
Concurrency problems class

Catuscia Palamidessi, Jean-Jacques Lévy, James J. Leifer

Catuscia@lix.polytechnique.fr, Jean-Jacques.Levy@inria.fr, James.Leifer@inria.fr

11 December 2003

1 Definition: CCS processes

P ::= 0 empty
α.P prefixing
P |P parallel composition
(ν L)P hiding
P + P summation

. .
K constant (for expressing recursion)
!P π-calculus-style replication (for expressing recursion)
µX.P fixed-point (for expressing recursion)

2 Definition: CCS alphabetic conventions

a name
a co-name
` label (ranges over names and co-names)
L label set
f label map
α action (ranges over labels and τ)

3 Definition: CCS labelled transitions rules

• input: a.P
a
−→ P

• output: a.P
a
−→ P

• synchronization:
P

`
−→ P ′ Q

`
−→ Q′

P |Q
τ
−→ P ′|Q′

• choice: P
α
−→ P ′

P +Q
α
−→ P ′

(and symmetrically)

• parallel composition: P
α
−→ P ′

P |Q
α
−→ P ′|Q

(and symmetrically)

• hiding: P
α
−→ P ′

(ν L)P
α
−→ (ν L)P ′

if α, α /∈ L

• and others, for example...

• constant: P
α
−→ P ′

K
α
−→ P ′

if K = P

• replication (many possible):
P |!P

α
−→ P ′

!P
α
−→ P ′

Concurrency problems class 2

• fixed-point (many possible):
P{µX.P/X}

α
−→ P ′

µX.P
α
−→ P ′

4 Definition: CCS operational equivalences

• strong simulation: a relation R is a strong simulation if for all (P,Q) ∈ R and P
α
−→ P ′, there

exists Q′ such that Q
α
−→ Q′ and (P ′, Q′) ∈ R.

• strong bisimulation: a relation R is a strong bisimulation if it and its inverse are strong simula-
tions.

• strong bisimilarity: ∼ is the largest strong bisimulation.

• weak simulation: a relation R is a weak simulation if for all (P,Q) ∈ R we have:

1. if P
τ
−→ P ′ then there exists Q′ such that Q

τ
−→

∗

Q′ and (P ′, Q′) ∈ R.

2. if P
`
−→ P ′ then there exists Q′ such that Q

τ
−→

∗ `
−→

τ
−→

∗

Q′ and (P ′, Q′) ∈ R.

• weak bisimulation: a relation R is a weak bisimulation if it and its inverse are weak simulations.

• weak bisimilarity (also known as bisimilarity, also known as observational equivalence): ≈ is the
largest weak bisimulation.

• observational congruence: ∼= is the largest symmetric relation satisfying the following property:

if P ∼= Q and P
α
−→ P ′ then there exists Q′ such that Q

τ
−→

∗ `
−→

α
−→

∗

Q′ and P ′ ≈ Q′.

5 Exercise (CCS): unreliable transmission medium

A transmitter T , an unrealiable transmission medium M , and a receiver R are modelled as follows:

T
def
= in.i.T ′

T ′ def
= r.i.T ′ + a.T

M
def
= i.M ′

M ′ def
= o.M + τ.r.M

R
def
= o.out.a.R

M is an unreliable medium: having received an input message from T (action i) it either outputs
the message to R (action o), or loses it (action τ) and then sends a request for retransmission (action
r). If R does receive the message, it delivers it (action out) and sends an acknowledgement directly
to T (action a).

1. Calculate the transition graph of (ν i, o, r, a)(T |M |R) and hence show that this process is obser-
vationally equivalent to a simple reliable buffer B defined by:

B
def
= in.out .B

2. Are (ν i, o, r, a)(T |M |R) and B observationally congruent?

3. Do the two have the same behavior with respect to divergence, that is can either perform a series
of actions ending in an infinite sequence of τ actions?

Concurrency problems class 3

6 Exercise (CCS): semaphores

1. A semaphore is a mechanism to prevent more than a certain number n of clients from simul-
taneously entering their critical sections to access a precious resource. A client “brackets” its
critical section by requesting entry permission (action wait) and then signaling when it is finished
(action signal):

wait ...critical section... signal

Note that a mutual exclusion lock (mutex) is a special case (when n = 1) of a semaphore.

Define a CCS process to model a semaphore of capacity n. Hint: create a constant Semn

k
, for

0 < n and 0 ≤ k ≤ n, that represent a semaphore in the state when k clients are in their critical
sections. You will need to treat the cases k = 0 and k = n specially.

7 Exercise (CCS): deadlock

We say that a process can deadlock if it can perform a sequence of actions to enter a state that is
observationally congruent (∼=) to 0.

Let

C
def
= g0.g1.p0.p1.C

D
def
= g1.g0.p1.p0.D

S0
def
= g0.p0.S0

S1
def
= g1.p1.S1

1. For each of the following processes, determine whether or not it can deadlock:

(ν g0, p0, g1, p1)(C|C|S0|S1)

(ν g0, p0, g1, p1)(C|D|S0|S1)

2. Prove that P ∼= 0 iff P can do no action.

3. Prove that T ≈ 0 where T
def
= τ.T .

4. Hence show that it is possible for a process that can deadlock to be observationally congruent
to one that cannot deadlock.

8 Exercise (π-calculus): arithmetic

We can define a process Nn for representing the natural number n as follows:

N0(s, z)
def
= z

Nn+1(s, z)
def
= s.Nn(s, z)

Thus Nn(s, z) ouputs n times on s and then outputs on z.

Our goal is define a process A(s0, z0, s1, z1, s, z) for adding numbers which has the property that

(ν s0, z0, s1, z1)(Nn0
(s0, z0)|Nn1

(s1, z1)|A(s0, z0, s1, z1, s, z)) ≈ Nn0+n1
(s, z) (*)

• First define a processes C(s, z, s′, z′) for copying a number from (s, z) to (s′, z′) and prove that

(ν s, z)(Nn(s, z)|C(s, z, s′, z′)) ≈ Nn(s
′, z′)

• Then define addition A(s0, z0, s1, z1, s, z) and prove (∗) above.

