
Concurrency 7
Expressive Power of CCS

The π-calculus

Catuscia Palamidessi
catuscia@lix.polytechnique.fr

The Expressive Power of CCS
• CCS is a Turing-complete formalism. We will show this by

proving that we can simulate in CCS the Random Access
Machines, which are a Turing-complete formalism

• Definition: A RAM is a computational model composed by:
– a finite set of registers r1,...,rn which store natural numbers, one

for each register, and can be updated (incremented or
decremented) and tested for zero.

– A program (1,I1), ... ,(m,Im), where the Ij’s are instructions of either
of the following two forms:

• Incr(rj) : add 1 to Register rj

• DecJump(rj,s) : if the content of the register rj is not zero,
then decrease rj by one and go to next intruction. Otherwise
jump to instruction s.

13 Novembre 2003 Concurrency 7 2

The Expressive Power of CCS
• The state of a RAM R is a tuple (j, k1,...,kn) where j is the

index of the current instruction and k1,...,kn are the contents of
the registers

• The execution is defined by a transition relation among states:
(j, k1,...,kn) →R (j’, k’1,...,k’n)

Meaning that the RAM goes from state (j, k1,...,kn) to state (j’,
k’1,...,k’n) by executing the action Ij in the program of R

• We assume that the execution terminates if a special
instruction index is reached. We also assume that the first
register (r1) will initially contain the input of the program, and
that it will contain the output when the program terminates.

13 Novembre 2003 Concurrency 7 3

The Expressive Power of CCS
• Theorem: Every computable function can be expressed as the input-

output relation computed by a RAM.

• We define now a CCS process which encodes a given RAM R.

– Each register is encoded by a labeled instance of a counter: Ch
(k) repr. rh with content k

– The program of R is encoded as a set of CCS definitions:

Instrj ≡ inch.Instri+1 if Ii = Succ(rh) in R
Instrj ≡ dech.Instri+1 + zeroh.Instrs if Ii = DecJump(rh,s) in R

– Assume input k, so the initial configuration is (1,k,0,...,0). The CCS process encoding R is:

[(1,k,0,...,0)]R = (ν inc)(ν dec)(ν zero) (Instr1 | C1
(k) | C2

(0) | ... | Cn
(0))

where inc, dec and zero represent the vectors of the inch, dech and zeroh.

• Theorem (correctness of the encoding):
(j, k1,...,kn) →R* (j’, k’1,...,k’n) if and only if [(j, k1,...,kn)]R →* [(j’, k’1,...,k’n)]R

Proof: Exercise

τ

13 Novembre 2003 Concurrency 7 4

The π-calculus
• Milner, Parrow, Walker 1989
• A concurrent calculus where the communication structure

among existing processes can change over time.
– Link mobility.

13 Novembre 2003 Concurrency 7 5

The π calculus: scope extrusion
• A private channel name can be communicated and its scope can

be extended to include the recipient
– Channel: the name can be used to communicate
– Privacy: no one else can interfere

• An example of link mobility:

Q

x y

P
z

R

13 Novembre 2003 Concurrency 7 6

The π calculus: scope extrusion
• A private channel name can be communicated and its scope can

be extended to include the recipient
– Channel: the name can be used to communicate
– Privacy: no one else can interfere

• An example of link mobility:

x y

z
Q

P R

13 Novembre 2003 Concurrency 7 7

The π calculus: scope extrusion
• A private channel name can be communicated and its scope can

be extended to include the recipient
– Channel: the name can be used to communicate
– Privacy: no one else can interfere

• An example of link mobility:

x y

z

z R

Q

P

13 Novembre 2003 Concurrency 7 8

The π calculus: syntax
• Similar to CCS with value passing, but values are channel

names, and recursion is replaced by replication (!)

π ::= x(y) | xy | τ action prefixes (input, output, silent)

x, y are channel names
P ::= 0 inaction

| π . P prefix
| P | P parallel
| P + P sum
| (ν x) P restriction, new name
| ! P replication

13 Novembre 2003 Concurrency 7 9

Operational semantics (basic idea)

• Transition system P ⎯→ Q
where µ can be x(y), xy, x(y), or τ

• Rules

Input x(y) . P ⎯→ P[z/y]

Output xy . P ⎯→ P

Open ___________________
(ν y) P ⎯→ P’

P ⎯→ P’

µ

x(z)

xy

xy

x(y)

13 Novembre 2003 Concurrency 7 10

Operational semantics (basic idea)

Close ___________________________

P | (ν y) Q ⎯→ (ν y) (P’ | Q’)

P ⎯→ P’ Q ⎯→ Q’
x(y) x(y)

τ

13 Novembre 2003 Concurrency 7 11

	Concurrency 7
	The Expressive Power of CCS
	The Expressive Power of CCS
	The Expressive Power of CCS
	The p-calculus
	The p calculus: scope extrusion
	The p calculus: scope extrusion
	The p calculus: scope extrusion
	The p calculus: syntax
	Operational semantics (basic idea)
	Operational semantics (basic idea)

