Concurrency 6

Specification and Verification in CCS

Catuscia Palamidessi catuscia@lix.polytechnique.fr

Example: A distributed scheduler

- $1, \ldots, \mathrm{n}$ are tasks identifiers. Tasks have to be executed repeatedly, in a cyclic order. There can be more than one task executed at the same time, but the next instance of Task i cannot start before previous instance has finished.
- Specification: We use:
- a_{k} as the signal start to Taks k and
- b_{k} as the signal that Task k has terminated

Assume:

- $\mathrm{X} \subseteq\{1, \ldots, \mathrm{n}\}$ are the tasks in progress
- Taski is next

$$
\begin{aligned}
\operatorname{ScSpec}(i, X) \equiv & \sum\left\{b_{k} \cdot \operatorname{ScSpec}(i, X-\{k\}) \mid k \in X\right\} \text { if } i \in X \\
\operatorname{ScSpec}(i, X) \equiv & a_{i} \cdot \operatorname{ScSpec}(i+1, X U\{i\}) \\
& + \\
& \sum\left\{b_{k} \cdot \operatorname{ScSpec}(i, X-\{k\}) \mid k \in X\right\} \quad \text { if } i \notin X
\end{aligned}
$$

Example: A distributed scheduler

- Implementation: We build the scheduler, Sched, as a ring of n cells each linked to one task
- Cell:

$$
\begin{array}{rlr}
A \equiv a \cdot C & C \equiv c \cdot E & E \equiv b \cdot D+d \cdot B \\
B \equiv b \cdot A & D \equiv d \cdot A &
\end{array}
$$

Note: A stands for $\mathrm{A}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}), \mathrm{B}$ stands for $\mathrm{B}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})$, etc.
We will also use A_{k} for $A\left(a_{k}, b_{k}, c_{k}, c_{k-1}\right), B_{k}$ for $B\left(a_{k}, b_{k}, c_{k}, c_{k-1}\right)$, etc.

- Definition Sched $\equiv\left(v c_{1}\right) \ldots\left(v c_{n}\right)\left(A_{1} \mid \Pi\left\{D_{k} \mid k \neq 1\right\}\right)$
- Theorem 1 (Correctness of the implementation wrt the specification):

Sched = ScSpec $(1, \varnothing)$

Scheduler: Proof of correctness

- The meaning of the various cells:
- A_{i} : Task i is next, and it is ready to initiate
- B_{i} : Task i is next, but it is not ready to initiate
- D_{i} : Task i is not next, but it is ready to initiate
- E_{i} : Task i is not next, and it is not ready to initiate
- Definition:

Sched $(i, X) \equiv(v \mathbf{c})\left(B_{i}\left|\Pi\left\{D_{k} \mid k \notin X\right\}\right| \Pi\left\{E_{m} \mid m \in X-\{i\}\right\}\right) \quad$ if $i \in X$ Sched $(i, X) \equiv(v \mathbf{c})\left(A_{i}\left|\Pi\left\{D_{k} \mid k \notin X \cup\{i\}\right\}\right| \Pi\left\{E_{m} \mid m \in X\right\}\right) \quad$ if $i \notin X$

- Proposition 2: $\operatorname{Sched}(\mathrm{i}, \mathrm{X})=\operatorname{ScSpec}(\mathrm{i}, \mathrm{X})$
- Theorem 1 is a particular case of Proposition 2

Implementation of the scheduler: how it works

Implementation of the scheduler: how it works

Implementation of the scheduler: how it works

Implementation of the scheduler: a possible future configuration

Scheduler: Proof of Correctness

Proposition 2: $\quad \operatorname{Sched}(i, X)=\operatorname{ScSpec}(i, X)$
Proof

- Lemma 3
- (1) $\left(v c_{i}\right)\left(C_{i} \mid D_{i+1}\right)=\tau .\left(v c_{i}\right)\left(E_{i} \mid A_{i+1}\right)$
- (2) $\left(v c_{i}\right)\left(C_{i} \mid E_{i+1}\right)=\tau .\left(v c_{i}\right)\left(E_{i} \mid B_{i+1}\right)$

Proof: By exapansion law

- Lemma 4
- $\operatorname{Sched}(i, X)=\sum\left\{b_{k}\right.$. Sched $\left.(i, X-\{k\}) \mid k \in X\right\}$ if $i \in X$
- $\operatorname{Sched}(i, X)=a_{i} \cdot \operatorname{Sched}(i+1, X \cup\{i\})$

$$
\stackrel{+}{\sum}\left\{b_{k} . \operatorname{Sched}(i, X-\{k\}) \mid k \in X\right\} \text { if } i \notin X
$$

Proof: By Expansion law and Lemma 3
From Lemma 4 and the Definition law we obtain that $\operatorname{Sched}(i, X)=\operatorname{ScSpec}(i, X)$

Example: Counter

- It is possible in CCS to create structures which grow and shrink dynamically. Examples include unbounded queues and stacks, and counters.
- Specification of a Counter

A counter is an object that can be

- tested for zero zero
- incremented inc
- decremented dec

$$
\begin{aligned}
& \text { Count }_{0} \equiv \text { inc.Count }_{1}+\text { zero. Count } \\
& \text { Count }_{n} \equiv \text { inc.Count }_{n+1}+\text { dec. Count }_{n-1} \quad n>0
\end{aligned}
$$

Example: Counter

- Implementation: A structure obtained by linking together a process B and n copies of a process C specified as follows:

$$
\begin{aligned}
& B \equiv \operatorname{inc} \cdot\left(B^{\wedge} C\right)+\text { zero. } B \\
& C \equiv \operatorname{inc} .\left(C^{\wedge} C\right)+\operatorname{dec} . D \\
& D \equiv \underline{\text { d. }} \cdot C+\underline{z} \cdot B
\end{aligned}
$$

$P^{\wedge} Q \equiv\left(v i^{\prime}\right)\left(v z^{\prime}\right)\left(v d^{\prime}\right)\left(P\left(z, d, i^{\prime}, z^{\prime}, d^{\prime}\right) \mid Q\left(z^{\prime}, d^{\prime}, i n c, z e r o, d e c\right)\right)$
Note: B, C and D stand for $B(z, d, i n c, z e r o, d e c), C(z, d, i n c, z e r o, d e c)$, and $D(z, d$, inc, zero, dec) respectively.
$\left(P^{\wedge} Q\right)$ stands for $\left(P^{\wedge} Q\right)(z, d$, inc,zero, dec $)$.
Proposition: ^ is associative, i.e. $P^{\wedge}\left(Q^{\wedge} R\right)=\left(P^{\wedge} Q\right)^{\wedge} R$

Example: Counter

- Implementation:

Definition: $C^{(n)} \equiv B^{\wedge} C^{\wedge} C^{\wedge} . . .{ }^{\wedge} C \quad(n$ times $)$

- Theorem (Correctness): $C^{(n)}=$ Count $_{n}$

Proof
Lemma: (1) $C^{\wedge} D \approx D^{\wedge} C$
(2) $B^{\wedge} D \approx B^{\wedge} B$
(3) $B^{\wedge} B=B$

We can now prove that

- $C^{(0)}=$ inc. $C^{(1)}+$ zero. $C^{(0)}$ and
- $C^{(n)}=C^{(n-1)}{ }^{\wedge} C \quad$ for $n>0$
$=\operatorname{inc} .\left(C^{(n-1)}{ }^{\wedge} C^{\wedge} C\right)+\operatorname{dec} .\left(C^{(n-1)}{ }^{\wedge} D\right)$
$=$ inc. $C^{(n+1)}+$ dec. $C^{(n-1)}$
by definition
by expansion law
by the lemma above
Hence $C^{(n)}$ satisfies the same equations as Count ${ }_{n}$. By the unique solution law we can conclude $C^{(n)}=$ Count $_{n}$

