#### Concurrency 7

#### Expressive Power of CCS The $\pi$ -calculus

Catuscia Palamidessi catuscia@lix.polytechnique.fr

### The Expressive Power of CCS

- CCS is a Turing-complete formalism. We will show this by proving that we can simulate in CCS the Random Access Machines, which are a Turing-complete formalism
- **Definition:** A RAM is a computational model composed by:
  - a finite set of registers  $r_1, ..., r_n$  which store natural numbers, one for each register, and can be updated (incremented or decremented) and tested for zero.
  - A program  $(1,I_1), \dots, (m,I_m)$ , where the  $I_j$ 's are instructions of either of the following two forms:
    - Incr(r<sub>j</sub>) : add 1 to Register r<sub>j</sub>
    - $DecJump(r_j,s)$  : if the content of the register  $r_j$  is not zero, then decrease  $r_j$  by one and go to next intruction. Otherwise jump to instruction s.

### The Expressive Power of CCS

- The state of a RAM  $\,$  R is a tuple (j,  $k_1,\ldots,k_n$ ) where j is the index of the current instruction and  $k_1,\ldots,k_n$  are the contents of the registers
- The execution is defined by a transition relation among states:  $(j, k_1, ..., k_n) \rightarrow_R (j', k'_1, ..., k'_n)$

Meaning that the RAM goes from state  $(j, k_1, ..., k_n)$  to state  $(j', k'_1, ..., k'_n)$  by executing the action  $I_j$  in the program of R

• We assume that the execution terminates if a special instruction index is reached. We also assume that the first register  $(r_1)$  will initially contain the input of the program, and that it will contain the output when the program terminates.

#### The Expressive Power of CCS

- **Theorem:** Every computable function can be expressed as the inputoutput relation computed by a RAM.
- We define now a CCS process which encodes a given RAM R.
  - Each register is encoded by a labeled instance of a counter:  $C_{h}^{(k)}$  repr.  $r_{h}$  with content k
  - The program of R is encoded as a set of CCS definitions:

 $Instr_{j} \equiv \underline{inc}_{h}.Instr_{i+1}$  if  $I_{i} = Succ(r_{h})$  in R  $Instr_{j} \equiv \underline{dec}_{h}.Instr_{i+1} + \underline{zero}_{h}.Instr_{s}$  if  $I_{i} = DecJump(r_{h},s)$  in R

- Assume input k, so the initial configuration is (1,k,0,...,0). The CCS process encoding R is:

 $[(1,k,0,...,0)]_{R} = (v inc)(v dec)(v zero) (Instr_1 | C_1^{(k)} | C_2^{(0)} | ... | C_n^{(0)})$ 

where inc, dec and zero represent the vectors of the  $\underline{inc}_h$ ,  $\underline{dec}_h$  and  $zero_h$ .

• Theorem (correctness of the encoding): (j,  $k_1,...,k_n$ )  $\rightarrow_R^*$  (j',  $k'_1,...,k'_n$ ) if and only if  $[(j, k_1,...,k_n)]_R \xrightarrow{\tau} * [(j', k'_1,...,k'_n)]_R$ Proof: Exercise

13 Novembre 2003

Concurrency 7

## The $\pi$ -calculus

- Milner, Parrow, Walker 1989
  - A concurrent calculus where the communication structure among existing processes can change over time.
    - Link mobility.



•

### The $\pi$ calculus: scope extrusion

- A private channel name can be communicated and its scope can be extended to include the recipient
  - Channel: the name can be used to communicate
  - Privacy: no one else can interfere
- An example of link mobility:



٠

### The $\pi$ calculus: scope extrusion

- A private channel name can be communicated and its scope can be extended to include the recipient
  - Channel: the name can be used to communicate
  - Privacy: no one else can interfere
- An example of link mobility:



•

### The $\pi$ calculus: scope extrusion

- A private channel name can be communicated and its scope can be extended to include the recipient
  - Channel: the name can be used to communicate
  - Privacy: no one else can interfere
- An example of link mobility:



•

# The $\pi$ calculus: syntax

• Similar to CCS with value passing, but values are channel names, and recursion is replaced by replication (!)

| π ::= <b>×(y)   <u>×</u>y  </b> τ |         | action prefixes (input, output, silent)<br>x, y are channel names |
|-----------------------------------|---------|-------------------------------------------------------------------|
| P ::=                             | 0       | inaction                                                          |
|                                   | π.Ρ     | prefix                                                            |
|                                   | P   P   | parallel                                                          |
|                                   | P + P   | sum                                                               |
|                                   | (v x) P | restriction, new name                                             |
|                                   | ! P     | replication                                                       |

Concurrency 7

#### Operational semantics (basic idea)

- Transition system  $P \xrightarrow{\mu} Q$ where  $\mu$  can be  $x(y), \underline{x}y, \underline{x}(y)$ , or  $\tau$
- Rules

Input $x(y) \cdot P \xrightarrow{x(z)} P[z/y]$ Output $\underline{x}y \cdot P \xrightarrow{\underline{x}y} P$ 

Open 
$$\begin{array}{c} P \xrightarrow{\underline{x}y} P' \\ \hline (v y) P \xrightarrow{\underline{x}(y)} P' \end{array}$$

#### Operational semantics (basic idea)

$$P \xrightarrow{\times(y)} P' \qquad Q \xrightarrow{\underline{\times}(y)} Q'$$
$$P \mid (v y) Q \xrightarrow{\tau} (v y) (P' \mid Q')$$

Close