Concurrency 8

The π-calculus

Catuscia Palamidessi
 catuscia@lix.polytechnique.fr

Note: the material of today's lecture is partly from:
R. Milner, J. Parrow, D. Walker. Modal Logics for Mobile Processes. Theoretical Computer Science 114:149-171, 1993. http://www.sics.se/~joachim/modmob.ps.Z

The π-calculus: syntax

- Similar to CCS with value passing, but values are channel names, and recursion is replaced by replication (!)

$$
\pi::=x(y)|\bar{x} y| \tau
$$

action prefixes (input, output, silent) x, y are channel names

$$
\begin{array}{ll}
P:: & =O \\
\mid & \pi \cdot P \\
\mid & P \mid P \\
\mid & P+P \\
\mid & (\nu x) P \\
\mid & !P
\end{array}
$$

inaction
prefix
parallel
sum
restriction, new name replication

The π-calculus: syntax

- Names: $n(P)$
- Free $f n(P)$
- Bound bn (P)
- Input and restriction are binders
- Exercise: give the formal definition of $f n(P)$ and $b n(P)$

$$
\text { Example: } \quad P=((\nu x) \bar{y} x \cdot x(z) \cdot \bar{z} x \cdot 0) \mid(y(w) \cdot \bar{w} u \cdot 0)
$$

$$
\text { we have: } f n(P)=\{y, u\}, \quad b n(P)=\{x, z, w\}
$$

- Alpha conversion

Example: $\quad Q=((\nu v) \bar{y} v \cdot v(z) \cdot \bar{z} v .0) \mid(y(x) \cdot \bar{x} u \cdot 0)$
we have: $P \equiv{ }_{\alpha} Q$

The π-calculus: structural equivalence

- Introduced to simplify the description of the operational semantics
- If $P \equiv_{\alpha} Q$ then $P \equiv Q$
- $P|Q \equiv Q| P$
- $P+Q \equiv Q+P$
- $!P \equiv P \mid!P$
- Some presentations include other equivalences, for instance:
$-P|0 \equiv P, \quad(P \mid Q)| R \equiv P \mid(Q \mid R)$
$-P+0 \equiv P, \quad(P+Q)+R \equiv P+(Q+R), \quad P+P \equiv P$
- $(v x)(v y) P \equiv(v y)(v x) P, \quad(v x) P \equiv P \quad$ if $\neg x \in f n(P)$
- $P \mid(v x) Q \equiv(v x)(P \mid Q) \quad$ if $\neg x \in f n(P) \quad$ (scope extrusion)

The π-calculus: operational semantics

- The early operational semantics of the π-calculus is defined as a labeled transition system. Transitions have the form

$$
P \xrightarrow{\mu} Q
$$

Here P and Q are processes and μ is an action, where actions are defined as follows:

μ	kind	$f n(\mu)$	$b n(\mu)$
τ	silent	\emptyset	\emptyset
$x(y)$	input	$\{x\}$	$\{y\}$
$\bar{x} y$	free output	$\{x, y\}$	\emptyset
$\bar{x}(y)$	bound output	$\{x\}$	$\{y\}$

The π-calculus: early operational semantics

$$
\begin{aligned}
& \text { E-Input } \overline{x(y) . P \xrightarrow{x(z)} P\{z / y\}} \\
& \text { Par } \frac{P \xrightarrow{\mu} P^{\prime}}{P\left|Q \xrightarrow{\mu} P^{\prime}\right| Q} \quad \text { bn }(\mu) \cap f n(Q)=\emptyset \quad \text { Sum } \frac{P \xrightarrow{\mu} P^{\prime}}{P+Q \xrightarrow{\mu} P^{\prime}} \\
& \text { Res } \frac{P \xrightarrow{\mu} P^{\prime}}{\nu y P \xrightarrow{\mu} \nu y P^{\prime}} \quad y \notin n(\mu) \\
& \text { Open } \frac{P \xrightarrow{\bar{x} y} P^{\prime}}{\nu y P \xrightarrow{\bar{x}(y)} P^{\prime}} \quad x \neq y \\
& \text { E-Com } \frac{P \xrightarrow{x(y)} P^{\prime} Q \xrightarrow{\bar{x} y} Q^{\prime}}{P\left|Q \xrightarrow{\tau} P^{\prime}\right| Q^{\prime}} \\
& \text { Output } / \tau \underset{\alpha . P \xrightarrow{\alpha} P}{ } \quad \alpha=\bar{x} y \text { or } \alpha=\tau \\
& \text { Close } \frac{P \xrightarrow{x(y)} P^{\prime} \quad Q \xrightarrow{\bar{x}(y)} Q^{\prime}}{P \mid Q \xrightarrow{\tau} \nu y\left(P^{\prime} \mid Q^{\prime}\right)} \quad y \notin f n(P) \\
& \text { Cong } \frac{P^{\prime} \equiv P \quad P \xrightarrow{\mu} Q \quad Q \equiv Q^{\prime}}{P^{\prime} \xrightarrow{\mu} Q^{\prime}}
\end{aligned}
$$

The π-calculus: early bisimulation

Definition

- We say that a binary relation \mathcal{S} is an early simulation if $P \mathcal{S} Q$ implies that
if $P \xrightarrow{\mu} P^{\prime}$ and μ is any action with $b n(\mu) \cap f n(P, Q)=\emptyset$, then for some Q^{\prime}, $Q \xrightarrow{\mu} Q^{\prime}$ and $P^{\prime} \mathcal{S} Q^{\prime}$.
- The relation \mathcal{S} is an early bisimulation iff both \mathcal{S} and \mathcal{S}^{-1} are early simulations.
- P and Q are early bisimilar, notation $P \sim_{E} Q$, iff $P \mathcal{S} Q$ for some early bisimulation \mathcal{S}.
- Question: is \sim_{E} a congruence?

Answer: No. Example:

$$
x(z) .0 \mid \bar{y} z .0 \sim_{E} x(z) \cdot \bar{y} z .0+\bar{y} z \cdot x(z) .0
$$

but

$$
w(x)(x(z) .0 \mid \bar{y} z .0) \not \chi_{E} w(x)(x(z) . \bar{y} z .0+\bar{y} z \cdot x(z) .0)
$$

The π-calculus: late semantics

- The late operational semantics is obtained by replacing rules E-Input and E-Com by the following:

$$
\text { L-Input } \overline{x(y) \cdot P \xrightarrow{x(y)} P}
$$

$$
\text { L-Com } \frac{P \xrightarrow{x(y)} P^{\prime} \quad Q \xrightarrow{\bar{x} z} Q^{\prime}}{P\left|Q \xrightarrow{\tau} P^{\prime}\{z / y\}\right| Q^{\prime}}
$$

- Definition We say that a binary relation \mathcal{S} is a late simulation if $P \mathcal{S} Q$ implies that

1. if $P \xrightarrow{\mu} P^{\prime}$ and μ is τ or output, with $b n(\mu) \cap f n(P, Q)=\emptyset$, then for some $Q^{\prime}, Q \xrightarrow{\mu} Q^{\prime}$ and $P^{\prime} \mathcal{S} Q^{\prime}$.
2. if $P \xrightarrow{x(y)} P^{\prime}$ and $y \notin f n(P, Q)=\emptyset$, then for some $Q^{\prime}, Q \xrightarrow{x(y)} Q^{\prime}$ and for all z, $P^{\prime}\{z / y\} \mathcal{S} Q^{\prime}\{z / y\}$.

- The relation \mathcal{S} is a late bisimulation iff both \mathcal{S} and \mathcal{S}^{-1} are late simulations.
- P and Q are late bisimilar, notation $P \sim_{L} Q$, iff $P \mathcal{S} Q$ for some late bisimulation \mathcal{S}.

Late vs early bisimulation

Late bisimulation is strictly more discriminating than early bisimulation.

Example

$$
\begin{aligned}
& P \equiv x(y) \cdot R+x(y) \cdot S \\
& Q \equiv x(y) \cdot R+x(y) \cdot S+x(y) . \text { if } y=z \text { then } R \text { else } S
\end{aligned}
$$

We have that $P \sim_{E} Q$ but $P \not \nsim L_{L} Q$

In order to obtain a process that behave like the if-then-else we can use synchronization:

$$
Q \equiv x(y) \cdot R+x(y) \cdot S+(x(y) \cdot(\bar{y} w \cdot 0 \mid z(w) \cdot 0))
$$

where $R \equiv \bar{z} w .0 \mid z(w) .0$ and $S \equiv \bar{y} w . z(w) .0+z(w) . \bar{y} w .0$, while P is defined as before.

