
Concurrency 5

The theory of CCS
Specifications and Verification

Expressive Power

Catuscia Palamidessi
catuscia@lix.polytechnique.fr

Definitions with parameters
• CCS originally had dynamic scope. This is problematic for various reasons,

for instance alpha conversion does not hold.

– Static scope (with constant definitions) is not an option, because it would
diminish the expressive power

– The modern version of CCS [Milner’99] has parametric definitions and no free
variables in the body. So the scope is not an issue anymore

Example of parameric definition: A(a) ≡ a.(ν b)(a.0 | a.0 | bb.A(b.A(b))))

•• In the following, I will consider CCS with parametric definitionIn the following, I will consider CCS with parametric definitions.s.

• Note: I will use ≡ for definitions and a for the output action on a.
• Sometime I will omit parameters when they are implicit. Example: A = a.A

instead of A(a) = a.A(a)

30 Octobre 2003 Concurrency 5 2

The theory of CCS
• An equational theory, correct wrt observational

congruence, which can be used to show that two
processes are observationally congruent.

• Equational means that we have the usual laws of
equality:
– Reflexivity P = P
– Symmetry P = Q ⇒ Q = P
– Transitivity P = Q and Q = R ⇒ P = R
– Congruence P = Q ⇒ C[Q] = C[P] for every context C[]

• Correct wrt Observational Congruence means that if
we can derive P = Q, then P ≅ Q

30 Octobre 2003 Concurrency 5 3

Proper axioms of the theory
• The dynamic laws

– The dynamic laws involve the dynamic operators (i.e. those operator
which are not static in transtions). In CCS these are the + and the
process names

Monoid laws
1. P + Q = Q + P
2. P + (Q + R) = (P + Q) + R
3. P + P = P
4. P + 0 = P

τ laws
1. α.τ.P = α.P
2. P + τ.P = τ.P
3. α.(P + τ.Q) + α.Q = α.(P + τ.Q)

30 Octobre 2003 Concurrency 5 4

Proper Axioms of the theory
• The dynamic laws (cont.ed)

Process definitions

1. If A ≡ P, then A = P

2. If the “hole” in P is “guarded” then if P = C[P], and Q = C[Q], then P = Q

“Guarded” means that the hole appears only after a visible action

• The second law is very useful for proving equality of processes defined
recursively and for finding solutions of recursive definitions.

• Example: Assume A ≡ a.A and B ≡ a.a.B. It’s easy to prove that A = B. In fact,
A = a.A = a.a.A by congruence and then we can apply the above axiom

• Note that the condition about guarded is essential for the unicity of solutions
• Exercise 1: Assume A ≡ a.A + τ.A. Show that any process of the form τ.(τ.P + a.0)

is a solution

30 Octobre 2003 Concurrency 5 5

Proper Axioms of the theory
• The static laws

Parallel Composition laws
1. P | Q = Q | P
2. P | (Q | R) = (P | Q) | R
3. P | 0 = P

Restriction laws
1. (ν a) P = P if a is not free in P
2. (ν a) (ν b) P = (ν b) (ν a) P
3. (ν a) (P | Q) = (ν a) P | (ν a) Q
4. (ν a) P = (ν b) P{b/a} alpha conversion

30 Octobre 2003 Concurrency 5 6

Proper Axioms of the theory
• Expansion law

P|Q = ∑ { a.(P’ | Q) | P → P’ for some a, P’}
+

∑ { b.(P | Q’) | Q → Q’ for some b, Q’}
+

∑ { τ.(P’ | Q’) | P → P’ and Q → Q’ for some a, P’, Q’ }

• The expansion law expresses the parallel operator in terms of
nondeterminism and sequentiality (parallelism as interleaving)

• Exercise 2: Assume A ≡ a.A and B ≡ a.B | a.0. Prove that A=B
using the axioms.

a a

a

b

30 Octobre 2003 Concurrency 5 7

Example: A distributed scheduler
• 1,...,n are tasks identifiers. Tasks have to be executed repeatedly,in a cyclic

order. There can be more than one task executed at the same time, but the
next instance of Task i cannot start before previous instance has finished.

• Specification: We use:
– ak as the signal start to Taks k and
– bk as the signal that Task k has terminated
Assume:
– X ⊆ {1,...,n } are the tasks in progress
– Task i is next

ScSpec(i,X) = ∑ { bk. ScSpec(i,X-{k}) | k ∈ X} if i ∈ X

ScSpec(i,X) = ai.ScSpec(i+1,X∪{i})
+
∑ { bk. ScSpec(i,X-{k}) | k ∈ X} if i ∉ X

30 Octobre 2003 Concurrency 5 8

Example: A distributed scheduler

• Implementation: We build the scheduler, Sched, as a ring of n
cells each linked to one task

• Cell:
A = a.C C = c.E E = b.D + d.B
B = b.A D = d.A

Note: A stands for A(a,b,c,d), B stands for B(a,b,c,d), etc.

Sched = (ν c1)...(ν cn) (A(a1,b1,c1,cn) | ∏ {D(ak,bk,ck,ck-1) | k ≠ 1})

Proposition (Correctness of the implementation wrt the specification):
Sched = ScSpec(1,∅)

Exercise 3: Prove it.

30 Octobre 2003 Concurrency 5 9

Example: Unbounded Buffers
• It is possible in CCS to create structures which grow and shrink

dynamically. Examples include unbounded queues and stacks.

• Exercise 4: specify an unbounded stack, and then provide an
implementation and the proof of correctness as in previous
example. You can ignore the actual data, and assume that they
are just tokens, so the only relevant info is how many items are
in the stack. This is equivalent to a counter.

• Exercise 5: Same thing, with an unbounded queue.

• Hint: Follow the intuition of the 2-position buffer seen in
previous class, built by concatenating two 1-position buffers.

30 Octobre 2003 Concurrency 5 10

Expressive power of CCS
• CCS is a Turing-complete formalism, i.e. it is able to express all

computable functions.

• To prove this, it is sufficient to show that it is possible to
simulate the behavior of Turing machines.

• Assuming that we know already how to implement an unbounded
queue, it is convenient to consider the variant definition of
Turing machines which use an unbounded queue instead of a tape.

• There is also a variant definition which uses two stacks instead
of a tape.

• Exercise 6: Show how to simulate a Turing Machine

30 Octobre 2003 Concurrency 5 11

	Concurrency 5
	Definitions with parameters
	The theory of CCS
	Proper axioms of the theory
	Proper Axioms of the theory
	Proper Axioms of the theory
	Proper Axioms of the theory
	Example: A distributed scheduler
	Example: A distributed scheduler
	Example: Unbounded Buffers
	Expressive power of CCS

