Concurrency 8

The π -calculus

Catuscia Palamidessi catuscia@lix.polytechnique.fr

Note: the material of today's lecture is partly from:

R. Milner, J. Parrow, D. Walker. Modal Logics for Mobile Processes. *Theoretical Computer Science* 114:149-171, 1993. http://www.sics.se/~joachim/modmob.ps.Z

The π -calculus: syntax

• Similar to CCS with value passing, but values are channel names, and recursion is replaced by replication (!)

$$\pi ::= x(y) \mid \bar{x}y \mid \tau \quad \text{action prefixes (input, output, silent)} \\ \text{x, y are channel names}$$

$$P ::= O$$
 inaction $prefix$ $P \mid P$ parallel $P \mid P$ sum $(\nu x)P$ restriction, new name $P \mid P$ replication

The π -calculus: syntax

- Names: n(P)- Free fn(P)
 - Bound bn(P)
 - Input and restriction are binders
 - Exercise: give the formal definition of fn(P) and bn(P)

Example:
$$P=((\nu x)\bar{y}x.x(z).\bar{z}x.0)\mid (y(w).\bar{w}u.0)$$
 we have:
$$fn(P)=\{y,u\}\ ,\ bn(P)=\{x,z,w\}$$

Alpha conversion

Example:
$$Q=((\nu v)\bar{y}v.v(z).\bar{z}v.0)\mid (y(x).\bar{x}u.0)$$
 we have: $P\equiv_{\alpha}Q$

The π -calculus: structural equivalence

Introduced to simplify the description of the operational semantics

```
- If P \equiv_{\alpha} Q then P \equiv Q

- P \mid Q \equiv Q \mid P

- P + Q \equiv Q + P

- ! P \equiv P \mid ! P
```

Some presentations include other equivalences, for instance:

```
- P \mid 0 \equiv P , (P \mid Q) \mid R \equiv P \mid (Q \mid R)

- P + 0 \equiv P , (P + Q) + R \equiv P + (Q + R) , P + P \equiv P

- (v x) (v y) P \equiv (v y) (vx) P , (v x) P \equiv P if \neg x \in fn(P)

- P \mid (v x) Q \equiv (v x) (P \mid Q) if \neg x \in fn(P) (scope extrusion)
```

The π -calculus: operational semantics

• The early operational semantics of the π -calculus is defined as a labeled transition system. Transitions have the form

$$P \xrightarrow{\mu} Q$$

Here $\,P\,$ and $\,Q\,$ are processes and $\,\mu$ is an action, where actions are defined as follows:

μ	kind	$fn(\mu)$	$bn(\mu)$
au	silent	Ø	Ø
x(y)	input	$\{x\}$	$\{y\}$
$ar{x}y$	free output	$\{x,y\}$	Ø
$\bar{x}(y)$	bound output	$\{x\}$	$\{y\}$

The π -calculus: early operational semantics

E-Input
$$\frac{1}{x(y).P \xrightarrow{x(z)} P\{z/y\}} \qquad \text{Output}/\tau \qquad \alpha = \bar{x}y \text{ or } \alpha = \tau$$

$$\text{Par} \qquad \frac{P \xrightarrow{\mu} P'}{P \mid Q \xrightarrow{\mu} P' \mid Q} \qquad bn(\mu) \cap fn(Q) = \emptyset \qquad \text{Sum} \qquad \frac{P \xrightarrow{\mu} P'}{P + Q \xrightarrow{\mu} P'}$$

$$\text{Res} \qquad \frac{P \xrightarrow{\mu} P'}{\nu y P \xrightarrow{\mu} \nu y P'} \qquad y \not\in n(\mu) \qquad \text{Open} \qquad \frac{P \xrightarrow{\bar{x}y} P'}{\nu y P \overline{\bar{x}(y)} P'} \qquad x \neq y$$

$$\text{E-Com} \qquad \frac{P \xrightarrow{x(y)} P' \qquad Q \xrightarrow{\bar{x}y} Q'}{P \mid Q \xrightarrow{\tau} P' \mid Q'} \qquad \text{Close} \qquad \frac{P \xrightarrow{x(y)} P' \qquad Q \xrightarrow{\bar{x}(y)} Q'}{P \mid Q \xrightarrow{\tau} \nu y (P' \mid Q')} \qquad y \not\in fn(P)$$

$$\text{Cong} \qquad \frac{P' \equiv P \qquad P \xrightarrow{\mu} Q \qquad Q \equiv Q'}{P' \xrightarrow{\mu} Q'}$$

The π -calculus: early bisimulation

Definition

ullet We say that a binary relation ${\mathcal S}$ is an early simulation if $P\ {\mathcal S}\ Q$ implies that

```
if P \xrightarrow{\mu} P' and \mu is any action with bn(\mu) \cap fn(P,Q) = \emptyset, then for some Q', Q \xrightarrow{\mu} Q' and P' \mathcal{S} Q'.
```

- ullet The relation ${\mathcal S}$ is an early bisimulation iff both ${\mathcal S}$ and ${\mathcal S}^{-1}$ are early simulations.
- P and Q are early bisimilar, notation $P \sim_E Q$, iff $P \mathrel{\mathcal{S}} Q$ for some early bisimulation $\mathrel{\mathcal{S}}.$
- Question: is \sim_{F} a congruence?

Answer: No. Example:

$$x(z).0\mid \bar{y}z.0\sim_E x(z).\bar{y}z.0+\bar{y}z.x(z).0$$
 but
$$w(x)(x(z).0\mid \bar{y}z.0)\not\sim_E w(x)(x(z).\bar{y}z.0+\bar{y}z.x(z).0)$$

The π -calculus: late semantics

The late operational semantics is obtained by replacing rules E-Input and E-Comby the following:

L-Input
$$\frac{P \xrightarrow{x(y)} P' \qquad Q \xrightarrow{\bar{x}z} Q'}{x(y).P \xrightarrow{x(y)} P}$$
 L-Com $\frac{P \xrightarrow{x(y)} P' \qquad Q \xrightarrow{\bar{x}z} Q'}{P \mid Q \xrightarrow{\tau} P'\{z/y\} \mid Q'}$

- ullet **Definition** We say that a binary relation ${\mathcal S}$ is a late simulation if $P \ {\mathcal S} \ Q$ implies that
 - 1. if $P \xrightarrow{\mu} P'$ and μ is τ or output, with $bn(\mu) \cap fn(P,Q) = \emptyset$, then for some Q', $Q \xrightarrow{\mu} Q'$ and $P' \otimes Q'$.
 - 2. if $P \xrightarrow{x(y)} P'$ and $y \notin fn(P,Q) = \emptyset$, then for some Q', $Q \xrightarrow{x(y)} Q'$ and for all z, $P'\{z/y\} \mathcal{S} Q'\{z/y\}$.
- The relation S is a late bisimulation iff both S and S^{-1} are late simulations.
- ullet P and Q are late bisimilar, notation $P\sim_L Q$, iff $P\ \mathcal{S}\ Q$ for some late bisimulation $\mathcal{S}.$

Late vs early bisimulation

Late bisimulation is strictly more discriminating than early bisimulation.

Example

$$P \equiv x(y).R + x(y).S$$

$$Q \equiv x(y).R + x(y).S + x(y)$$
. if $y = z$ then R else S

We have that $P \sim_E Q$ but $P \not\sim_L Q$

In order to obtain a process that behave like the if-then-else we can use synchronization:

$$Q \equiv x(y).R + x(y).S + (x(y).(\bar{y}w.0 \mid z(w).0))$$

where $R \equiv \bar{z}w.0 \mid z(w).0$ and $S \equiv \bar{y}w.z(w).0 + z(w).\bar{y}w.0$, while P is defined as before.