Concurrency problems class

Catuscia Palamidessi, Jean-Jacques Lévy, James J. Leifer

Catuscia@lix.polytechnique.fr, Jean-Jacques.Levy@inria.fr, James.Leifer@inria.fr

11 December 2003

1 Definition: CCS processes

P ::=	0	empty
	$\alpha.P$	prefixing parallal composition
	$(\nu L)P$	hiding
	P + P	summation
• • • • • •	 K	constant (for expressing recursion)
	!P	π -calculus-style replication (for expressing recursion)
	$\mu X.P$	fixed-point (for expressing recursion)

2 Definition: CCS alphabetic conventions

- a name
- \overline{a} co-name
- ℓ label (ranges over names and co-names)
- L label set
- f label map
- α action (ranges over labels and τ)

3 Definition: CCS labelled transitions rules

- input: $a.P \xrightarrow{a} P$
- output: $\overline{a}.P \xrightarrow{\overline{a}} P$

• synchronization:
$$\frac{P \stackrel{\ell}{\longrightarrow} P' \quad Q \stackrel{\overline{\ell}}{\longrightarrow} Q'}{P|Q \stackrel{\tau}{\longrightarrow} P'|Q'}$$

- choice: $\frac{P \xrightarrow{\alpha} P'}{P + Q \xrightarrow{\alpha} P'}$ (and symmetrically)
- parallel composition: $\frac{P \xrightarrow{\alpha} P'}{P|Q \xrightarrow{\alpha} P'|Q}$ (and symmetrically)
- hiding: $\frac{P \xrightarrow{\alpha} P'}{(\nu L)P \xrightarrow{\alpha} (\nu L)P'}$ if $\alpha, \overline{\alpha} \notin L$
- $\bullet\,$ and others, for example...
- constant: $\frac{P \xrightarrow{\alpha} P'}{K \xrightarrow{\alpha} P'}$ if K = P
- replication (many possible): $\frac{P|!P \xrightarrow{\alpha} P'}{!P \xrightarrow{\alpha} P'}$

• fixed-point (many possible): $\frac{P\{\mu X.P/X\} \xrightarrow{\alpha} P'}{\mu X.P \xrightarrow{\alpha} P'}$

4 Definition: CCS operational equivalences

- strong simulation: a relation \mathcal{R} is a strong simulation if for all $(P,Q) \in \mathcal{R}$ and $P \xrightarrow{\alpha} P'$, there exists Q' such that $Q \xrightarrow{\alpha} Q'$ and $(P',Q') \in \mathcal{R}$.
- strong bisimulation: a relation \mathcal{R} is a strong bisimulation if it and its inverse are strong simulations.
- strong bisimilarity: \sim is the largest strong bisimulation.
- weak simulation: a relation \mathcal{R} is a weak simulation if for all $(P,Q) \in \mathcal{R}$ we have:
 - 1. if $P \xrightarrow{\tau} P'$ then there exists Q' such that $Q \xrightarrow{\tau} Q'$ and $(P', Q') \in \mathcal{R}$.
 - 2. if $P \xrightarrow{\ell} P'$ then there exists Q' such that $Q \xrightarrow{\tau} \xrightarrow{*} \stackrel{\ell}{\longrightarrow} \xrightarrow{\tau} Q'$ and $(P', Q') \in \mathcal{R}$.
- weak bisimulation: a relation \mathcal{R} is a weak bisimulation if it and its inverse are weak simulations.
- weak bisimilarity (also known as bisimilarity, also known as observational equivalence): \approx is the largest weak bisimulation.
- observational congruence: \cong is the largest symmetric relation satisfying the following property: if $P \cong Q$ and $P \xrightarrow{\alpha} P'$ then there exists Q' such that $Q \xrightarrow{\tau} \stackrel{*}{\longrightarrow} \stackrel{\ell}{\longrightarrow} \stackrel{\alpha}{\longrightarrow} \stackrel{*}{\longrightarrow} Q'$ and $P' \approx Q'$.

5 Exercise (CCS): unreliable transmission medium

A transmitter T, an unrealiable transmission medium M, and a receiver R are modelled as follows:

$$T \stackrel{\text{def}}{=} in.\overline{i}.T'$$

$$T' \stackrel{\text{def}}{=} r.\overline{i}.T' + a.T$$

$$M \stackrel{\text{def}}{=} i.M'$$

$$M' \stackrel{\text{def}}{=} \overline{o}.M + \tau.\overline{r}.M$$

$$R \stackrel{\text{def}}{=} o.\overline{out}.\overline{a}.R$$

M is an unreliable medium: having received an input message from T (action i) it either outputs the message to R (action \overline{o}), or loses it (action τ) and then sends a request for retransmission (action \overline{r}). If R does receive the message, it delivers it (action \overline{out}) and sends an acknowledgement directly to T (action \overline{a}).

1. Calculate the transition graph of $(\nu i, o, r, a)(T|M|R)$ and hence show that this process is observationally equivalent to a simple reliable buffer B defined by:

$$B \stackrel{\text{def}}{=} in.\overline{out}.B$$

- 2. Are $(\nu i, o, r, a)(T|M|R)$ and B observationally congruent?
- 3. Do the two have the same behavior with respect to *divergence*, that is can either perform a series of actions ending in an infinite sequence of τ actions?

6 Exercise (CCS): semaphores

1. A semaphore is a mechanism to prevent more than a certain number n of clients from simultaneously entering their critical sections to access a precious resource. A client "brackets" its critical section by requesting entry permission (action \overline{wait}) and then signaling when it is finished (action \overline{signal}):

waitcritical section... signal

Note that a mutual exclusion lock (mutex) is a special case (when n = 1) of a semaphore.

Define a CCS process to model a semaphore of capacity n. Hint: create a constant Sem_k^n , for 0 < n and $0 \le k \le n$, that represent a semaphore in the state when k clients are in their critical sections. You will need to treat the cases k = 0 and k = n specially.

7 Exercise (CCS): deadlock

We say that a process *can deadlock* if it can perform a sequence of actions to enter a state that is observationally congruent (\cong) to 0.

Let

$$C \stackrel{\text{def}}{=} g_0.g_1.p_0.p_1.C$$
$$D \stackrel{\text{def}}{=} g_1.g_0.p_1.p_0.D$$
$$S_0 \stackrel{\text{def}}{=} \overline{g_0}.\overline{p_0}.S_0$$
$$S_1 \stackrel{\text{def}}{=} \overline{g_1}.\overline{p_1}.S_1$$

1. For each of the following processes, determine whether or not it can deadlock:

$$(\nu g_0, p_0, g_1, p_1)(C|C|S_0|S_1)$$

 $(\nu g_0, p_0, g_1, p_1)(C|D|S_0|S_1)$

- 2. Prove that $P \cong 0$ iff P can do no action.
- 3. Prove that $T \approx 0$ where $T \stackrel{\text{def}}{=} \tau . T$.
- 4. Hence show that it is possible for a process that can deadlock to be observationally congruent to one that cannot deadlock.

8 Exercise (π -calculus): arithmetic

We can define a process N_n for representing the natural number n as follows:

$$\begin{array}{rcl} N_0(s,z) & \stackrel{\mathrm{def}}{=} & \overline{z} \\ N_{n+1}(s,z) & \stackrel{\mathrm{def}}{=} & \overline{s}.N_n(s,z) \end{array}$$

Thus $N_n(s, z)$ ouputs n times on s and then outputs on z.

Our goal is define a process $A(s_0, z_0, s_1, z_1, s, z)$ for adding numbers which has the property that

 $(\nu s_0, z_0, s_1, z_1)(N_{n_0}(s_0, z_0)|N_{n_1}(s_1, z_1)|A(s_0, z_0, s_1, z_1, s, z)) \approx N_{n_0+n_1}(s, z)$ (*)

• First define a processes C(s, z, s', z') for copying a number from (s, z) to (s', z') and prove that

$$(\nu s, z)(N_n(s, z)|C(s, z, s', z')) \approx N_n(s', z')$$

• Then define addition $A(s_0, z_0, s_1, z_1, s, z)$ and prove (*) above.