introduction. To see that these two equivalences are different consider
the following example:

P = z(u)7+ x(u)
Q = P+a(u).u=z]r

Then P ~g @, but P 7'4L (). The reason is the transition

P has no transition which simulates (6) for all instantiations of u. How-
ever, for all free input actions there is a simulating transition: for z it
18

Tz
P = T

(since ([u=z]|7){*u} = 7) and for all other names it is
P =50

(since ([u=z]7) ~g0 for all u # z).
We will now support our claim from [7] that ~p can be obtained by
commuting the quantifiers in clause 2 of Definition 5:

Definition 7 A binary relation S on agents is an alternative simulation

if PS() implies that

1. If P = P and ais 7, Tz or Z(y) with y & In(P,Q),
then for some @', Q —— Q' and P'SQ’

2. It P =) P and y ¢ fn(P,Q),
then for all w, thereis @)’ such that @ o) Q" and P{Wy}SQ{%y}
The relation S is an alternative bisimulation if both S and S™' are al-

ternative simulations. We define P ~' () to mean that PS(Q for some
alternative bisimulation S. O

It is obvious that every late simulation is also an alternative simulation,

so ~1, C ~'. Furthermore we have:

Lemma2 ~ = <p

Proof: From Lemma 1.4 it follows that the following two requirements
on any relation § are equivalent:

VP,Q,x,y, P If P =5 P then 3Q": @ =5 Q' and P'SQ’

z(w)

VP,Q,x,w, P Tt P 2 P then Wy3Q”: O T Q" and P"{¥uw} SQ" {Yw)

Hence, § is an alternative simulation iff it is an early simulation. a

Thus ~g is strictly weaker than ~p, . We will not explore the theory
of ~g here. Just like ~p, it is an equivalence relation and is preserved
by all operators except input prefix, and if P{Wy} ~p Q{Wy} for all w
then x(y). P ~g2(y). Q.

12

3 Modal Logics

In this section we establish characterizations of late and early bisimilarity
in terms of properties expressible in various modal logics. In addition we
compare in detail the distinguishing power of a number of logics. We begin
by introducing a logic encompassing all those we consider and establishing
some properties of its satisfaction relation.

3.1 Connectives

Definition 8 The logic A is a subset, specified below, of the set of
formulae given by:

A Nier A (I a denumerable set)

I
|
|
|

|
In each of (T(y))A, (z(y))A, (x(y))*A and (x(y))*A, the occurrence of

y in parentheses is a binding occurrence whose scope is A. The set of
names occurring free in A is written fn(A). The logic A consists of those
formulae A with fn(A) finite. O

In Definition 9 below we shall introduce a satisfaction relation |= be-
tween agents and formulae of A. Although the definition will be a little
more complex, the relation will have the following simple characterization:

Proposition 1 For all agents P,
PENANgA it foralliel, P A
PE-A ifft not PEA

PE[z=ylA iff ifz=ythen PEA
PE{a)A iff for some P/, P "= P’ and P' |= A, for a = 7,7y, 2y

and assuming that the name y is not free in P

A iff for some P’ P "W prand P! EA

P = (z(y))

P E{(x(y))A iff for some P', P “®) pr and for some z, P{*y} E A{*ly}

P = (z(y))"A iff for some P, P W) prand for all z, P{*ly} E A{*y}

P = (z(y))FA iff for all 2 there is P’ such that P “W prand P {3y}t = A3y}

13

a

The assumption on y is no constraint since Lemma 3(a) below asserts
that alpha-convertible formulae are logically equivalent.

Before embarking on the formal definitions we will explain the in-
tuition behind the connectives. Conjunction, negation, and the silent,
output and free input modalities work as in the logic PL described in the
introduction. We will write true for the empty conjunction and false for
—true. Note that an atomic equality predicate on names can be defined
in terms of the matching connective [z =y]; the formula

[z =ylfalse

holds of P precisely when = = y, regardless of P. Conversely, if an atomic
equality predicate (x =y) on names were taken as primitive, [x =y] A could
be derived as =((x=y) A —A).

There are three kinds of bound input modality. They all require an

agent to have a bound input transition of type P 2O pr bt they differ in

the requirements on P’. The basic bound input modality (x(y))A merely
requires that P’ satisfies A for some instantiation of the parameter y. The
late modality (x(y))¥ is stronger; it requires P’ to satisfy A for all such
instantiations. Finally the early modality (z(y))¥ is weaker than the late
modality; it allows different derivatives P’ to satisfy A for the different
instantiations of y. As an example let

A = (x(y))~(r)true
A = (x(y)"—(r)true
Ap = (a(y))P={r)brue

First put

It then holds that
P1 |: A

The derivative P’ is here [y = u]7 and there are instantiations of y, namely
all but u, where P’ has no 7-transition and thus satisfies =(7)true. But
for y = u there is such a transition, hence P, satisfies neither Ag nor Aj.
Next assume u # v and consider

Py=a(y). ly=ulr + 2(y).[y=vlr

Here there are two possible derivatives under the bound input action x(y).
The derivative corresponding to the left branch lacks a 7 transition for

14

y # u, while the right branch lacks a 7 transition for y # v. It follows
that for any instantiation of y we can choose a derivative lacking a 7; thus

P2 |:AE

Of course P, also satisfies A, but it does not satisfy Ay since no single
derivative lacks a 7 for all instantiations of y. Finally consider

Py = x(y)

Then P; satisfies all of A, Ag and Aj.

The dual operators [a], [z(y)]" and [z(y)]¥ of (a), (z(y))* and (z(y))¥
are defined in the standard way: [a]A = =(a)—A etc. We note in partic-
ular the following properties:

Pl e(y)]A iff forall P, if P 2L P/ then for all =, P'{Zy} = A{%y)
P = [z(y)]"A iff for all P’ if P “®) pr then for some z, P{*ly} E A{*y}
P = [2(y)]FA iff there is z such that for all P’ if P "W pr then P{Fy}t = Ay}

So [-] signifies universal quantification over derivatives, whereas (-) im-
plies existential quantification. Note that with the three bound input
modalities and their duals all combinations of existential /universal quan-
tifications of derivatives and parameter instantiation are covered.

We now return to the formal definition of the satisfaction relation:

Definition 9 The satisfaction relation between agents and formulae of
A is given by:

P = Ner Ai if foralliel, Pl=A;

PE-A if not PEA
PElz=y]lA if ifz=ythen PEA
PE{a)A if for some P!, P - P’ and P' = A,

for a = 7,7y, 2y

PE@@y)HA if for some P and w ¢ fn(A) — {y},
) prand P! = A{wly)

PE{(x(y)A if for some P’ and w, P 2} pr

and for some z, P'{#w} = A{?/y}
Pl (z(y)A if for some P’ and w, P 2w} pr

and for all z, P'{#*/w} = A{*y}
P {(z(y))*A if for all 2 there are P’ and w such that

z(w)

P — P and P{*w} E A{?y}

15

a

Recall that by Lemma 1 we may combine the late and early schemes
in giving and working with this definition. Before commenting on it in
detail we note the following facts. We write = for alpha-equivalence of
formulae.

Lemma3 (a) If P=Aand A= Bthen P E B.
(b) If PE=Aand u & fn(P, A) then P{%v} = A{Wv}.

Proof: The two assertions are proved together by showing by induction
on Athatif P = A, A= B and u & fn(P, A) then P{%v} |= B{%b}. The
proof, though not unduly difficult, contains some points of technical in-
terest and requires careful attention to detail. It is given in the appendix.

O

The final four clauses in the definition of satisfaction are complicated
by the inclusion of the name w. This is required to define P = A in
the case that a name occurs bound in A and free in P. For suppose
the clause for the bound output modality were simplified to that given
in Proposition 1 above. If P = (w)Tw.y(z) and A = (Z(y))true then
according to Definition 9, P = A; but under the simplified definition,
P £ A. A similar difficulty arises with the other three clauses.

However by Lemma 3(a), when considering an assertion P = A, given
any name x bound in A, we may always assume that x is not free in
P. This assumption, which we make from now on, leads to a simple
proof of the more elegant characterization given above in Proposition 1.
This characterization helps to make clear the significant points in the
definition. Note in particular that the clause for (Z(y)) may be subsumed
under that for (a) for o = 7,7y, zy. The need for the condition on
w in the clause for (F(y)) can be seen by considering P = (y)Ty and
A = (Z(y))-[y =w]false. Under Definition 9, P [= A. If the condition on
w were removed we would have P = A but the bound output clause of
Proposition 1 would no longer hold.

The following useful lemma describes some relationships among the
modalities.

Lemma 4 (a) Suppose w & fn(A,y). Then

P (ey)A P = (e(w))-lw=y]A
it P | {o(w)Flw=y]A
it P | (o(w))fw=y]-A

16

(b) P E (x(y))RAiff for all z, P = (x2) A{*ly}
(c) P E (x(y))Aiff for some z, P |= (x2) A{?*y}

Proof: Straightforward from the definitions. See the appendix. O

3.2 Characterizations of Equivalences

Suppose K is a sublogic of A. Then K(P)={A € K| P | A}. We write
=x for the equivalence relation determined by K: P =¢ Q iff K(P) =
K(Q). We say K characterizes a relation R if =¢ = R.

A number of sublogics of A will be considered. They share a common
basis Ag consisting of the formulae of A built from conjunction, negation
and the modalities (1), (Ty) and (F(y)). The sublogics of A extending Ag
are named by indicating which of (z(y)), (z(y))E, (zy), (z(y))* and [z =y]
are added to Ag, using the letters B, &, F, L and M respectively. For
instance, LM is the extension of Ay obtained by adding the late bound
input modality (z(y))" and matching [z = y], while F is obtained by
adding the free input modality (zy) alone.

We now give the main characterizations of ~p and ~g.
Theorem 1 LM characterizes ~i,.

Proof: The proof follows a standard pattern but contains some novelty.
First we show that ~1 C= ¢ by proving by induction on A in LM
that if P ~p,@Q then P = A iff) = A. The argument for the converse
amounts to a proof that if P 7'4L () then there is A € LM(P) — LM(Q)
with fn(A) € fn(P, Q). The principal point of interest is the use of a
combination of the late bound input modality (x(y))* and matching. The
proof is given in the appendix. a

We need infinite conjunction only if the transition system is not image-
finite (up to =). In particular, if all recursive definitions are guarded then
finite conjunction suffices. Recalling the quantifier switch in the semantic
clauses for (z(y)) and (x(y))¥, in view of the preceding theorem it may
be expected that EM characterizes ~g . In fact we have:

Theorem 2 FEach of EM, F and BM characterizes ~p.

17

Proof: By utilizing the characterization of ~p in the early scheme,
Lemma 2, a proof that F characterizes ~p is easily obtained. That EM
and BM also characterize ~p then follows using Lemma 4. For details
see the appendix. a

We have seen that F characterizes ~g and that the free input modality
corresponds to combinations of the bound input modalities and matching.
A natural question concerns the power of the bound input modalities in
the absence of matching. We give a sequence of examples which establish
the relationships among the various logics. These are summarized in a
picture below.

Lemma 5 P =g; @ but P #5 Q) where

(y)
(y) +2(y) ly==]7

T
T

P
Q

Proof: Note that if A = [x(y)]—=(7)true then P = A but) £ A. To see
that P =¢; () we prove by induction on A in £L that P | A iff Q E A.
See the appendix. a

Lemma 6 P ~p(@ but P #; () where
(y) + 2(y)- ([y=2]7 + [y=w]7)
(). ly=z]7+ x(y). [y=w]7

Proof: Clearly P ~ Q). To see that P #. () simply note that if A
(z(y))t=(r)true then P = A but Q A.

mE

Lemma 7 P =p; Q but P #¢ () where

P
Q

I
508

(y).ly==]7+ 2(y). ([y=2]7 + [y=1]7)
(y)-ly=z]7 + 2(y). [y=w]r

Proof: To see that P #¢ @ note that if A = (z(y))*—(r)true then Q E A
but P £ A. To see that P =3, () we prove by induction on A in BL that
PE Al Q = A. See the appendix. O

18

Lemma 8 P =gg Q) but P 74E () where

a(y). ly==z|7
x(y). [y=w]r

P
Q

Proof: Clearly P 74E Q). To see that P =p¢s () we prove by induction
on A in BEL that P = A iff Q = A. The proof is similar to that of
Lemma 7. We omit the details. O

Lemma9 P =z, but P 7'4L () where

P
Q

a(y) +a(y). 7
a(y) +a(y). 7+ x(y). [y==2]7

Proof: Clearly P 7'4L Q). To see that P =z, () we prove by induction on
Ain FL that P E Aiff Q E A. The proof is similar to that of Lemma 7.
We omit the details. O

To complete the picture we note the following. Let us say that two
logics J and K are equipotent if =7 = =.

Lemma 10 Let Z be any combination of B,&, F, L, M. Then in an
obvious notation

(a) F+4+Z,BF+ 7 and EF + 7 are equipotent.
(b) BM+Z,EM+ Z and FM + Z are equipotent.
(¢) LM+ Z and FLM + Z are equipotent.
(d) Finally, M and Aj are equipotent.

Proof: See the appendix. O

We summarize the relationships among the logics established by the
preceding results in the following theorem.

Theorem 3 In the picture below, each point represents a distinct rela-
tion. A line between two relations signifies inclusion, while the absence of
a line signifies that they are incomparable. By ‘etc.” we mean any other
combination equipotent by Lemma 10.

19

~1,, LM ete.
FL,EFL, etc.
AN
BEL ~g, EMF, BM, etc.
RN
EL BL BE
| X
L E B
N/
Ao

a

The examples in Lemmas 5-9 all involve the match expression of
the calculus. However, its use is in each case inessential. For exam-
ple, Lemma 5 asserts that P =¢; Q but P #5 @ where P = z(y) and
Q= 2(y) + x(y). [y==z]7. Alternatively we can take:

P=uxy).(¥.z2+27)
Q=z(y).F.z+z7) +2(y) 7]z

Similar modifications can be made to the other examples.

4 Future work

The logic we have introduced no doubt has interesting intrinsic properties,
which we have not begun to study. Here, we only wish to mention two
questions about its relationship with the w-calculus which appear to be
of immediate interest.
First, what happens when we introduce the mismatch form CHANGE

20

[z #ylP
into the calculus? Note that the corresponding mismatch connective
[z #y]A

does not add power to our logic since it already has matching and nega-
tion.

Second, considering the input modalities, can we factor out their quan-
tificational content? It is attractive to factor (x(y))* thus:

(2(y)"A € (2)(VyA)

Now, to express the satistaction relation, we appear to need also to factor
the input prefix x(y) of the calculus thus:

x(y).P dof x. Ay P

—in other words, we need to give proper status to (A-)abstractions, which
abstract names from processes. This step has considerable interest, since
there are other independent advantages to be gained from it.

References

[1] Hennessy, M., Algebraic Theory of Processes, MIT Press,
1988.

[2] Hennessy, M. and Milner, R., Algebraic Laws for Non-determinism
and Concurrency, Journal of ACM, Vol 32, pp137-161, 1985.

[3] Hoare, C.A.R., Communicating Sequential Processes, Pren-
tice Hall, 1985.

[4] Milner, R., A Calculus of Communicating Systems, Lecture
Notes in Computer Science, Volume 92, Springer-Verlag, 1980.

[5] Milner, R., Communication and Concurrency, Prentice Hall,
1989.

21

[6] Milner, R., Parrow, J. and Walker, D.; A Calculus of Mobile Pro-
cesses, Part I, Reports ECS-LFCS5-89-85, Laboratory for Foun-
dations of Computer Science, Computer Science Department, Ed-
inburgh University, 1989. Also to appear in J. Information and
Computation.

[7] Milner, R., Parrow, J. and Walker, D.; A Calculus of Mobile Pro-
cesses, Part I, Reports ECS-LFCS5-89-86, Laboratory for Foun-
dations of Computer Science, Computer Science Department, Ed-
inburgh University, 1989. Also to appear in J. Information and
Computation.

[8] Park, D.M.R., Concurrency and Automata on Infinite Sequences,
Lecture Notes in Computer Science, Vol 104, Springer Verlag,
1980.

Appendix

This section contains the proofs omitted from the main text. Some results
from section 3 of [7] concerning the transition system are used.

Proof of Lemma 3: We prove the two assertions by showing by
induction on A that:

it PEA A= Band u ¢ fn(P, A), then P{¥uv} E B{Wv}
Let o = {up}.
The conjunction case is trivial.
Suppose A = —A" so B=-B" with A’ = B’. Since P £ A, by induction
hypothesis P £ B’ and so P = B. Hence if u = v the claim holds.
Suppose u # v so v &€ fn(Po,Bo). If Po [# Bo then Po = B'o so
by induction hypothesis Poo™! = B'oo™!, so P = B’. Then again by
induction hypothesis P |= A’. Contradiction. Hence Po = Bo.
Suppose A = [z =y]A" so B = [=y|B" with A’ = B'. If # # y then
certainly Po |= Bo since Bo = [vo=yo|B'c and zo # yo. If © = y then
P = A" and by induction hypothesis Po | B'o so again Po = Bo.
Suppose A = (a)A’ where a = 7,7y, 2y, so B = (a)B’ with A’ = B'.
Since P |= A there is P’ such that P -~ P’ and P’ = A’. Then

Po =% P'o and by induction hypothesis P'c = B'oc. Hence Po = Bo
since Bo = (ao)B'o.

22

Suppose A = (T(y)) A’ so Bo = (za(y'))B'c where A'{¥'/y} = B’ and ' is

T(w)

fresh. Since P |= A there are P’ and w ¢ fn(A) — {y} such that P — P’
and P’ = A{Wy}. Choose w' & fn(P, A,u). Then P) pr P{w')

7 (w')

and by induction hypothesis P” |= B{w'y’}. Also Po) pro and
again by induction hypothesis P”o = B'{®'/y'}o. Hence Po |= Bo since
B)o = Bo{wly).

Suppose A = (z(y))"A’ so Bo = (zo(y'))*B'c where A{¥ly} = B" and

xr

y' is fresh. Since P |= A there are P’ and w such that P ") prand for all

z(w')

z, P'{#/w} |= A'{#ly}. Choose w' & fn(P, A). Then P == P" = P'{w'/w}
and by induction hypothesis for all z,

P’y = By ()

Now Po M(—w;) Plo.

Claim For all z, P"o{?w'} E B'o{#/y'}.

Proof of Claim: If u = v the claim is immediate from (%), so suppose
u # .

Case 1: z # w,v. Then P'c{zw'} = P"{?w'}oc and B'oc{zly'} =
B'{#/y’}o. By induction hypothesis and (x), P"{#w'}o E B'{*y'}o
since u &€ fn(P"{?*w'}, B'{?/y'}). Hence again by induction hypothesis,
Pr{#w'yo = Blo{3fy'}.

Case 2: z =u. Now P'o{%Wuw'} = P"{Vw'}o and B'a{Wy'} = B'{"y'}o.
By (%), P"{w'} & B'{%y'} so by induction hypothesis, P"{%w'}o =
B{Yy'}o since u & fn(P"{9w'}, B'{¥y'}). Hence by induction hypothe-
sis, P8l Yo = Blo{uly).

Case 3: z = v. Then P"0 |= B'c by induction hypothesis since u ¢
fn(P”, B'). So again by induction hypothesis, P"o{vw'} = B'o{vy'}
since v & fn(P"0, B'o).

This completes the proof of the Claim and hence of the case (z(y))".

The cases A = (x(y))* A’ and A = (z(y)) A’ involve similar arguments. O

Proof of Lemma 4: First note that if w # y then

P = (e(w))“[w=y]A
it P | {e(w))Plw=y]A
it P | (e(w)[w=y]-A

z(w)

ift for some P', P — P’ and P'{V/w} &= A{Yw}

23

Now suppose w & fn(A,y). If P |= (xy)A then for some P', P =% P’ and
z(w)

P'= A. Then P — P" with P"{Yw} = P’. Since P"{Yw} E A{Yw} =
A it follows by the above that P = (x(w))“[w =y]A etc. Conversely, if

") prand P'{Yw} | A{Yw) then P 2% P/ = P'{Yfw} and P' |= A,
so P = (zy)A. O

Proof of Theorem 1: We first show by induction on structure that
for all Ain LM, if P ~q, Q) then P = Aiff Q = A. Suppose P = A. The

conjunction and negation cases are trivial.

Suppose A = [z =y]A". If & # y then certainly @) | A. Otherwise P = A’
and by induction hypothesis) = A" and so @) | A.

Suppose A = (a)A’ where o = 7, Ty or T(z) where z & fn(P,Q). Then
there is P’ such that P - P’ and P’ | A’. Since P ~, Q there is @’
such that @ — @’ and P’ ~1, @’. By induction hypothesis Q' = A’, so
QF A

Suppose A = (z(y))* A’ where y € n(P, Q). Then there is P’ such that
P2 prand for all z, P{#ly} |E A'{#ly}. Since P ~y, @ there is " such
that =) Q' and for all z, P'{?/y} ~, Q'{?/y}. By induction hypothesis
for all =, Q'{7y} = A'{fy). 50 Q - A

Hence ~1, C=,m.

For the converse it suffices to show that S is a late bisimulation where
PSQ iff for all A in LM with fn(A) C In(P,Q), P E A iff @ E A.
Suppose PSQ).

Suppose P - P’ where o = 7,7y or T(z) with z & n(P, Q), let (Q)ics be
an enumeration of {Q’ | @ — Q’}, and suppose that for all 7, not PSQ;.
Choose (A;) with for each i, A; € LM(P') — LM(Q;) and fn(A;) C
(P, Q). Set A = (a)Aic;Ai. Then A € LM(P) — LM(Q) and
fn(A) C fn(P,Q), so not PSQ. Contradiction.

Suppose P W P where y & n(P,Q), let ();) be an enumeration of

{Q'] @ =) ('}, and suppose that for each ¢ there is z such that not
P{#y}SQ{#y}. Set N =fn(P,Q,y) so that fn(P') C N and fn(Q;) C N

for each .
Claim If P'SQ; then for all z ¢ N, P{*y}SQ:{*/y}.
Proof of Claim: Suppose z ¢ N and fn(A) C fn(P'{*/y}, Q:{*y}). If

24

P{#ly} = A then since y & fn(P'{?/y}, A), by Lemma 3(b), P' E A{Y/z}.
Hence since fn(A{Y/z}) C fin(FP’,Q);) and P'SQ;, Q; = A{Y/z}. So again by
Lemma 3(b), Q:{?*/y} E A. Similarly, Q. {?*/y} = A implies P'{*/y} |= A.
This completes the proof of the Claim.

JFrom the Claim and the fact that for each ¢ there is z such that not
P{#y}SQ:{#/y} it follows that for each ¢ there is z; € N such that not
P{7ily}SQ:{%fy}. For each i take B; with fn(B;) C fn(P'{Z/y}, Qi{%/y}),
P{%fy} = B; and Q{%/y} ¥~ B;. Set A; = Bi{Y/z} for each i, and
A = (z(y))" Nily = 2] Ai. Note that fn(A) C fn(P, Q). Moreover P = A
since for all z, P'{*ly} E N[z =z]A{#y}. But Q £ A since for each 1,
Qi{%fy} = [zi=zi]A{%/y}. Hence not PSQ. Contradiction.

Hence S is a late bisimulation so =, pC S C ~q,. O

Proof of Theorem 2: Recall the characterization of ~g in the early
scheme, Lemma 2. Using this characterization, the proof is similar in
structure and in much detail to that of Theorem 1, but is more straight-
forward due to the simpler clause for free input actions. These are treated
exactly as bound output actions.

To show that ~p C EM,BM we show by an induction similar to that
in the proof of Theorem 1 that for all A in BEM, if P ~p (@ then P = A
iff Q E A. For the converse we use the fact that F characterizes ~p and
the relationships between the modalities and matching in Lemma 4. O

Proof of Lemma 5: To see that P =¢, () we first note by induction
on A in BEL that for all substitutions o, 0 = A iff 0 = Ao. Then we
show, again by induction, that for A in €L, P E A iff Q = A. We
consider only the case A = (z(y))VA’. Clearly if P = A then Q | A. If
Q) E A but P [£ A then, amongst other things, it must be the case that
[y=z]7 = A, s0o 0 = A’, but for some w, 0 = A'{Wy}, contradicting the
above observation. The case A = (z(y))®A’ uses a similar argument. O

Proof of Lemma 7: The argument is somewhat similar to that in the
proof of Lemma 5. Recall that for all A in BEL and all substitutions o,
0 = Aiff 0 | Ao. Similarly we show by induction on A in BEL that
7 = Aiff 7 |E Ao. Then we prove by induction on A in BL that P = A
iff Q E A. Suppose A = (x(y))YA". Let P' = [y =z]7 + [y = w]r and
Q' = [y =z|r. Using the properties of 0 and 7 stated above, it suffices
to show by case analyses that for all v, P'{vy} E A'{v/y} iff for all v,
Q'{y} E A{v/y}. The reader may care to check the details. The case

25

A = (x(y))A’ is similar. O

Proof of Lemma 10: (a) follows from Lemma 4(b),(c). (b) and (c)
then follow from (a) and Lemma 4(a). Finally, (d) is proved by a trivial
induction. O

26

