Concurrency 7

Expressive Power of CCS The ^π-calculus

Catuscia Palamidessi catuscia@lix.polytechnique.fr

The Expressive Power of CCS

- CCS is a Turing-complete formalism. We will show this by proving that we can simulate in CCS the Random Access Machines, which are a Turing-complete formalism
- • **Definition:** A RAM is a computational model composed by:
	- $\,$ a finite set of registers $\mathsf{r}_1, \ldots, \mathsf{r}_\mathsf{n}$ which store natural numbers, one for each register, and can be updated (incremented or decremented) and tested for zero.
	- A program $(1,\mathbf{I}_1)$, ... ,(m, \mathbf{I}_m), where the \mathbf{I}_j 's are instructions of either of the following two forms:
		- $\; {\sf Incr(r_j)}\;$: add 1 to Register ${\sf r_j}$
		- DecJump($r_{\rm j},$ s) : if the content of the register $r_{\rm j}$ is not zero, then decrease r_j by one and go to next intruction. Otherwise jump to instruction s.

The Expressive Power of CCS

- The state of a RAM R is a tuple $(j, k_1,...,k_n)$ where j is the index of the current instruction and $\mathsf{k}_1,...,\mathsf{k}_\mathsf{n}$ are the contents of the registers
- The execution is d efined by a transition relation among states: $(j, k_1,...,k_n) \rightarrow_R (j', k'_1,...,k'_n)$

Meaning that the RAM goes from state $(\mathsf{j}, \mathsf{k}_1, \hspace{-0.1cm} \ldots, \hspace{-0.1cm} \mathsf{k}_\mathsf{n})$ to state $(\mathsf{j}', \mathsf{k}_1, \hspace{-0.1cm} \ldots, \hspace{-0.1cm} \mathsf{k}_\mathsf{n})$ k' $_1$,...,k' $_{\sf n}$) by executing the action ${\tt I}_{\rm j}$ in the program of R

• W e assume that the execution terminates if a special instruction index is reached. We also assume that the first register (r_1) will initially contain the input of the program, and that it will contain the output when the program terminates.

The Expressive Power of CCS

- •**Theorem:** Every computable function can be expressed as the inputoutput relation computed by a RAM.
- • W e define now a CCS process which encodes a given RAM R.
	- $\;$ Each register is encoded by a labeled instance of a counter: $\;{\cal C}_{\rm h}^{(\rm k)}$ repr. $r_{\rm h}^{}$ with content k
	- The program of R is encode d as a set of CCS definitions:

 $\mathsf{Instr}_{\mathsf{j}} \equiv \underline{\mathsf{inc}}_\mathsf{h}.\mathsf{Instr}_{\mathsf{i+1}}$ $if I_i = Succ(r_h)$ in R Instr_j = <u>dec_h.</u>Instr_{i+1} + <u>zero_h.</u>Instr_s if I_i= DecJump(r_h,s) in R

– Assume i nput k, so the initial configuration is (1,k,0,...,0). The C CS process encoding R is:

 $[$ $(1,$ k,0,...,0) $]_{\textrm{R}}$ = $($ v **inc**)(v **dec**)(v **zero**) (Instr $_{1}$ | $C_{1}^{($ k) | $C_{2}^{(0)}$ | ... | $C_{n}^{(0)}$)

where **inc, dec** and **zero** represent the vectors of the inc_h , <u>dec_h</u> and zero_h.

• **Theorem (correctnes s of the encoding):** $({\sf j},\,{\sf k}_1,...,{\sf k}_{{\sf n}})\rightarrow_{\sf R}\!\star\;({\sf j}',\,{\sf k'}_1,...,{\sf k'}_{{\sf n}})\quad$ if and only if $\hskip10pt [({\sf j},\,{\sf k}_1,...,{\sf k}_{{\sf n}})]_{\sf R}\,\stackrel{_\sim}{\to}\!\star\;$ $\hskip10pt [({\sf j}',\,{\sf k'}_1,...,{\sf k'}_{{\sf n}})]_{\sf R}$ Proof: Exercise τ

13 Novembre 2003 Concurrency 7 4

The π -calculus

- \bullet **Milner, Parrow, Walker 1989**
	- **A concurrent calculus where the communication structure among existing processes can change over time.**
		- –**Link mobility.**

The π calculus: scope extrusion

- A private channel name can be communicated and its scope can be extended to include the recipient
	- –**Channel:** the name can be used to communicate
	- –**Privacy:** no one else can interfere
- •An example of link mobility:

The π calculus: scope extrusion

- A private channel name can be communicated and its scope can be extended to include the recipient
	- –**Channel:** the name can be used to communicate
	- –**Privacy:** no one else can interfere
- •An example of link mobility:

The π calculus: scope extrusion

- A private channel name can be communicated and its scope can be extended to include the recipient
	- –**Channel:** the name can be used to communicate
	- –**Privacy:** no one else can interfere
- •An example of link mobility:

The π calculus: syntax

• **Similar to CCS with value passing, but values are channel names, and recursion is replaced by replication (!)**

Operational semantics (basic idea)

- Transition system $P \xrightarrow{\mu} Q$ where μ can be x(y), <u>x</u>y, <u>x</u>(y), or τ
- •Rules

 $Input \quad x(y)$. $P \xrightarrow{\wedge (2)} P[z/y]$ x(z)

Output

$$
\underline{xy} \cdot P \xrightarrow{\underline{xy}} P
$$

Open

$$
\frac{P \xrightarrow{\underline{X}Y} P'}{(v \ y) P \xrightarrow{\underline{X}(y)} P'}
$$

Operational semantics (basic idea)

$$
\begin{array}{c}\nP \xrightarrow{x(y)} P' \\
\hline\nP \mid (v \ y) Q \xrightarrow{\tau} (v \ y) (P' \mid Q')\n\end{array}
$$

Close