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1. Introduction

One of the most basic things that a programming-language semantics should

give is a notion of program equivalence: a statement telling when two programs

do the same thing. Frequently, there are many choices of a notion of program

equivalence, and it is not clear how to choose among them. We explore some

criteria for selecting one notion over another.

Two concurrent programming languages, Milner’s CCS [Milner 1980, 1983,

1989] and Hoare’s CSP [Hoare 1978, 1985], share the premise that the meaning

of a process is fully determined by a synchronization tree, namely, a rooted,

unordered tree whose edges are labeled with symbols denoting basic actions or

events. These trees are typically specified by a Structured Operational Seman-

tics (SOS) in the style of Plotkin [1981] or by some other effective description,

and so are in fact recursively enumerable trees. Both theories further agree

that synchronization trees are an ouerspecification of process behavior, and

certain distinct trees must be regarded as equivalent processes. The notable

difference in the theories is that the CCS notion of bisimulation yields finer

distinctions among synchronization trees; that is, CSP identifies trees that CCS

considers different, but not conversely.

In CSP, process distinctions can be understood as based on observing

completed traces, namely, maximal sequences of visible actions performed by a

process. Two trees are trace equivalent iff they have the same set of traces.

Given any set of operations on trees, trace congruence is defined to be the

coarsest congruence with respect to the operations which refines trace equiva-

lence. Thus, two CSP processes P and Q are distinguished iff there is some

CSP context C[X] and string s such that only one of C[P] and C[Q] has s as a

trace. This explanation of when two synchronization trees are to be identified

is thoroughly elaborated in de Nicola and Hennessy’s [1984] test equil’alenee

system. On the other hand, two CCS processes are distinguished according to

an “interactive” game-like protocol called bisirnz.dation. Indistinguishable CCS

processes are said to be bisimilar.

A standard example is the pair of trees in Figure 1, a(b + c) and (ab + at),

which are trace equivalent, but not CSP trace congruence, viz., in both CSP

and CCS they are distinct processes. Similarly, the trees of Figure 2,

(abc + abd) and a(bc + bd) (1)

are CSP trace congruent but not bisimilar, viz., equal in CSP but considered

distinct in CCS [Brookes 1983; Pneuli 1985]. The tree-based approach is

developed in Brookes et al. [1984], de Nicola and Hennessy [1984], Hoare

[1985], and Olderog and Hoare [1986]. Bisimulation-based systems include

Abramsky [1991], Austry and Boudol [1984], 13aeten and van Glabbeek [1987],

Bergstru and Klop [1984, 1985], and Midner [1983, 1984].

The idea of a “silent” (aka “hidden” or “ ~-”) action plays an important role

in both CSP and CCS theories, but creates significant technical and method-

ological problems; for example, bisimulation ignoring silent actions is not a

congruence with respect to the choice operation of CCS. In this paper, we

assume for simplicity that there is no silent action. Preliminary investigations
indicate that our conclusions about bisimulation generally apply to the case

with silent moves; this is a matter of ongoing study [Ulidowski 1992].

In the absence of silent action, bisimulation is known to be a congruence

with respect to all the operations of CSP/CCS, and Milner has argued that in
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this case bisimulation yields the finest appropriate notion of the behavior of

concurrent processes based on synchronization trees. Although there is some

ground for refining synchronization trees further (cf. [Castellano et al. 1987;

Plotkin and Pratt 1988]), we shall accept the thesis that bisimilar trees should

not be distinguished. Thus, we admit below only operations with respect to

which bisimulation remains a congruence. Since bisimilar trees are easily seen

to be trace equivalent, it follows in this setting that bisimulation refines all of

the trace congruences under consideration. Our results focus on the converse

question of whether further identifications should be made, that is, whether

nonbisimilar processes are truly distinguishable in their observable behavior.

We noted that a pair of nonbisimilar trees P and Q can be distinguished by

an “interactive” protocol. The protocol itself can be thought of as a new

process Bisim[ P, Q]. One might suppose that in a general concurrent program-

ming language, it would be possible to define the new process too, and that

success or failure of Bisim[”, . ] running on a pair P, Q would be easily visible to

an observer who could observe traces.

However, CSP and CCS operations are very similar, and the example of

Figure 2 shows that bisimulation is a strictly finer equivalence than trace

congruence with respect to CSP/CCS operations. It follows that the contexts

Bisim[”, . ] distinguishing nonbisimilar processes by their traces are not definable

using the standard CSP/CCS operations; if they were, nonbisimilarity could be

reduced to trace distinguishability. Namely, any pair of nonbisimilar trees P
and Q would also be trace distinguishable by plugging them in for X in

Bisim[ X, P] and observing the “success” trace when P is plugged in, but not

when Q is plugged in.

Thus, we maintain that implicit in concurrent process theory based on

bisimulation is another “interactive” kind of metaprocess, which the for-

malisms of CSP/CCS—languages proposed as bases for understanding inter-

active processes—are inadequate to define! The central question of this paper

[Abramsky 1987; Bloom et al. 1988] is

What further operations on CCS/CSP terms are needed so that protocols

reducing nonbisirnilarity to trace distinguish abilip become definable?
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In the remainder of the paper, we argue that bisimulation cannot be reduced

to a trace congruence with respect to any rea,sonab(y structured system of

process constructing operations. The implications of this conclusion are dis-

cussed in the final section.

In particular, we formulate in Section 4.3 a general notion of a system of

processes given by structured rules for transitions among terms—a GSOS

system.l Almost all previously formulated systems of bisimulation-respecting

operations are definable by GSOS rule systems; the exception, in Groote and

Vaandrager [1989] and later papers, have been explorations of the power of

structured operational semantics. Even rules with negative antecedents are

allowed in GSOS systems. On the other hand, we indicate in Section 6 that any

of the obvious further relaxations of the conditions defining GSOS’S can result

in systems which are ill-defined, countably branching, or fail to respect bisimu-

lation. Thus, we believe that GSOS definability provides a generous and

mathematically robust constraint on what a reasonably structured system of

processes might be. We therefore restrict our attention to GSOS operations.

Definition 1.1. Two processes are GSOS trace congruent iff they yield the

same traces in all GSOS definable contexts.

Our first main result is that bisimulation—even restricted to finite trees—is

a stn”ct refinement of GSOS trace congruence. Specifically, we develop in

Section 7.2 a characterization of GSOS trace congruence similar to the

standard characterization of bisimulation and use it to prove:

THEOREM 1.2. The nonbisimilar trees P* = a(bc + bd) and Q* = a(bc +

bd) + abc (cf Figure 7) are GSOS trace congruent.

We remark that GSOS congruence is a strict refinement of CSP congruence.

A map of the equivalences used in this paper is given in Figure 3; the higher

equivalences are finer than the lower ones. More detail on the collection of

process equivalences based on synchronization trees can be found in Abramsky

[1987, 1989] and Abramsky and Vickers [1989].

THEOREM 1.3. The processes aa + ab and aa + ab + a(a + b) (see Figure 4)

are CSP trace congruent (de Nicola and Hennes,y [1984], axiom (D5), p. 99), but

not GSOS trace congruent.

GSOS congruence has a theory comparable to that of bisimulation in its

richness. In Section 7.2, we demonstrate that GSOS congruence is equivalent

to ready simulation, a relation between processes whose formulation closely

resembles bisimulation. In Section 8, we present a modal characterization of

ready simulation similar to that of Hennessy and Milner [1985], and in Section

9, we show that it is the trace congruence with respect to two simple GSOS

operations and CSP.

Abramsky [1987] independently raised the question of how to test distin-

guishability of nonbisimilar processes and formalized the operational behavior

of a set of protocols that do capture bisimulation. In Bloom [1989] and Bloom

et al. [1990], we offer a similar system, slightly improved in certain respects. As

10riginally, the “G” in “GSOS” stood for “guarded recursion.” We argue in Section 4.2 that
guarded recursion is an inessential feature for our purposes. However, the acronym has been used
in two many places by too many authors to be easily changed. It now might as well stand for
“Grand.”
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The finest acceptable process equivalence in this

theory. We insist that processes with the same

tree be identified, and that all languages respect

synchronization Tree Isomorphism PEQ

tree isomorphism. This relation is too fine; we

want the non-isomorphic processes a and u + a to

be identified.

Generally accepted in this community to be the

finest acceptable process equivalence; that is, if

P and Q are bislmilar, then P and Q ought to be
Bisimulation P&Q

considered identical. Solves the a vs. a+a problem

of tree isomorphism. In this study we argue that

bisimulation is too fine.

Congruence with respect to all well-structured lan-

Ready Simulation
guages. In this paper, we present an introduction

(GSOS Congruence)
to the theory of ready simulation, suggesting that

PFQ

(~-bisimulation)
it is a mathematically appealing alternative to

bisimulation, and unlike bisimulation makes only

computationally meaningful distinctions.

Trace Congruence P=f. Q Trace equivalent in all t-contexts.

CSP Congruence Congruence with respect to CSP. This enters our
p & Q

(Failures Equivalence) discussion only incidentally.

P and Q have the same finite completed traces.

Tkace Equivalence

P ~tv Q
Not compositional for several basic operations

(Automaton Equivalence)
such as CCS restriction or CSP parallel compo-

sition

FIG. 3. Equivalences used in this study,

the main result of this paper requires, both systems use ill-structured features
in essential ways.

2. Preliminaries

There are several possible ways to understand CCS; we take a fairly denota-

tional approach. Terms are a notation for synchronization trees, which are
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essentially infinite-state loop-free automata. We use some nonempty, finite set

Act of actions, which are not given any further interpretation. We use a, b, c as

metavariables ranging over actions. Unlike Milner’s original CCS [Milner

1983], our general theory does not require any algebraic structure on the set of

actions; the algebraic structure can be encoded in natural ways if desired. Note

that we are trying to work in as finite a setting as possible; our action set,

unlike Milner’s, must be finite.2

Definition 2.1. A synchronization tree is a rooted, unordered, finitely branch-

ing, possibly infinitely deep tree with edges labeled by elements of Act. A

countably-branching synchronization tree is a rooted, unordered, possibly count-

ably wide and deep tree with Act-labeled edges. We call synchronization trees

“finitely branching” when we wish to emphasize the distinction between

finitely and countably branching trees.

()
child

[1

an arc

Definition 2.2. The tree P‘ is a d,~j~~,t of P if there is ‘n ‘r: ~~’d”

s-descendant a path labeled r

from the root of P to the root of P‘, where a c Act and s = Act*. If P‘ is an

a-child (respectively, s-descendant) of P, we write P ~ P‘ (respectively,

P: P’).

A set A of trees is downward closed if whenever P = A, all descendants of P

are in A.

It is clear how to consider a tree as an infinite-state nondeterministic

automaton; the root of the tree is the start state of the automaton, and on each

step it selects an edge and performs the action labeling that edge. Conversely,

given such an automaton, it can be unwound into a (finitely or countably

branching) synchronization tree in an obvious way.3

2.1. BISIMULATION. Bisimulation is a pure mathematical notion; it is inde-

pendent of the language in question. Despite this, we will see that it is an

adequate semantics for any well-structured language. To give a hint of the

motivation of bisimulation (and because it is useful in later work) we mention

an even finer adequate semantics first.

Definition 2.1.1. If P and Q are synchronization trees, P - Q if P and Q

are isomorphic as unordered edge-labeled trees.

‘As discussed in more detail in Section 4.2, we are interested in distinguuhirzg processes rather
than expressing them; distinctions between processesshould be observable with a finite amount of
computation; in any reasonable setting, this will use only a finite number of actions.
‘Trees are used because they simplify certain definitions. Further, most core languages (without
recursion) give a notation for all finite trees, but not for all finite automata.
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FIG. 5. a and a + a. ]a y\

❑ ❑ ❑

Although the synchronization tree semantics = of CCS is adequate and

simple to think about, it is not the right semantics. Consider the two processes

a and a + a of Figure 5. Each can only perform a single a-action and then

stop; a + a can do so in two ways. All a-actions are the same, and all stopped

processes act the same—so there should be no distinction between a and

a + a.. Indeed, there is general agreement that synchronization trees are an

overspecification of process behavior, and certain trees must be regarded as

equivalent. The question, then, is which trees to identify. In CCS, Milner chose

to identify precisely the bisimilar trees.
As befits a good mathematical notion, there are several equivalent defini-

tions of bisimulation.~ Properties of bisimulation have been elaborated in

Hennessy and Milner [1985] and Milner [1984]; we present only selected

highlights.

Definition 2.1.2. A relation N between synchronization trees is a strong

bisimulation relation if, whenever P - Q and a ● Act, then

—whenever P ~ P‘, then for some Q‘, Q $ Q‘ and P‘ - Q‘, and, symmetri-

cally,

—whenever Q ~ Q’, then for some P’, P 3 P’ and P’ - Q’.

For example, synchronization tree isomorphism and the null relation are

both strong bisimulation relations. So is No , where P -0 Q iff P and Q are

isomorphic, or if P and Q are isomorphic to a and a + a, respectively.

Definition 2.1.3. P and Q are bisimilar, written P & Q, iff there is a strong

bisimulation relation w such that P N Q

For example, WO shows that a ~ a + a. Indeed P ~ P + P, where P + P is
two copies of P joined at the root. The relation ~ is itself a strong

bisimulation relation, and in fact the largest one. It is an equivalence relation,

and even a congruence relation with respect to all the operations of CCS.

(lne of the other characterizations of bisimulation from Hennessy and

Milner [1985] will be particularly important for this study. The following logical

characterization holds only for finitely branching trees. It can be extended to

trees with larger branching, at the cost of introducing infinitary conjunctions

and disjunctions.

Definition 2.1.4. The HennesspMilner [1985] formulas over Act are induc-

tively defined as:

—tt and jjf

—p~+andpv+

—(a)p for each a = Act.

—[a]q for each a c Act.

4Throughout this paper, “bisimulation” is Milner’s “strong bisimulation.”
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If p is a Hennessy–Milner formula and P is a finitely-branching synchro-

nization tree, then the relation of satisfaction, P % p, is defined by:

—P R tt always, P 1=ff never;

—P R (q A ~) iff P 1= p and P E +, and similarly for disjunction;

—P R (a)q iff P’ > q for some P’ such that P 3P’.

—P R [alp iff P’ + p for every P’ such that P 3P’.

For example, P # ( a)tt iff P has an a-child. If q = ( a)[b]( c)tt, then p

separates the processes of Figure 7: a(bc + bd) + abc k q but a(bc + bd) !# q.

The familiar laws of propositional logic hold for Hennessy–Milner formulas,

and so we ambiguously write, that is, ql A p2 A 93 knowing that the order of

parenthesization is irrelevant. Hennessy and Milner [1985] show the following:

THEOREM 2.1.5. If PI and Pz are finitely-branching synchronization trees, then

pl s pz iff pl i= q iff PI R q for each Hennessy-Milner formula p.

In particular, bisimulation is fully abstract with respect to observing modal

formulas. That is, if we have some way of testing P + p for all P and q, then

we have a good reason to distinguish between non-bisimilar trees. Howeverj it

is hard to see how to observe modal formulas without observing too much

[Bloom and Meyer 1992], or to understand them as computational

observations.

3. Setting

3.1. SIGNATURES AND TRANSITION RELATIONS. We will be studying the

interaction of programming languages and semantics, and in particular we will

vary the programming language. We therefore give general definitions suitable

for quanti~ing over languages. In general, we want to have the most powerful

class of languages that can be achieved without losing the essential mathemati-

cal and aesthetic properties that characterize CCS. We propose a class of

languages, the GSOS languages, and argue that it meets this goal.

A language in the style of CCS is given by a signature (a set of operation

symbols), and an operational semantics over that signature. It is convenient to

include a set of synchronization trees in each language, so that we can test two

trees for equivalence in different languages without having to worry about

actually defining them by terms in the two languages.s We will include the

nodes of the trees themselves as constants in the language.

Definition 3.1.1. A signature 9 is a nonempty finite set of actions Acts, a

possibly empty downward-closed set As of synchronization trees over Acts,

and a family of disjoint sets ~ for i = O, 1,2, . . . such that U, ~ ~~ is finite.

The elements of ~ are the operation symbols of arity i. We insist that O = SO,

Act~ c%, and + = Yz.

5We will frequently want to include all synchronization trees. For pedantic reasons, we only
include only a few representatives from each of the 2 ‘“ isomorphism classes of synchronization

trees, but we ignore this subtlety from now on.
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We fix an infinite set of Var of L:ariables, called X, Y, Z which will range over

process terms. The set of open terms over S is the least set such that

—Each synchronization tree P = A= is a term.

—Each X G Var is a term

—f(P1,..., P~) is a term whenever f = Fk and each P, is a term.

A closed term is a term that contains no+varia~les, as we have no binding

operators (see Section 4.2). Substitution P[ X := Q] is defined in the standard

way.

Aside from the required O, a(.), and +, CCS has the binary operations I and

11,and the unary operations \L for L c Act and [p] for certain p: Act ~ Act.

Similar languages such as MEIJE [Austry and Bondal 1984], CSP, and ACT use

fairly similar sets of operations. We will not be programming in CCS per se, so

we will not give the full semantics for CCS. In ordinary discourse, operations

are written in prefix, infix, or suffix form as appropriate.

The operations are generally given meaning by structured operational rules

[Plotkin 1981]; a language for concurrency in the CCS/CSP style is completely

defined by a signature together with a set of structured rules defining the

relation P 3 Q on closed terms. The operational semantics are given as a

labeled transition system on the set of closed terms, which we will unwind into

a synchronization tree in the obvious way.

It is difficult to define “structured operational rule” in sufficient generality

to cover all the ways used in the literature (e.g., Barendregt [1981; 1984],

Bloom [1988], Meyer [1988], Plotkin [1981]) and simultaneously avoid patholo-

gies in particular cases. The results in this paper, among other work, show that

the properties of a system defined by structured rules can be quite sensitive to

the form of the rules. In general, though, a structured rule has the form

antecedent

consequent’

where the antecedent and consequent are statements that may have free

variables. These variables are considered bound in the rule, and rules that

differ only in the names of free variables are identified; for example, the

following are identical:

X:y y:x

f(x) ~g(y) f(y) ~g(x) “

The intent of the rule is that whenever the antecedent is satisfied by some
instantiation of the free variables, then so is the consequent; and conversely

that whenever a fact holds, there should be some instantiation of some rule in

the language with true antecedent and that fact as consequent. Structured

rules, in a variety of guises, are familiar in many areas of mathematics,

computer science, and logic.

We will frequently use rule schema in a fairly informal

following scheme describes two rules for each a G Act.

antecedent a ]( a = Act)

way; for example, the

consequent- 1,consequent-2 “
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FIG. 6. Effects of basic operations on trees.

We illustrate the informal use of rules by giving rules for the required

operations. We require that all languages have the same rules for these

operations. The full definitions will be given in Section 4.3.

—If P is a synchronization tree and P’ is an a-child of P, then P : P‘.

—O has no rules; it denotes the null tree.

—For each a = Act, we have the following rule.b The synchronization tree of

aP is that of P with a new root and an edge labeled a from the new root to

the root of P.

ax>x (2)

—For each a = Act, we have the following two rules. The synchronization tree

of P + Q consists of the trees of P and Q with roots identified.

jy:y

X+ X’$Y, X’+X$Y
(3)

See Figure 6 for pictures of aP and P + Q. We write a for the process aO
when no confusion can arise, use infix notation, and omit parentheses following

usual mathematical conventions. For example, we mercifully write a(bc + bd)

6We could make a distinction between axioms and interference rules; for our purposes. it is
simplest to consider axioms such as this as interference rules with an empty set of hypotheses.
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for a( + (b(c(O)), b(d(0)))). It is easy to show that + is commutative and

associative in the synchronization-tree semantics—that is, for all synchroniza-

tion trees P and Q, P + Q and Q + P are isomorphic as synchronization

trees. We have terms denoting all finite synchronization trees: O denotes the

tree with no actions, and if P, denotes the tree t,, then a, PI + . . . + an P,,

denotes the tree with an al-edge to t, for each 1 < i < n.

Let P be a closed term of ~ and -% a transition relation over ~ The

behavior of P under a is a possibly infinite graph edge-labeled by actions,

and node-labeled by terms.’ This graph may be unwound to give a possibly

infinite tree ~P] > ; if it is finitely branching, it is a synchronization tree

giving the meaning of P in an obvious sense. Thus, given a transition relation,

definitions phrased in terms of synchronization trees may be applied to

processes as well; we write, for example, P e Q for [PI -+ = ~~ 4.
More generally, given an open term P of variables Xl,.. ., X,,, we may

interpret P as an rz-ary function on synchronization trees. For example, aX

denotes the function of prepending a new root and an a-branch to the original

root of a tree. Examples of processes and their associated synchronization trees

can be found in most of the figures in this article.

3,2. OBSERVATIONS. As stated in the introduction, we are mainly interested

in finite completed traces or simply traces: sequences of actions that processes

may take before they halt. This is formalized in the following definition.

Definition 3.2.1. If s = Act*, then P 4P’ iff there are terms PI,. . . . P,,,

such that

%
P: P,2...4P,, =P’.

We write P A if for some P‘ we have P ~ P‘; otherwise, P ~ . P is stopped

if for every a G Act, P & .

It is also possible to use partial traces, strings s such that P 3, or infinite

traces, infinite strings s such that there exist Pi’s such that PO = P and.
p, “L’ P, + ~ for each i. Partial traces are too weak for our purposes, and infinite

traces may justifiably be regarded as impossible to observe. In this study,

“trace” will always mean “finite terminated trace” unless otherwise specified.

We have used the notation P ~ Q in two ways for synchronization trees P

and Q, in the senses of Definition 2.2 and Definition 3.2.1 the two notions are

equivalent on all synchronization trees.

Definition 3.2.2. The trace set of P, tr(P), is {s G Act*lP G P’ and P’ is

stopped}.

We formalize “using a program” by the notion of a context.

7T0 do this in full detail, one should formalize the notion of a “proof of P ~ Qn, and have one

a-edge from P to Q for each proof of F’ ~ Q. With the straightforward definition, the term
a + a would have the same synchronization tree as a; however, the term a(O + O) + aO would
have a different synchronization tree: in particular, the synchronization tree semantics would not
be adequate. Counting proofs corrects this anomaly. This subtlety is irrelevant for our purposes,
and we do not pursue it.
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Definition 3.2.3. A context of n holes CIXI,..., X,,] in a language L? is

simply an S-term with free variables at most {Xl, ..., X,,}. The result of

simultaneously substituting Pi for X, in CIXI, ..., X,, 1k written C[ PI, ..., P. 1.

For example, C[ X ] = (X + a)l( X + b) is a CCS context. There are no

variable-binding operations available in our language, so no issues of variable

renaming arise in performing substitutions.

Definition 3.2.4. Let P and Q be synchronization trees,

(1) P trace approximates Q, P L ,,Q, iff tr(P) G tr(Q).
(2) P and Q are trace equivalent, P -,, Q, iff tr(P) = tr(Q); that is, if

Pz,, Qc,, P.

(3) p trace approximates Q with respect to the language $?’, P p ~Q, iff for all
~-contexts C[X] of one free variable, C[P] L,, CIQI.

(4) P and Q are trace congruent with respect to the language F, P = ~’Q, iff for

all S-contexts C[X] of one free variable, CIP1 -,r CIQI.

In CSP, then, two programs are distinguished iff there is a good reason to

distinguish them—a context C[ X] and a string s of actions such that only one

of C[ P] and C[ Q] can perform s and then stop. In fact, there is a fully abstract

mathematical semantics of CSP, the failures semantics of Brookes et al. [1984].

It is well-known that bisimulation is strictly finer than failures semantics.

Logically, failure semantics correspond to modal formulas of the form

(aI)(a,) ““”(a, )(([bl]fl) A ([b,lfl) A -“ A ([bllfl));

that is, two processes are CCS/CSP congruent iff they agree on all such

formulas. From this, it is routine to check that P* = ;cs\cspQ* but P* ~ Q,

(see Figure 7).
One might wonder why P* and Q+ should be considered different in CCS.

In the spirit of Abramsky [1987] and Plotkin [1977], we investigate the question

of what kinds of operations one must add to CCS to make bisimulation be

trace congruence.

4. GSOS Languages

4.1. GENERALIZING CCS—A FALSE START. As we have seen, bisimulation is

not trace congruence with respect to CCS. We consider various ways of

generalizing CCS, attempting to refine the language’s congruence to make it

coincide with bisimulation.
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There is a straightforward and trivial operation to add to CCS that makes

bisimulation precisely equal trace congruence. This operation, called “not-

bisim,” takes two arguments; it produces a signal if they are not bisimilar, and

is stopped if they are bisimilar.

x$x’

not-bisim(X, X’) $0 “

In this language, if P and Q are not bisimilar, then the context C[X] =

not- bisim( X, P) distinguishes them: C[ P ] ~ , but C[ Q] ~ O. This operation

may be criticized.

—It begs the question. We have explained why we think bisimulation is

important by saying that, if we consider it important, then it is important.

Any other relation between synchronization trees could be explained in the

same way. For example, a slight variation on that rule would make synchro-

nization tree isomorphism the fundamental relation in the language, distin-

guishing a from a + a.

—The rule is very difficult to apply. In Milner’s original SCCS, the question of

P & Q is not arithmetic [Bloom 1987]. Even for finitely-branching trees, the

question P ~ Q is r.e.-complete, and so the one-step transition relation

P ~ Q is not decidable. It is semidecidable,a which is why we phrased the

rule in terms of $ rather than e .

We would like to choose some criterion by which we may judge languages

and see if they are reasonable. We will argue that bisimulation is not trace

congruence with respect to any reasonable language; to make this formal, we

will have to have some way of quantifying over all reasonable languages, and

hence need some formal characterization of those languages.

One of the elegant features of CCS is the definition by a set of structured

operational rules. By contrast, not-bisim is defined by an ad-hoc rule involving

the predicate of bisimulation. From the form of the structured rules, CCS is

guaranteed to exhibit such useful mathematical properties as that all programs

using only guarded recursion are finitely branching, and that the transition

relation is decidable. We choose, therefore, to investigate languages defined by

rules which look like the rules of CCS. We check the soundness of our

definition of “looking like the rules of CCS” by making sure that we maintain

the essential properties of CCS. We will try to catch all reasonable languages

by taking the largest cleanly defined class of languages with “well-structured”

CCS-like definitions that have these essential properties. The remainder of this

section is concerned with the discussion of our proposed class of “reasonable”
CCS-like process languages.

4.2. THE PURPOSE OF FIXED POINTS. We are investigating the discriminator

power of the language, its ability to tell the difference between processes in

finite time. The fixed point operations add to the expressible power, the ability

of the language to define synchronization trees and functions on them. In

general, the two kinds of power are related: Increasing the discriminatory

power necessarily increases the expressive power. However, the converse does

‘Strictly, the question P ~ Q 1s r.c. relative to the tree constants appearing in P and Q. If there
are no nonrecursive trees, then the question 1s r.e..
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not hold: It is common to discover that a language extension has increased

expressive power and left discriminatory power unchanged. Most programmers

and language designers are quite properly concerned with expressive

power—the ability to write programs easily—and at most secondarily inter-

ested in discriminatory power. However, we are working on issues of full

abstraction, in which discriminatory power is paramount.

One programming-language feature commonly included in core languages

for concurrency is recursion. Using recursion requires some caution. It is

possible to define processes (e.g., fix [X.a + (X11X)]), which are infinitely

branching; that is, there are a countable set of distinct terms Q. such that

fix [X.a + (xII x)] $ Q,,. Infinitely branching trees and so-called “unguarded

processes” [Milner 1983] cause problems in many aspects of the theory.

Unguarded recursion can make the one-step transition relation P ~ Q unde-

cidable, suggesting that the language may be theoretically intractable and

undesirably hard to implement or model-check. The correspondence between

bisimulation and Hennessy–Milner logic becomes harder; Theorem 2.1.5 fails,

unless infinitary conjunctions and disjunctions are added.

For these reasons and others, restrictions are generally imposed on recursive

definitions of processes. In CCS, “guarded” recursion is singled out as attrac-

tive, and in CSP, and the test-equivalence system of de Nicola and Hennessy

[1984], unguarded recursions are treated as though they diverged. The essence

of these restrictions is to ensure that definable processes behave like com-

putable, finitely branching trees: that there is a program which, given a and P,

computes the finite set {Ql P ~ Q}.

In the case of guarded recursion, suppose that P and Q are not trace

congruent—that is, there is a context C[X] and a string s of actions such that,

say, s = tr(C[ P]) – tr(CIQl). This context C[ xl may involve recursion. HOW-
ever, the guarded fixed point operators appearing in C[ X] may be unwound a

suitably large but finite number of times and then replaced by O giving a new

context, C‘[ X], without fixed point operators and also has the property that

s = tr(C’[ P]) – tr(C’[ Q]). That is, P and Q can be distinguished by a context

not involving recursion at all. This informal argument can be formalized

directly in our class of languages.

Thus, we do not include the recursion operator in the class of GSOS

languages. It may be noted that GSOS languages include the expressible power

of recursion, in the sense that any set of guarded recursive definitions over a

GSOS language L? can be added to S’ as new constants, and the extended

language is still GSOS. This is roughly equivalent to the recursion principle of

many modern process algebras (e.g., Milner et al. [1992]).

4.3. GSOS RULES. We present the general format of GSOS structured

transition rule, and then argue that none of the obvious restrictions in this

format may be dropped. The argument will take the form of theorems showing

that any language defined by GSOS rules has desirable properties, and coun-

terexamples showing that the desirable properties are lost in the obvious

extensions of the GSOS format.

Definition 4.3.1. A positive transition formula is a triple of two terms and an

action, written T: T‘. A negative transition formula is a pair of a term and an

action, written T ~ .
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Definition 4.3.2. A GSOS rule p is a rule of the form:

whe~e+all the variables are distinct, 1>0 is the arity of op, n,, ~, > 0, and

C[X, Y] is a context with free variables including at most the X’s and Y’s. (It

need not contain all these variables.) The operation symbol op is the principal

operator of the rule; ante( p) is the set of antecedents, and cons( p) is the

consequent.

b

A rule is negative if it has any x, 1 antecedents; otherwise, it is positile.

Note that every X, occurring in the antecedent of a GSOS rule must occur as

an argument of the principal operator in the consequent, but not every

argument of the principal operator need occur in the antecedent.

Definition 4.3.3. A GSOS rule system 3’ over a signature 9 is a finite set of

GSOS rules over the actions and operations in % such that precisely the rules

(2) and (3) are given for the operations a(”) and +.

We first show that each GSOS rule system determines an operational

semantics. The operational semantics will be given by a labeled transition

system with the closed =-terms as the processes and the actions in Ad as the
actions. The presence of negative rules requires additional care defining the

transition relation.

Definition 4.3.4. A (closed) substitution is a partial map o from variables to

(closed) terms. We write l% for the result of substituting o(X) for each X
occurring in P; if m(X) is undefined, PU is undefined.

For example, let o(X) = Q and Y @ dom(o-); then (aX + bY)m ~ aQ++ bY.

Note that if the free variables in P are Xl,. ... X., then Pm = P[X := Q]. All

substitutions in this study will be closed.

Definition 4.3.5. Let fi be a transition relation, u be a substitution, and t

be a transition formula. The predicate ~ , cr != t is defined by

For example, let - ~cs be the transition relation of CCS (which we write as

S in all sections in which the notation is not ambiguous). Suppose that
b

OI(X) = ab + a-. Then. we have -cc~, ml > {X ~ b, X ~ c, X+ }.

Definition 4.3.6. If p is a GSOS rule, ~ , v k p holds iff

‘4, a 1= ante( p) implies ~ , u 1= cons( p).
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For example, ~cc~, u K p for every substitution u and every CCS rule p.

However, we also have --$., u + p for every CCS rule as well, where A. is

the universal relation: P ~ ~ Q for all P, Q, and a.

Definition 4.3.7. ~ is sound for S7 iff for every rule p = & and every

substitution u, we have A , u 1= p.

In general, many transition relations will be sound for K; for example, --$.

is sound for every 9. One generally takes the smallest sound transition

relation, showing that there is in fact a smallest one. This is not appropriate for

GSOS rules; with negative rules, there may not be a smallest sound transition

relation [Bloom 1989].

However, GSOS languages do define a (unique) operational semantics in an

appropriate sense. The point of minimality in the usual case is to ensure that

everything that is true is true for some reason, because there is some rule with

that fact as consequent and a true antecedent. We make this concern explicit.

Definition 4.3.8. A is witnessing for & iff, whenever P ~ P‘ there is a rule

p G & and a substitution u such that ~ , u != ante(p) and cons(p) CT=

p>p’.

A transition relation is witnessing if, whenever a transition happens, it

happens because it was the consequent of (an instantiation of) some rule, and

the antecedents of that rule were satisfied. For example, ~ ~cs is witnessing

for CCS. However, ~. is not witnessing for CCS. There are no axioms for O,

yet O -$. a. Soundness and witnessing together select the right transition

relation:

LEMMA 4.3.9. Let 37 be a GSOS rule system. There is a unique sound and

witnessing transition relation A ~ for 9.

PROOF. Straightforward structural induction. ❑

We call the unique transition relation the standard transition relation, and

write it ~ ~ or simply ~ .

5. Why GSOS Rules Are Desirable

In this section, we argue that GSOS rules are appropriate as a generalization

of CCS. We give two theorems that, together with Lemma 4.9, demonstrate

that bisimulation is appropriate in the GSOS setting. Recall that bisimulation

is best used with finitely branching trees; we will show that every GSOS

language produces only finitely branching trees. We then give an indication of

the additional power of GSOS-definable operations by some examples of

operations on trees that can be defined in the GSOS setting but not in CCS.

5.1. BASIC PROPERTIES

THEOREM 5.1.1. Let Y be a GSOS rule system. Then the transition relation on
Y is computable finitely branching unifomaly in the tree constants. That is, there is

an algorithm that, given an action a, a term P, and oracles for all the tree

constants occum”ng in P, produces the (necessarily finite) set of a-children of P.

PROOF. A straightforward recursion on P. ❑
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As desired, all GSOS operations respect bisimulation

T~EO~ENJ 5.1.2. Let .& be a GSOS rule system. Then bisimulation is a

congruence with respect to the operations in ~. That is, if P * Q are synchroniza-

tion trees and C[X] is a context over ~, then C[P] * C’[Q].

PROOF. This is similar to the proof of Lemma 7.8, presented in Section 7.4;

it is best done using the machinery developed in that section. ❑

COROLLARY 5.1.3. If P ~ Q, then P and Q are trace congruent with respect

to F.

PROOF. It is clear that, if R e S, then R and S have the same traces. Let

C’[”] be an arbitrary context; by Theorem 5.1.2, C[P] e L’[Q], and hence P and

Q have the same traces in C[”]. ❑

5.2. EXPRESSIVE POWER. GSOS rules are quite expressive, as witnessed by

the fact that most structured transition rules proposed in the field have been

GSOS rules. For example, the CCS restriction

are defined by the family of rules, one for each

X:y

operations P r A for A c Act
a~A:

XIA$YIA”

The simple interleaving parallel composition, 11,is given by:

X:y jy’%y
(4)

X11X’ $ Yllx’ ‘ X11X’ ~xllY

(with one instance of each rule for each action a.) The standard parallel
composition operation I of CCS has these rules, and some extra rules for

communication. Suppose that there is a distinguished action ~ = Act, and a

permutation ~ of Act – {~}, such that = = a for each action a # ~. The

remaining behavior of I is given by the rule scheme

X’:Y, X’5Y’

X1X’ : YIY’ “
The operational rules assigning behavior to CCS/CSP/ACP/MEIJE terms

easily fit the GSOS framework.

In fact, GSOS rules go beyond the kind of structured rules needed for CCS

in two aspects—the use of negation and copying. Negation allows us to define

an elemental form of sequential composition: (P; Q) runs P until it stops, and

then runs Q. As an operation on synchronization trees, (P; Q) gives a copy of

Q at each leaf of P.’

X:y x’ LY’,
{

X~laeAct
}

x; x’ : y; X’ X;xl; y{

‘It is possible to define some forms of sequential composition with positive rules. For example,
sequencing in CSP runs P until it announces that it has finished by sending a special action, then

runs Q, However, processes may finish without announcing that thry have finished—called
“deadlock” in CSP—or (in general) may announce that they have finished when in fact they are

still able to continue; CSP sequencing 1s not identical with pure sequencing. It is ewdently
acceptable for programming.
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Copying allows us, not surprisingly, to make copies of processes. There can

be more than one antecedent about the behavior of a single subprocess, and

more than one copy of a process in the result in the consequent. For example,

the following GSOS rules yield operations that cannot be defined in CCS [de

Simone 1985].

,yAy X:y

while Xdo X’ ~ X’; while Ydo X’ !X~Yll!X”

The whi 1 e operation is the heart of an utterly standard while-loop; it simply

needs some rules allowing the test X to interact with the outside world. The !

operation [Milner 1990] turns X into a reentrant server, allowing it to spawn

off new X’s as needed. Both of these operations are implementable—in many

settings, with no copying in the implementation. Like any semantics, a GSOS

definition of a language should be regarded as a specification, not a guide for

implementation.

6. Obvious Extensions Violate Basic Properties

There are many technical restrictions in our definition of a GSOS rule, and it

is natural to ask if they can be relaxed. We indicate how various relaxations

may break the key properties of GSOS systems. Note that some systems with

non-GSOS rules enjoy the good properties of GSOS systems; however, this is

not immediate from the syntactic specifications of these systems. GSOS rules

therefore provide a language-design methodology: Any language defined purely

by GSOS is guaranteed to meet the basic criteria; other languages may or may

not. Perhaps more importantly, a GSOS language may be extended by GSOS

operations and is still guaranteed to behave well; a well-behaved non-GSOS

language extended by the same GSOS operations may cease to be well

behaved. The properties that non-GSOS systems most often violate are:

—The guarantee that bisimulation is a congruence. In fact, they typically do

not respect synchronization tree isomorphism; for example, there are two
stopped programs that can be distinguished. (Recall that all stopped pro-

grams are unable to take any actions, and hence they have the same

synchronization tree; in fact, the null tree.)

—The requirement that j be computable, finitely branching.

—The existence of some transition relation J agreeing with all the rules.

Many possible extensions of the GSOS format give some kind of pattern-

matching ability, which generally prevents bisimulation from being a congru-

ence. For example, the consequent must be of the form op(~) L C[ ~, ~]. If

we allow more structured left-hand sides of the consequent, we allow a certain

kind of pattern matching. Consider a unary operation ~ defined by the axiom

Now, ((O) ~ O but ~(0 + O) is stopped. This gives us a context which distin-

guishes between the two bisimilar terms O and O + O, so bisimulation is not a

congruence with respect to ~. A series of similar counterexamples are given in

Appendix A.
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7. Theory of Ready Simulation

7.1. OVERVIEW. In this section, we develop the core of the theory of ready

simulation and GSOS languages. We present and prove the equivalence of the

main definitions of ready simulation, and in particular we show that ready

simulation is precisely congruence with respect to all GSOS languages. We also

develop a modal logic which matches ready simulation in the same way that

Hennessy-Milner logic matches bisimulation. In Section 9, we use this logic to

build a GSOS language in which ready simulation is precisely congruence. As a

corollary, we show that bisimulation is not congruence with respect to any

GSOS language.

The three main characterizations presented in this chapter are ready simula-

tion (RS), denial logic (DL), and GSOS congruence (GC). We prove the

equivalences in the order

It is simpler to talk about synchronization trees (which are absolute) rather

than process terms (which change their meaning depending on the language.)

Definition 7.1.1. Let P and Q be synchronization trees.

(1) P L ~sOsQ iff, for all GSOS languages & including P and Q as trees,

P P ;Q.

(2) P - ~sOsQ, P and Q are GSOS congruent, iff for all GSOS languages &

including P and Q as trees, P s ~Q.

Two processes in the language & are GSOS congruent iff their synchroniza-

tion trees with respect to & are.

7.2. READY SIMULATION AND GSOS CONGRUENCE. The following character-

ization was discovered by Larsen and Skou [1991], and independently by van

Glabbeek [1993].

Definition 7.2.1

(1) A relation E‘ between synchronization trees is a ready simulation relation
iff, whenever P E ‘Q,

—whenever P ~ P’, then there is a Q’ such that Q ~ Q’ and P’ ~ ‘Q’.

—whenever P ~ , then Q ~ ,
(2) P~ Q if there is some ready simulation relation ~‘ such that P: ‘Q.

(3) ~mPla~ iff P~ Q and Q~P. In this case P and Q are said to be ready. .

A useful fact follows immediately from the definition. Let the ready set of P

be defined by

readies(P) = (a: P 3 }. (5)

Then, P~ Q implies readies(P) = readies(Q). In the presence of the first

bullet in the definition of ready simulation, readies(P) = readies(Q) is equiva-
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FIG. 8. Ready simulation relations.

lent to the second clause. The name “ready simulation” comes from the use of

the set of actions that the process is ready-to perform.

The relation c is a ready simulation relation, and in fact the largest such

relation. The m& result of this section is that P * Q iff P and Q are GSOS

congruent. Proving this will take the rest of the section. Before proving it, we

give some examples.

7.3. EXAMPLES OF READY SIMULATION. For any process P, we have P~P.

Furthermore, for any P and Q we have aP~aP + aQ, using the relation ~

itself for example, bc ~ lx + bd. The only possible transition of aP is aP ~ P,

and aP + aQ 5 P and P~P as desired. This inequality, together with the

axioms of bisimulation, gives a complete inequational axiom system for ready

simulation of finite trees. The canonical example of processes that are ready

similar but not bisimilar are P* = a(bc + bd) and Q* = abc + a(bc + bd) +

abd of Figure 7; the ready simulations relation between them are given in

Figure 8.

Note that a bisimulation relation is a ready simulation relation in each

direction, and so bisimilar processes are ready similar. We therefore have:

THEOREM 7.3.1. Bisimulation is a strict refinement of ready simulation and

hence of GSOS congruence.

A final example of two processes that are ready similar but not bisimilar are

lossy delay links. A lossy two-stage link repeatedly accepts an input value u,

waits one time unit, and produces as output either the value u or a signal ~

saying that u was lost in transit. We present two ways to specify the lossy delay

link in CCS. The first always receives its input correctly, but may lose it during

the delay; the second may lose it either on the step that it receives it or during

the delay. We use the action d for delay, and z]? and 1’! for the input and

output of the value u.

LLI = ~u?.(d.u!.LLl + d. U.LLl)
L>

LLZ = ~(v?.(d.u!.LLz + d. U.LLz) + u?.d.7J.LLz).

Frequently, one wishes to show a protocol is correct even if the communica-

tion medium may lose messages; LLI and LLZ are two ways to code this. They
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are GSOS congruent, and hence interchangeable. However, they are not

bisimilar; it is thus possible that a protocol could be correct up to bisimulation

using one of them as the communication medium, but incorrect for the other.

This problem does not arise with GSOS congruence.

7.4. READY SIMULATION IMPLIES GSOS CONGRUENCE. In this section, we

show the following theorem:

THEOREM 7.4.1. Let P and Q be synchronization trees.

(1) If P~Q, then P E ~sOsQ.
(2) If P * Q, then P = ~sOsQ.

The proof of (1) occupies the rest of Jhe section; (2) follows immediately

from (1). Recall that the operations op( X) were defined by rules of the form

InJact, the same is true of each co~text D[ ~] as well as the simple contexts

op(X). That is, the behavior of D[ X] can be completely captured by a set of

derived rules of the form:

+7] :’+,?] “

We will call these constructs “ruloids” rather than “rules” because they are not

the rules used to define the language and because they violate our definition of

a GSOS rule (the source of the consequent has the wrong form).

Definition 7.4.2. A set of ruloids R is specifically witnessing for a context

D[ ~] and action c iff all the consequent of ruloids in R are of the form

D[~] 3 C[~, ~], and whenever D[~] $ Q, there is a ruloid p = R and

substitution u such that cons( p) cr = D[ ~] ~ Q and ~ , cr 1= ante( p).

In the course of the following proof, we will use the notions of “sound and

specifically witnessing” at a variety of types—for example, concerning sets of

ruloids, or functions returning ruloids. We sketch the definitions where appro-

priate; but they are essentially the same as Definition 7.4.2.

THEOREM 7.4.3. Let Y be a GSOS language. For each 3’-context D[~] and

action a, there exists a finite set =( D, a) of ndoids of the form

such that the rules in ~( D, a) are sound and the set =(D, a) is specifically

witnessing for D[ X] and a.
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PROOF. The proof is by induction on the structure of contexts. If ll[i] = x,,

then the set

HXi$y
@’(D, a) = —

Xisy

clearly suffices.

Suppose, inductively, that D[2] = Op(D1[71,..., Dn[il). We will construct

W( D, a), using the ruloid sets W( D,, a) which exist by the induction hypothesis.

Consider an arbitrary rule p with conclusion op(2?) $ E[.i?, Z]. We will build

a set AP, a set of ruloids that precisely capture when D[ ~] $ Q via rule p.

Let ante+( p) be the set of positive antecedents of p, and ante-( p) the set

of negative antecedents.

First, we build the set of antecedents corresponding to ante+( p). We’d like
a..

to replace the antecedent t = z, U W,J ● ante’( p) by the antecedent

D,[7] ~ w,]; however, this is not GSOS format. We will instead replace t by the

antecedents of a ruloid p‘ giving Di[ 7] an aij-transition to D~,[ i, ~], and use

11~,[2, ~] in the place of Wij. We will, of course, have to choose p‘’s in all

possible ways for each t.

Let FPP be the set of functions from ante+( p) to ruloids, such that for each

~ = Ff’P and t = (z, ~ :,J) e ante+( p), f(t) =&Z(Di, aij), where we rename

the target variables ylj If necessary in the 9?(D,, a,, ) to ensure that they are

distinct. Note that if there are no ruloids in 9’(D,, a,J) (e.g., if D,[.il = xl \ a,,),

then there are no such ~’s, and our construction will leave AP empty. Let

A:f = ~ ante(f(t)). (6)
t~ante+(fl)

Let o range over substitutions, and let Pi = m(x,). Then FPP is sound and

specifically witnessing for the set of transition formulas D,[ 7] ~ Wlj, in the

sense that:

(1) If for each i, j, 11,[~] ~ Q,l, then for some f ~ FPP and o, we have

m 1=AJf, and cons(f(t))m = D,[~] ~ Qi, for each t.

(2) If u I= A:f, then for each antecedent t = Xi ~ ~,, we have

D,[p] U 11~,[~, ~(yz,)] where D, 3 Djj = cons(f(t)).

The negative antecedents require a bit more work. To translate the an-

b,k

tecedent ZL + , we must provide evidence that no ruloid for D, and bl~ can
apply to P. We do this by choosing an antecedent for each ruloid p‘ in

9( D,, b,~), and asserting its opposite opp(p ‘). (If some ruloid has no an-

tecedents, then D,[ ~] ~ always, so rule p cannot fire with D,[ ~] as the ith

argument; our construction will leave AO empty.)
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The opposite of the transition formula x, ~ y,, of course x,
a[J
* . The opposite

b[k b

of xl + clearly must have the form x, ~ y, ~; however, when we are doing this,

we must take care to avoid duplicate uses of variables. The details of the

renaming are straightforward but tedious, and we omit them and pretend that

opp(” ) is simply a function on formulas.
b

Let x, 1 be a negative hypothesis of p. Let GP,, ~ be the set of functions g

mapping ~(~,[ 7], b,~) to transition formulas, such that for each ruloid p‘ =

~(11,[1], b,~), g( p’) ● ante( P’). Let

~,, = {opp(g( P’))1p’c dmdg)}.o (7)

By the inductive hypothesis,

b,k

(1) If o-= OP,,, then D,[.7] u * , and

(2) If D,[llo ~ , then each rule p‘ must fail because some antecedent g, is
not satisfied. Let g( p‘) = gP for all p’; then u % OP,~.

Let HP be the set of functions h from indices (i, k) of negative antecedents,

such that h(i, k) = GP,I,~. Let

(8)‘;, h = U ‘p, hci, k)”
i, k

So, Ai h gives sufficient conditions for each negative antecedent of p to be

satisfied; and varying h gives all ways for them to be satisfied.

We finally define

(9)

where 13f[i?, ~] = ~[~,[i], ~~,[~, ~]], where ~~, is the target of ~(z, ~ w,]).

From the remarks about the A; ~ and A; ~ constructions, we see that AP is

sound and specifically witnessing ‘for transitions from D[ 1] by rule p.

Finally,

9?(D, a) = u AP. (10)
P

❑

Definition 7.4.4. The ndoid set of a GSOS language .& is the union of the

sets A%’(11,c) given by Theorem 7.4.3.

Clearly, D[~] S P‘ iff there is a ruloid in the ruloid set of 57 with
.+

consequent of the form D[ X ] L C[ X, Y] specifically witnessing this transition.

Now it is fairly straightforward to prove Theorem 7.4.1.

LEMMA 7.4.5. Let 3’ be a GSOS language, and trees P and Q in Y. If P~ Q,

then C[P]~ C[Q] for each g-context C[X].

PROOF. To show that C[ P] ~ C[Q], it suffices to exhibit a ready simulation

relation ~ * such that C[ P] ~ * C[ Q]. The obvious candidate is the congruence
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extension of ~ itself, defined by D[ ~] ~ *D[ ~] whenever ~ and ~ are vectors

of trees of the right length such that R, ~Si for each i. It remains to show that
c * is a ready simulation relation.

Suppose that D[~] ~ R‘ for some R‘. By Theorem 7.4.3, this is true

prec&ly if there is some ruloid p in the ruloid set

and trees R~j such that R, ~ R;l, Rl~, and R’= C[i, F].
u,

As each Ri~S,, we know that (1) there are S~J such that Si ~ S;, and

R~l >S~ for each i, j and (2) S, Z for each i, k. So, by p, we know that

D[ S ] ~ C[~, ~] = S‘. By definition of ~*, we know that

“ ‘d~J+*4@ ‘s’
and so we have verified the first half of the definition of a ready simulation

relation.

The second half is similar; if D[ ~] is unable to take a c-step, then some

hypothesis of each ruloid that could allow it to take a c-step must fail. From

the fact that Ri~ Si, we discover that the corresponding hypothesis of each

ruloid fails for D[~] as well, and so D[~] % as desired. ❑

This completes the proof of Lemma 7.4.5. To finish Theorem 7.4.1, we must

show:

LEMMA 7.4.6. For all synchronization trees P and Q, if P~ Q, then P~,,Q.

PROOF. Suppose that P= Q and P < P‘ with P‘ stopped. There is a

sequence of processes P = PO, Pl, ..., P,, = P‘ such that

Po:pl : . . . ~ P. stopped.

By definition, we have P= Q. From the definition of ~, we know that there

are processes Q = Qo, Ql, ..., Q. such that Q, ‘~’ Qi+ ~ and P, ~Q, for each i.

We have

Qo~Ql ~ ““. ~Q, r

It remains to show that Q. is stopped. We have P,l ~ Q., and so readies(P~) =

readies(Q,, ). However, P. is stopped, and so readies(P) = 0. Therefore Q. is

stopped, and so s is a completed trace of Q as desired. ❑

Theorem 7.4.1 now follows routinely. Suppose that P~Q, and C[X] is a

context in a GSOS language E. We have C[ P]= C[Q] by Lemma 7.4.5 and

then C[P]~t, C[Q] by Lemma 7.4.6. Hence, P L ~Q. As this holds for all Y,

we have P L ~sOsQ.
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8. A Modal Characterization of Ready Simulation

Recall from Theorem 2.1.5 that bisimulation of finitely branching processes

coincides with equivalence with respect to Hennessy–Milner formulas. A

similar fact holds for ready simulation. The modal logic is useful for some

purposes; for example, it characterizes the properties preserved by ready

simulation. Also, the modal characterization is mathematically useful; in Sec-

tion 9, we use the modal characterization to show that ready simulation is

precisely GSOS congruence.

The class of denial formulas is

The notion of satisfaction is the same for HML formulas and denial formulas,

Definition 2.1.4 with the additional clause P k T a iff P ~ . Notice that 1 a is

equivalent to a restricted use of the [a] modality, viz. [ a]jf, and we do not allow

the full use of this modality. Denial logic is not closed under negation in any

sense; for example, the negation of the formula (a)(a) tt is not a denial

formula.

Defirlition 8.1

(1) I’ z DL Q iff for all denial formulas p, P R p implies Q > q.

(2) P =~~ Q iff P L~~Q and Q L~~P.

THEOREM 8.2 [LARSEN AND SKOU 1988, 1991]. If P and Q are jiniteZy-branch-

ing synchronization trees, then

PROOF. The second half follows from the first. Suppose that P~ Q. We

show that P R p implies Q > q by induction on the structure of q simultane-

ously for all P and Q.

(1) ttand fjf are trivial.

(2) Suppose P R q A q. Then, P R q and P != +, and by induction we have

Q 1= q and Q k + and hence Q + yi A * as desired. Disjunctions are

similar.

(3) Suppose that P * (a) q. Then, there is a P‘ such that P ~ P‘ and

P’ R p. As P~Q, there is a Q’ such that P’~Q’ and Q $Q’. By

induction, Q‘ 1= q; hence, Q 1= (aa) p.
a

(4) Suppose that P 1= 7 a. Then, P -, and so Q - ; which is to say Q R 1 a.

To prove the converse, we show that L ~~ is a ready simulation relation.

Suppose that P E ~~ Q.

—Suppose that P 5 P‘. We must show that there is some Q‘ such that

Q $ Q’ and P‘ E ~, Q’. Suppose for contradiction that there is no a-child

Q‘ of Q such that P‘ g ~~ Q‘. Q has a finite number of a-children,

Q,>... > Q,,. For each child Q,, there is a formula +, such that P‘ > ~, but

Q,# 4,.Let += +1A . . . A ~n; if there are no children, then let + = tt.
Then, P’ 1= ~ and so P + (a)+. However, Q 1# (a)+, which violates the

assumption that P L ~~ Q.
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—Suppose that P ~ . Then, P k ~ a, and so Q 1= = a. This is equivalent to

Q 2 as desired.

We have shown that L ~~ is a ready simulation relation, and so P L ~~ Q

implies P c Q. ❑

In fact, the full syntax of denial formulas is not required; disjunctions and &

are not necessary. For example, the formulas ( a)( P v y) and (( a)~) V (( a)~)

are logically equivalent. The essential denial formulas are given by the syntax:

q::= = ttlpA pl(a)ql-a.

LEMMA 8.3. P =~~ Q iff P and Q agree on all essential denial formulas.

PROOF. Use the fact that ( a)( p v I)) and (( a)p) v (( a)~) are logically

equivalent, and the other rules of modal logic. ❑

9. Ready Simulation Can Be Traced

In this section, we introduce an extension CCSSS of CCS whose congruence is

just ready simulation; that is, P = ~~ Q iff P =~csss Q. We add two operations.

cpP is a copying operator: when P signals that it wants to fork, cpP forks.

S D P is a sort of controlled communication: S runs alone, except that it

occasionally allows P the ability to take a step and communicate with it. These

operations correspond to the copying and button-pushing operations in the

testing scenarios of Bloom and Meyer [1992].

Using these operations, we code denial formulas into contexts and traces,

and so understand ready simulation in CCSSS. CP[P] tests the process P to see

if it satisfies q, producing a characteristic kind of trace iff P satisfies q.

Formally, we fix several distinct actions. We use o as a sort of “visible silent

action;” processes will emit o‘s while they are operating. The actions c1 and Cz

are used by processes to signal to the cp operator that they wish to fork. In

S D P, S uses the d action to signal that it wishes to communicate with P.

There is an auxiliary operator D ~ used by D .

cp( P) usually does just what P does. However, when P signals that it wants

to be forked (by the c1 and Cz actions), cp(P) forks it.

x$x’ (a @ {cl, c2}) X2X1,X2X2
Cpx s Cpx’ Cpx ~ (cpxl)ll(cpx~) “

S D P usually does just what S does; P is frozen. However, when S signals

that it wants to communicate with P (by performing a d-step), S D P un-

freezes P and lets it take a step in cooperation with S. This operation needs a

bit of control state, telling whether or not P is frozen; we use the D operator

when P is frozen, and the D, operator when P is unfrozen.

SsS’(a #d) S5S’

SD P~S’DPSDP$S’ DIP”
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The operation D ~ does one step of communication and then behaves

like D .

SD1P5S’D P’”

We now define the coding of essential formulas. To make strings of actions

easier to read, we write prefixing with a dot: “da .t. S” instead of “datS.” Fix

two actions t and ~, distinct from the previously mentioned actions, which we

use for partial success and total failure.

s,, = o

s TO = d.a.f

s vA* = Clsp + C2S+

s (a)p = d.a.t.SP.

The context CP[X] is defined to be cp(SP D X). CP[ P ] will compute,

emitting o‘s while it is working. Each time it processes an (a) correctly, it will

emit a t.Each time it fails to perform a 1 a correctly, it will emit an f. We

show that P t= p iff CP[ P ] produces a completed trace with enough t‘s and no

f’s.

For example

c ~~),t~ ~,)t,[a + b] = cp((cl.d.a.t + c,.d.b.t) D (a + ~))

~ cp(d.a.t D (a + b))llep(d.b.t D (a + b))

~ cp(a.t D ~ (a + b))llcp(d.b.t B (a + b))

~ cp(t D O)llcp(d.b.t D (a + b))

~ cp(O D O)llcp(d.b.t D (a + b))

s cp(O D 0)\lCf3(b.t D ~ (a -1- ~))

$ cp(O D O)llcp(t p O)

: cp(O D 0)/lcp(O P O)

Stopped.

To illustrate how the testing for 1 a works, consider:

CT~[(a + b)] = cp(d.a.f D (a + b))

~ Cp(a.f Dl(a + b))

~ Cp(f D O)

~ cp(O D O)

Stopped.
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So, the only trace of CT ~[a + b] contains an ~. However, the only computation

of

CT~[b] = cp(d.a.~D b) 3 cp(a.f D lb)

gets stuck after performing an o, and contains no ~.

Define [q] to be the number of ( a)’s occurring in p; that is:

ltt]=[-7a]=0

lqAqkl=[ql+[~j

l(a)ql = 1 + lPJ.

We say that a trace s is q-happy if it contains exactly 1q] t’s and no ~’s. A

trace is p-sad if it contains fewer than 1q] t’s, or at least one ~.

LEMMA 9.1. If P t= p, then C,[P] has a p-happy trace. If P ~ q, then all

traces of Cq[ P] are q-sad. Furthermore, no trace of Cq[P ] has more than [p] t ‘s.

PROOF. The proof is by induction on P.

~ = tt: L[pl is StOpped for all P, as desired.
q = t A 0: CO. OIPI = Cp((clS$ + CZSO) D P). As ((clSt + CZSO) D P) can

make both c1 and Cz transitions, the cp forks the process:

The lemma follows from the ordinary properties of sequences and inter-

leaving.

C7.[P] = cp(d.a.f D P) ~ Cp(a.f DIP).

If P ~ , then cp(a.f D 1P) cannot move and the trace is simply the

p-happy trace o. If P 3 P‘, then

Cp(a.f D 1P) ~ Cp(f D P’) ~ Cp(O b P’).

In this case p ~ , the trace of C. .[P] is oof, which is q-sad.

q = (a)*:

C<~~o[P] ~ Cp(a.t.Sv D ,P)

Consider any P‘ such that P ~ P‘. (If there are no such P “s, then the

process is stuck and the trace is p-sad as required.)

cp(a.t.~v DIP) ~ cp(t.fl~ D P’) ~ cp(~v D P’) = C+[P’],

If P 1= p, then there is a P‘ such that P ~ P‘ R v. By the induction

hypothesis Cti[P’1 has a +-happy trace, and so we have found a p-happy
trace of CP[P].

If P # p, then P‘ ~ ~, and so every trace of CV[P] is ~-sad; thus every

trace of Cq[ P] that goes through CP[P’] is q-sad. Every such trace must
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go through some CJ[P ‘], and so every trace of CP[P] must be q-sad.

Verifying that no trace has more than 1p] t‘s is routine. ❑

10. Summary of Ready Simulation

Combining the results of the previous sections, we obtain the following set of

equivalent characterizations of GSOS congruence.

THEOREM 10.1. The following are equivalent:

(1) P~ Q (State-cowespondence definition)
(2) P L ~sOLYQ (Approximation in all GSOS languages.)

(3) P L ~~Q (Approximation with respect to all denial formulas)

(4) I’ + q implies Q k P for all essential denial formulas p.

(5) P E ~csssQ (Trace approximation in CCSSS).

COROLLARY 10.2. Bisirnulation is a strict refinement of ready simulation, and

hence of GSOS congmence. In particular, the processes P* and Q* are trace

congruent with respect to euey GSOS language, although they are not bisimilar.

There are a few other definitions of ready simulation, but they are of less

interest. For example, it is possible to define the nth approximant to ready

simulation as is done for bisimulation in Milner [1980, 1981]; and then P=. Q

for all n iff P~Q.

11. Conclusion

Should bisimulation play a significant role in process theory? It has a rich

theory, and a tested methodology for verifying correctness of genuine, nontriv-

ial protocols (see, e.g., Baeten [1990], Milner [1989], and Parrow [1987]).

Nevertheless, we find unconvincing the arguments for taking bisimulation as a

primitive notion. We maintain that computational distinctions should be made

only because of observable differences “at the terminal. ” Global testing sys-

tems and modal logics that reduce bisimulation to such observations do not

offer what we regard as a reasonable framework for defining operations on

processes. We prefer to regard bisimulation as a mathematical tool that is

frequently useful in proving programs correct, rather than a characterization of

what correctness should mean. 10

Ready simulation seems to have the mathematical properties which make

bisimulation desirable. Bisimulation has several equivalent but distinct defini-

tions, of which the existence of a bisimulation relation and equivalence with

respect to a modal logic and their variants are the most useful. Ready
simulation has similar definitions. Moreover, the proofs in this paper indicate

that those definitions play the same role for ready simulation as they do for

bisimulation; for example, the proof of Theorem 7.4.1 given in Section 7.4 uses

the existential definition, and the proof in Section 9 that CCSSS congruence is

precisely ready simulation uses the modal characterization. These results, and

similar work on other aspects of ready simulation, suggest that the theory of

10In other work, B. Bloom has used bisimulation methods to verify a silicon compilation scheme

[Weber et al. 1992]. The compiler was correct up to bisimulation, and the correctness proof up to
bisimulation was no harder than the proof up to trace congruence, so we proved the stronger
theorem.
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ready simulation is very similar to that of bisimulation in character and power.

Of course, ready simulation is easily justified on observational grounds, while

bisimulation (despite its other name of “observational equivalence”) is harder

to justify.

The larger purpose of this study is to illuminate some of the issues one might

wish to consider in the choice of a notion of process equivalence. We chose

bisimulation as the focus of our study precisely because it had no obvious

computational definition. We have given some indications of the form that a

computational justification of a notion of equivalence might take: congruence

with respect to some sort of well-structured language. Other forms of justifica-

tion are certainly possible. However, some justification should be considered

for each new notion of program equivalence; otherwise, the notion runs the

risk of being unjustifiable in computational terms despite having an elegant

and powerful mathematical theory. Finally, we have demonstrated that compu-

tational justification need not be incompatible with mathematical elegance.

11.1. RELATED WORK. We have sketched the fragment of the theory of

ready simulation appropriate to our discussion. There are other questions that

one might wish to answer; the answers generally seem to be fairly pleasing. For

example, ready simulation of finite processes has a finite axiomatization as an

inequational theory [Bloom 1989]; and there is a O(mn + nz) algorithm for

computing if two n-state, m-transition automata are ready similar [Bloom and

Paige 1992].

In general, in computer science, two programs are considered equivalent iff

they are congruent, that is, iff one can be substituted for the other in any

context and no difference is observable. This definition has two parameters:

the language over which contexts can be formed, and the differences that can

be seen. In this paper, we have been varying the language over GSOS and

global testing languages; however, the observations have always been finite

completed traces. Elsewhere, we examine other notions of observation [Bloom

and Meyer 1992].

Bisimulation seems to require two kinds of knowledge, the knowledge of the

possible and necessaty behavior of a process, interleaved arbitrarily. The

possible behavior appears quite naturally in nondeterminism; each execution of

a process gives a possible behavior. The necessary behavior is harder to

observe. Larsen and Skou [1991] have proposed the use of probability, testing a

process often enough to observe all possible behaviors with high probability.

There is a very strong connection between ordinary and probabilistic bisimula-

tion, and a tantalizing and debatable failure of the use of probability as a

mechanism for observing bisimulation, and a tantalizing and debatable failure

of the use of probability as a mechanism for observing bisimulation; this is

discussed in Bloom and Meyer [1992] and Larsen and Skou [1991].

A variation on the theme of well-structured rules is explored in Groote and

Vaandrager [1989]. Vaandrager and Groote allow their languages to be count-

ably and undecidable branching. The so-called &ft/tyxt rules are positive rules

allowing operators in antecedents; the more paradoxical operations defined in
the appendix are not allowed. Ready simulation need not be a congruence with

respect to such a language. The appropriate notion is the so-called O ❑

equivalence, viz. equivalence with respect to Hennessy–Milner formulas in

which no (a) operator occurs within the scope of a [a]. This is precisely
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tyft\tyxt congruence; in particular, bisimulation cannot be understood as

congruence with respect to any language in this format.

11.2. OPEN PROBLEMS. Throughout this paper, we have assumed that there

is no silent (hidden or “~”) action. We expect that similar results hold when

there is a silent action; this remains to be verified. Silent moves make the

philosophy as well as the mathematics trickier; it is no longer clear what the

right questions are.

The first tricky issue is the role of weak bisimulation (Milner’s “observa-

tional equivalence”). Strong bisimulation is generally accepted as an equiva-

lence that all languages ought to respect. However, weak bisimulation is not a

congruence with respect to the + operation of CCS: a and ~a are weakly

bisimilar, but a + b and ~a + b are not. In our study, it was clear that we insist

that any GSOS language respect strong bisimulation; the corresponding re-

quirement for weak bisimulation is not clear. There are several possible ways

to develop the theory. For example, in CCS, weak bisimulation congruencell

has a simple characterization as rooted bisimulation, or equivalently the congru-

ence closure of weak bisimulation with respect to + [Miller 1984]. We could

insist that all operations respect this relation. Several variants of weak bisimu-

lation have been proposed, such as the branching bisimulation of Baeten and

Weijland [1990], which has better equational properties than weak bisimula-

tion. It is possible to find subsets of the GSOS format which respect weak

bisimulation and its relatives [Bloom 1993] though the congruences for these

rule formats remain to be characterized. It is strictly coarser than bisimulation,

as P* and Q* are trace congruent and hence weakly trace congruent; but they

are not weakly bisimilar.

Even the definition of trace congruence is no longer obvious. In the (over-

simplified) theory of this study, there was only one way that a process could not

perform a visible action: if it is a stopped process. Given a silent move, there

are now more ways that a process can do nothing visible. Consider the

processes O (which does nothing), t- (which computes a while and then does

nothing), 7(I- + n-r) (which does some more complex computation before

doing nothing), ~ o (which thinks forever about what it should do next), and
7(I- + ~ 0, (which may or may not think forever). The proper identifications

between these processes are not obvious; and even the criteria for choosing

between the possible choices are subject to some debate. Van Glabbeek [1993]

discusses a vast range of choices.

We allowed negative rules because they gave extra programming power and

because our theory could handle them. There are several possibilities for
combining negative rules and silent moves. Ignoring them would leave a rich

theory; leaving them interpreted as they are now might also give an appropri-

ate theory. More elaborate combinations are probably reasonable as well; for
,,

example, the hypothesis P ~ could be interpreted as being satisfied iff the set

{P’: PC P’} is finite and P’ ~ for each such P’, or P: A P: as in

Ulidowski [1992].

llP and Q are weak bisimulation congruent iff for all contexts C[.1, C[ PI and C[Q] are weakly
bisimilar, that is, if P and Q are congruent considering weak bisimulation to be observable.
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Appendix A. Counterexamples for Section 6

In this section, we list more counterexamples showing that the GSOS format

cannot be extended in other obvious ways.

(i) We do not allow the use of variables to do pattern-matching. For example,
the following rule has two different variables taking a-steps and then becoming

the same variable:

X1: Y, X2$Y

j3(x1, x2) -$Y “
The context C[Z] = ~(aO, aZ) distinguishes between the bisimilar processes O

and O + O. Copying—using a source variable X, more than once in the

antecedent —does not do any harmful pattern-matching and is acceptable.

Duplicated source variables in the term Op(X1,..., X.), however, allow too

much pattern-matching to respect bisimulation; for example, the rule

8(X, X) $0 causes as much trouble here as its cousin does in the A-calculus.

(ii) We have insisted that the positive hypotheses be X $ Y, but the negative
b

ones X + . There is no point to hypotheses X $ ; simply use one of the form

X -$ Y and ignore Y. On the other hand, there is a gain of expressive power to
b

negative hypotheses X ~ Y. The gain is all in the wrong direction. It is now

easy to write some countably branching processes, but it is hard to see how the

power of these rules could be useful.

X:Y

g(x) $ Y

~(o) -$1’ for every process P; it is thus infinitely branching.
(iii) We gain expressive power if we allow terms rather than simply variables

to appear in antecedents. If the terms appear as targets—X $ (Y+ O)—we

have too much pattern-matching, and examples similar to the previous ones

will show that bisimulation need not be a congruence. Terms appearing as the

sources cause a more subtle problem: bisimulation will still be a congruence,

but a process maybe infinitely branching,lz As an example, consider the nullary

operation o defined by two rules

@:y
U:i)

~~ay

Then, w is not finitely branching, for we have:

W:o

12In fact the resulting congruence is coarser than bisimulation; see Groote and Vaandrager [1989]
for details.
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This occurs because the operation o is defined by what amounts to an

unguarded recursion: it mentions its own one-step behavior in the definition of

its one-step behavior. In some circumstances, this might be a useful sort of

operation; for example, we could define o ‘(X) = ~ ~=~a’X, a process which

dawdles for a finite but unbounded time before performing X.

We could also repair this flaw by allowing terms in antecedents, but not

allow any operation to refer to itself either directly or indirectly. The resulting

class of languages guarantee the essential properties of GSOS languages. In

fact, they have almost exactly the same properties: every operation definable

with terms in antecedents is definable without them as well. On the other

hand, if terms may appear in antecedents, structural induction is no longer a

viable proof method.

(iv) Another possible extension is allowing multi-step antecedents [Groote

and Vaandrager 1989]. It is in general inconsistent to have both negative and

multi-step antecedents. For example, consider the operators “/a, a, and T

defined as follows:

T-$ cy(qj-/a) (13)

It is not hard to show that there is no arrow relation which agrees with these

rules: 7r/a can move iff it cannot move, for:

This is similar to the fact that unguarded recursion and negation do not mix.

The program fix [X. a ( X)] is a term involving an unguarded recursion that can

take an a-step iff it cannot take an a-step.

It is possible to have some syntactic conditions that guarantee finite branch-

ing and existence of a transition relation, but they are necessarily global. The
operation T amounts to an unguarded recursion; however, there is nothing

about the form of rule (13) indicating that it is unguarded. This rule would be

perfectly acceptable in a GSOS language, for example; it is turned into an

unguarded recursion by the presence of the “/a operator. It is nontrivial to

define just what a guarded operator is in the presence of multi-step rules; the

operator ./a “unguards” X, and an adequate calculus of guardedness remains

to be developed. CSP, which has something like the “/a operator, forbids its

use in recursions.

(v) A system with multi-step positive antecedents alone is quite possible:
such systems respect bisimulation, and always have a minimal transition rela-
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tion [Groote and Vaandrager 1989]. Two problems arise for such systems. First,

sound and witnessing transition relations other than the unique minimal one

may exist; second and far more important, such systems admit countably

branching processes.

Consider a GSOS language containing the /a operation above, the single

action a, and a constant .l with the rule

J% J/a. (14)

Intuitively, J is a process that perfcu-ms an a-move and then does whatever it

does after it performs an a-move. This intuitive definition does not uniquely

determine what J does after its a-move; neither does the formalism of sound

and witnessing transition relations.

Consider a proof (used loosely) that J/a S K for some K. It must start with

the rule for /a used with x = J, and thus have hypotheses J ~ JI and .lI -$ K.

J has only one transition, from (14), and hence JI = J/a. That is, any proof

that J/a ~ K is infinitely long, consisting essentially of repeated proofs of

J/a 5 K.

Now, we define two transition relations -+ ~ and ~,, with P -+ ~Q there is

a finite proof of this, and P s, Q if there is an infinite proof. In particular,

J/a ~ ~ but J/a ~ ~K for all processes K. 130th * ~ and ~ ~ are easily seen

to be sound and witnessing; as they disagree on J/a, they are not equal.

We know of no circumstance in which the nonuniqueness of the sound

witnessing transition relation causes any difficulties; more likely, this simply

reflects the fact that the definitions of soundness and witnessing are tuned for

GSOS languages. There is a least transition relation in all cases, viz. ~ ~, and

so a “correct” operational semantics.

(vi) More importantly, even the minimal transition relation is not necessarily

finitely branching. Consider the operations ./a of (12), and K defined by:

K(X) -%+ K(X)/a/a.

Let MO be a synchronization tree with an infinite derivation of distinct terms

fvifob@w2: . . . .

Let N = MO + K(MO)/a\a; so

We will show that N has an infinite number of a-children. Clearly N $ Ml.

Suppose that

AJ%Pfi.

We have

K(kfO)%%+fL5kfl+I

and so

K(~O)/a/a $ ~~+1.
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As N = MO + K ( MO)/a/a, we therefore have

B. BLOOM ET AL.

N&14L+1.

In particular, N $ M, for each j >1. As the

infinite number of a-children.

M, are all distinct, N has an

(vii) However, the effects of multi-step antecedents are worse than simply

infinite branching. The transition relation * ceases to be decidable. It is

straightfo~;-$ to program Turing machines in a suitable GSOS language, so

that M(k) ——————+O if the kth Turing machine halts on blank tape (where jlk) is

approximately the number of steps the Turning machine takes), and lf(~~ takes

a-steps forever otherwise. Then sc(M(k))/a/a 30 precisely if the ,kth Turing

machine halts on blank tape, which is undecidable. The same example shows

that the question P 3 is undecidable.
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