
Expressiveness of probabilistic π-calculi∗

Sylvain Pradalier† Catuscia Palamidessi‡

Abstract

In this work we propose a probabilistic extension of the π-calculus.
The main novelty is a probabilistic mixed choice operator, that is, a
choice construct with a probability distribution on the branches, and
where input and output actions can both occur as guards. We develop
the operational semantics of this calculus, and then we investigate its
expressiveness. In particular, we compare it with the sublanguage
with the two separate choices, where input and output guards are not
allowed together in the same choice construct. Our main result is that
the separate choices can encode the mixed one. Further, we show that
input-guarded choice can encode output-guarded choice and viceversa.
In contrast, we conjecture that neither of them can encode the pair of
the two separate choices.

1 Introduction

In the field of concurrent languages, expressiveness is an important and
intriguing problem. Differently from the case of sequential languages, the
purpose of a program is not just to compute a function, but also to control
the communication and the interaction of the various parallel components
of a system. There are therefore more parameters and perspectives which
must be taken into account when assessing the expressive power of a new
formalism.

Most of the main process calculi proposed in literature have been widely
investigated from the point of view of the expressive power, both in abso-
lute terms, i.e. their capability to solve problems, and in relative terms,
i.e. their comparison. In particular, there has been a lot of work aiming
at establishing the relation between different calculi, thus providing some
structure for the huge plethora of formalisms that have been proposed in
the field of Concurrency. One of the goals of such investigation is, of course,
to individuate languages that have the same expressive power but can be

∗This work has been partially supported by the INRIA ARC project ProNoBiS and by
the INRIA DREI Équipe Associée PRINTEMPS.

†Lix, Ecole Polytechnique, 91128 Palaiseau Cedex, France
‡INRIA Futurs and Lix, Ecole Polytechnique, 91128 Palaiseau Cedex, France

1



implemented in a more efficient way. The encoding itself can be valuable, as
the source language, even if less efficient, may still be useful as a specification
language. Another goal is to find out the constraints to implementation. For
instance, if a language can solve a problem that is known to be not solv-
able in a distributed asynchronous model (like for instance the symmetric
leader election), then we know that language cannot be implemented in a to-
tally distributed manner. The interested reader can find in [11] an extended
discussion on these issues.

Surprisingly however, for an important class of calculi, the probabilistic
ones, the question of relative expressiveness has not been investigated much
(as far as we know), despite the fact that there have been many proposals
already and that the area is rather mature. Among the several approaches,
we mention the one in [17] which is similar to ours in spirit. We suggest the
interested reader to consult [1] for a recent overview and classification of the
main probabilistic calculi and models that have been proposed.

In this paper, we make a first step towards the study of relative expres-
siveness in the probabilistic setting. We focus on one of the key mechanisms
in Concurrency: the choice operator. This construct represents a choice be-
tween alternative computations, and may be controlled by means of guards.
Its importance relies on the fact that it is very useful in distributed systems
for allowing processes to interact and coordinate.

One can define various kinds of choice operator depending on the guards
that are allowed to appear in it. In process calculi, guards are usually
communication actions (input and output), and it is then natural to consider
the following classification:

• input-guarded choice: the guards can only be input actions,

• output-guarded choice: the guards can only be output actions,

• separate choice: a choice can contain input or output guards, but not
both,

• mixed choice: a choice can contain both input and output guards.

In the non-probabilistic world it has been proved that the asynchronous
π-calculus (no choice, and only asynchronous outputs) can encode input-
guarded choice [10] and also the separate choices [9]. On the contrary, it
cannot encode the mixed choice [11]. The mixed choice had been already
proved to be strictly more powerful than the other kinds of choice also in
CSP [3]. In both these cases, the proof of the separation result relies on
the capability/incapability of expressing the solution to certain consensus
problems.

We are interested in exploring whether the probabilistic extensions of the
above choice constructs presents a similar gap. In particular, we consider
this question in the context of the π-calculus. We know that probabilities

2



add expressive power: in fact, in [12] a probabilistic extension of the π-
calculus with input-guarded choice has been proved able to encode the π-
calculus with the mixed choice. On the other hand this result per-se is
not a proof that everything collapses in the same expressiveness class. In
fact, the combination of the mixed choice and probability may generate new
capabilities. This is one motivation for exploring the probabilistic extension
of the mixed choice.

It is however not obvious how to define such extension. There are in fact
various subtle issues related to the compositionality of the parallel operator,
as explained in [16]. A stochastic version of the π-calculus with the mixed
choice has been defined in [15], but in that case the definition of the parallel
operator rests on the synchronous1 assumption, according to which all the
parallel components move at the same time. This is the case for all the
proposals of the probabilistic mixed choice that we know of from literature.
We, on the contrary, want to investigate the expressiveness of choice in an
asynchronous setting, since we are interested in distributed systems, where
the assumption of a global time would be unrealistic.

1.1 Contribution

We propose a probabilistic version of the π-calculus with the mixed choice
coherent with the proposal in [6, 12] for the case of input-guarded choice. We
then investigate its expressive power relatively to that of its sublanguages,
that are obtained by restricting the choice construct.

We will see that, in contrast to the findings in [11] for the non-probabilistic
case, the mixed choice can be encoded in the separate choices. Our result
presents some analogy with the one in [12], where the mixed choice was
encoded using probabilistic input-guarded choice, The difference with the
latter is that in our case we have the separate choices available, and we
present a much simpler encoding, based on a default possibility of back-
tracking. The encoding in [12] is based on a sophisticated extension of the
dining cryptographers protocol. We think that such idea cannot be extended
to our setting (this is part of our conjecture about the gap between the sepa-
rate choices and one single choice, see below). On the other hand, we are not
sure either that our simpler encoding can be adapted somehow to the set-
ting in [12], because ours requires a choice construct with both output and
τ prefixes, which is not present in the probabilistic asynchronous π-calculus
considered in [12].

The importance of our result relies on the fact that the distributed im-
plementation of the mixed choice is much more difficult than the one of

1The term synchronous (resp. asynchronous) is used here in the sense of Distributed
Computing, i.e. it means that the underlying model of computation is based on a global
clock (resp. local clocks). This is different from the use in Concurrency, where synchronous
and asynchronous usually refer to communication.

3



separate choices. Under certain conditions, it is even impossible. Again, see
[11] for a discussion on this topic.

On the lower level of the hierarchy, we will show that each form of choice
(input-guarded or output-guarded) can encode the other. We do not know,
at the moment, whether the hierarchy actually collapses into just one class
of expressiveness, but our expectation is that this is not the case: we believe
that there is a gap in between the language with the two separate choices
and the two languages with one kind of choice.

We consider two semantics for our language. The first one follows the
approach of [6] in which the coefficients on the branches of a choice add
up to 1 (and for this reason we regard them as probabilities). The second
approach is based in considering these coefficients as activities. Then, after
the execution we re-normalize the quantities associated to the runs to get
probabilities. Part 2.3 explains in detail the philosophy of both semantics.

1.2 Overview:

We begin by describing and explaining the syntax and the two operational
semantics (Section 2). Then we present an encoding of the probabilistic
mixed choice by the probabilistic separate choices (Section 3). Further we
conjecture that the two separate choices (input and output) cannot be en-
coded by using only one of them (Section 4). On the other hand, we show
that input and output guarded choices can encode each other (Section 5).
We then discuss some controversial design decision for our calculus (Section
6), and we conclude with the plans for future research related to this work
(Section 7).

For reasons of space, we do not include the proofs here. They can be
found in [14].

2 An operational semantic of the quantitative and
probabilistic π-calculus with mixed choice

The introduction of probabilities in a calculus does not necessarily rule out
the nondeterminism. Indeed the variations of behaviors due to the environ-
ment, the scheduler or the adversary, may be more naturally considered as
nondeterministic, since we may not have any information on it a priori.

This is why, as in [6], we consider a syntax with a probabilistic choice and
a classical parallel operator. The first will represent the behavioral variations
due to the process in a given scheduling scenario. The latter will generate
nondeterministically different scheduling scenarios. Correspondingly, the
operational semantics will generate groups of transitions corresponding to
the probabilistic choices in different scenarios. We call such a group a step.

4



2.1 Syntax

We use a syntax very close to the classical π-calculus. The only modification
on the standard constructors is the addition of a (positive) coefficient on
each branch of a choice. This is the method used in [6, 15] for instance.
Intuitively, the greater the coefficient of a branch is, the more probable is its
execution. We explain in Section 2.3 how probabilities are computed from
these coefficients.

The syntax is defined by the following grammar

Prefixes α ::= xy | x(y) | τ

Processes P ::= Σi∈I(αi, pi).Pi | νxP | P |P
| X | rexX .P

The prefixes can be of the form xy (output), x(y) (input), and τ (silent
action). A process is either of the form Σi∈I(αi, pi).Pi (a weighted choice
between different guarded process), or νxP (a restriction), or P |Q (a parallel
composition), or X (a recursion variable), or recX .P (a recursive process).

We sometimes write (α1, p1).P1+...+(αn, pn).Pn instead of Σi≤n(αi, pi).Pi.
The empty sum represents a terminated process and is denoted by 0.

Both our operational semantics use this syntax, but for the probabilistic
one we require that, for each choice Σi≤n(αi, pi).Pi, the sum Σi∈Ipi be 1.
See Section 2.3.

Let us briefly recall the terminology relevant for our investigation: a
(sub-)language has mixed choice, separate choice, input-guarded choice, output-
guarded choice, or blind choice, if its choice constructs of cardinality greater
than 1 can have as guards, respectively: both outputs and inputs, either
outputs or inputs, only inputs, only outputs, or no guards at all (i.e. only τ
prefixes).

Following the terminology used in Concurrency Theory, we call asyn-
chronous the sub-language in which outputs can only be followed by the
terminated process (asynchronous outputs), and occur only in trivial choices,
i.e. in choices of cardinality 1. In other words, outputs can only appear in
constructs of the form xy.0.

2.2 Structural congruence

We use the usual structural congruence ≡ of the π-calculus, that is, α-
conversion, commutativity and associativity of the parallel operator, neu-

5



trality of the 0, commutativity of the choice, scope extrusion, and commu-
tativity of the restriction. See [14] for the precise definition.

2.3 Operational Semantics

Weighted choices associate a coefficient to each action. Intuitively this coef-
ficient represents the chances for the action to be executed: the higher the
coefficient, the more probable the action.

To obtain probabilities from these coefficients, they only need to sum
up to 1. It is therefore sufficient to re-normalize each coefficient. Here
we have two alternatives: we can re-normalize for each choice, directly in
the term and at each step of execution, or we can re-normalize after the
derivation of the transitive closure of each possible step. Both possibilities
seem reasonable and they correspond to our two semantics: the probabilistic
semantics and the and the quantitative one, respectively. The probabilistic
case requires the sum of the probabilities associated to each step to be equal
to 1, and that each rule keeps the sum equal to 1.

The difference between these two semantics is that the coefficient in
the quantitative case may be used to represent also other kinds of infor-
mation. For instance, it could be associated to the expected speed of
some reaction which enables the guard (i.e. the inverse of the expected
time that takes for the guard to become enabled). As an example, let
P = (a1, 10).P1 + (a2, 10).P2 and Q = (b1, 5).Q1 + (b2, 5).Q2, and consider
their parallel composition P |Q. In the probabilistic case, all coefficients are
re-normalized to 1/2 and have equal chance to occur. But in the quantitative
case, a1 and a2 are more likely to occur first. Furthermore b1 and b2 could
be in competition with a1 and a2, for instance if they all are input actions
on a channel where there is only an output available. So, the probability to
occur first may translate into the probability to occur at all.

In this paper, we have also another reason to consider the quantitative
approach: our main result, the encoding of the probabilistic mixed choice
into the probabilistic separate choices, presents some problems with respect
to the restriction operator in the probabilistic semantics, while this problem
disappears in the quantitative semantics.

2.3.1 Rules common to both semantics

In the classical π-calculus, one writes P
α−→ Q for the transition from P

to Q. Here we write P{ αi−→pi Pi}i∈I for the step from P to the Pi’s with
coefficients pi. The reason for this grouping are explained at the beginning
of Section 2 We omit the notation i ∈ I when there is no ambiguity.

Rules CONG, SUM and REC are the probabilistic extensions of the cor-
responding rules in the classical π-calculus.

6



SUM :
Σi(pi,µi).Pi{

µi−→piPi}

CONG : P≡P ′ P{
µi−→piPi} ∀i.Pi≡P ′

i

P ′{
µi−→piP

′
i}

REC: P [recXP/X]{
µi−→piPi}

recXP{
µi−→piPi}

The COM rule corresponds to the fusion of the three classical rules of the
π-calculus for interleaving, communication and communication with scope
extrusion (called PAR, COM and CLOSE classically). It is more complicated
than other probabilistic calculi in literature because we are dealing with an
asynchronous model (asynchronous in the sense of no global clock): Each
process can proceed at his own speed and decide whether to synchronize or
not, on each of the branches, hence several different cases can occur when
combining the steps of two parallel processes.

Given two steps P{ µi−→pi Pi}i∈I and Q{
ηj−→qj Qj}j∈J , we want to build

a step from P |Q. To this end, for each pair of transitions of (P
µi−→pi

Pi, Q
ηj−→qj Qj) we build a transition of P |Q using one of the three classical

rules for the parallel composition. For instance, if P{ xy−→1/2 P ′, . . .} and

Q{ x(z)−−→1/3 Q′, . . .}, then from P |Q we will have steps of the form P |Q{ τ−→1/6

P ′|Q′[y/z]} (communication), and of the form P |Q{ xy−→1/6 P ′|Q, . . .} (left

interleaving), and of the form P |Q{ x(z)−−→1/6 P |Q′, . . .} (right interleaving).
One may wonder why we do not put these steps together in one single

step from P |Q. This is because the alternative between these three cases
should be nondeterministic rather than probabilistic, as in the classical π-
calculus. The condition: ∀i, j. bn(µi)

⋂
fn(Qj) = ∅ ∧ bn(ηj)

⋂
fn(Pi) =

∅ comes from the condition bn(µ)
⋂

fn(Q) = ∅ of the classical rule PAR:
P

µ−→P ′ bn(µ)
T

fn(Q)=∅
P |Q

µ−→P ′|Q
.

Note that the nondeterminism of the calculus derives from this case.

COM :
P{

µi−→piPi} Q{
ηj−→qj Qj} ∀i,j. bn(µi)

T
fn(Qj)=∅ ∧ bn(ηj)

T
fn(Pi)=∅

(P |Q){
αi,j−−→piqj Ri,j}

where Ri,j and αi,j are defined by:

7



• if µi = yx, ηj = y(z),

– either Ri,j = Pi|Qj [x/z] ∧ αi,j = τ : communication.
– or Ri,j = Pi|Q ∧ αi,j = µi: left interleaving.
– or Ri,j = P |Qj ∧ αi,j = ηj : right interleaving.

• symmetric case: µi = y(z), ηj = yx

• if µi = y(x), ηj = y(z),

– either Ri,j = (νx)(Pi|Qj [x/z]) ∧ αi,j = τ : communication
and scope extrusion

– or Ri,j = Pi|Q ∧ αi,j = µi : left interleaving.
– or Ri,j = P |Qj ∧ αi,j = ηj : right interleaving.

• symmetric case: µi = y(z), ηj = y(x)

• otherwise,

– either Ri,j = Pi|Q ∧ αi,j = µi: left interleaving.
– or Ri,j = P |Qj ∧ αi,j = ηj : right interleaving.

Let us illustrate the rule COM with an example. For simplicity we omit
the parameters in the communication. Furthermore, if in a step we have two
transition with the same label and the same continuation, then we write the
transition only once, of course with probability equal to the sum of the
probabilities.

Example 1 Consider the processes P = (1/2, y).P1 + (1/2, x).P2 and Q =
(1/3, y).Q1+(2/3, z).Q2. The possible steps of P |Q are 24, in fact 3 possible
outcomes derive from the combination between the first branch of P and the
first of Q, 2 from the first of P and the second of Q, 2 from the second of
P and the first of Q, and 2 from the second of P and the second of Q. All
the possible steps are:

P |Q{ y−→1/2 P1 |Q,
x−→1/2 P2 |Q}

P |Q{ y−→1/2 P1 |Q,
x−→1/6 P2 |Q,

z−→1/3 P |Q2}
P |Q{ y−→1/2 P1 |Q,

x−→1/3 P2 |Q,
y−→1/6 P |Q1}

P |Q{ y−→1/2 P1 |Q,
y−→1/6 P |Q1,

z−→1/3 P |Q2}

P |Q{ y−→1/6 P1 |Q,
z−→1/3 P |Q2,

x−→1/2 P2 |Q}
P |Q{ y−→1/6 P1 |Q,

z−→1/3 P |Q2,
x−→1/6 P2 |Q,

z−→1/3 P |Q2}
P |Q{ y−→1/6 P1 |Q,

z−→1/3 P |Q2,
x−→1/3 P2 |Q,

y−→1/6 P |Q1}
P |Q{ y−→1/6 P1 |Q,

z−→1/3 P |Q2,
y−→1/6 P |Q1,

z−→1/3 P |Q2}

8



P |Q{ y−→1/3 P1 |Q,
y−→1/6 P |Q2,

x−→1/2 P2 |Q}
P |Q{ y−→1/3 P1 |Q,

y−→1/6 P |Q2,
x−→1/6 P2 |Q,

z−→1/3 P |Q2}
P |Q{ y−→1/3 P1 |Q,

y−→1/6 P |Q2,
x−→1/3 P2 |Q,

y−→1/6 P |Q1}
P |Q{ y−→1/3 P1 |Q,

y−→1/6 P |Q2,
y−→1/6 P |Q1,

z−→1/3 P |Q2}

P |Q{ y−→1/6 P |Q1,
z−→1/3 P |Q2,

x−→1/2 P2 |Q}
P |Q{ y−→1/6 P |Q1,

z−→1/3 P |Q2,
x−→1/6 P2 |Q,

z−→1/3 P |Q2}
P |Q{ y−→1/6 P |Q1,

z−→1/3 P |Q2,
x−→1/3 P2 |Q,

y−→1/6 P |Q1}
P |Q{ y−→1/6 P |Q1,

z−→1/3 P |Q2,
y−→1/6 P |Q1,

z−→1/3 P |Q2}

P |Q{ τ−→1/6 P1 |Q1,
y−→1/3 P1 |Q,

x−→1/2 P2 |Q}
P |Q{ τ−→1/6 P1 |Q1,

y−→1/3 P1 |Q,
x−→1/6 P2 |Q,

z−→1/3 P |Q2}
P |Q{ τ−→1/6 P1 |Q1,

y−→1/3 P1 |Q,
x−→1/3 P2 |Q,

y−→1/6 P |Q1}
P |Q{ τ−→1/6 P1 |Q1,

y−→1/3 P1 |Q,
y−→1/6 P |Q1,

z−→1/3 P |Q2}

P |Q{ τ−→1/6 P1 |Q1,
z−→1/3 P |Q2,

x−→1/2 P2 |Q}
P |Q{ τ−→1/6 P1 |Q1,

z−→1/3 P |Q2,
x−→1/6 P2 |Q,

z−→1/3 P |Q2}
P |Q{ τ−→1/6 P1 |Q1,

z−→1/3 P |Q2,
x−→1/3 P2 |Q,

y−→1/6 P |Q1}
P |Q{ τ−→1/6 P1 |Q1,

z−→1/3 P |Q2,
y−→1/6 P |Q1,

z−→1/3 P |Q2}

2.3.2 The two ν rules

The four previous rules are the same for both semantics. But as restrictions
can erase some actions (if x ∈ fn(µ)∧¬(µ = zx∧z 6= x), then νx prevents P
from doing µ) one has, in the probabilistic case, to re-normalize coefficients
so that the sum stays equal to 1. In the quantitative case it is sufficient
to erase transitions which do not satisfy the condition without modifying
coefficients.

As for the rule COM, each of these two rules correspond to several rules
of the classical π-calculus. In each rule, the first set is for the actions that
output the name bound by the ν. The second set is for the action that do
not involve any name bound by the ν. These corresponds to the classic rules
OPEN and NU.

9



Quantitative case

νq :
P{ µi−→pi Pi} ∃i.(x /∈ fn(µi) ∨ (µi = zx ∧ z 6= x))

νx.P{ zi(x)−−−→pi Pi, µi = zix, zi 6= x}
⋃
{ µi−→pi νxPi, x /∈ fn(µi)}

Probabilistic case The rule for the probabilistic case is obtained from
previous one by renormalizing the coefficients.

νp :
P{ µi−→pi Pi} ∃i.(x /∈ fn(µi) ∨ (µi = zx ∧ z 6= x))

νx.P{ zi(x)−−−→qi Pi, µi = zix, zi 6= x}
⋃
{ µi−→qi νxPi, x /∈ fn(µi)}

with ∀i.qi = pi/(Σj:x/∈fn(µj)∨(µj=zx∧z 6=x)pj)

Note that each rule, except νq which is for the quantitative case, preserves
the sum of the coefficients. Thus in the probabilistic case we derive only steps
where the sum of the coefficients is equal to 1.

2.4 Weak steps

The weak steps are defined by:

wea1 :
P{ µi−→pi Pi}
P{ µi=⇒pi Pi}

wea2 :
P{ µi=⇒pi Pi}

⊎
{ τ=⇒q Q} Q{

ηj=⇒rj Rj}

P{ µi=⇒pi Pi}
⊎
{

ηj=⇒q.rj Rj}

wea3 :
∀n.P{ µi=⇒pin

Pi} limn→∞pin = pi

P{ µi=⇒pi Pi}

10



The first two rules are inspired from [5]. The last one is new and rep-
resents the limit case of the second one. Note that the limit only concerns
probabilities.This last rule is very important because our encoding is based
on a loop that allows to backtrack whenever we take the wrong decision.
Eventually, the right decision will be taken with probability 1 but this may
happen only in the limit.

Note that also here the sum of the coefficients is preserved.

3 Encoding of the mixed choice by the separates
choices

We will show that in the probabilistic π-calculus without the nu operator
and in the quantitative π-calculus, the mixed choice is encodable by the
separate ones. In both cases we prove the correctness of our encoding by
showing that it preserves a sort of weak bisimulation. The reason why we
wrote “without the ν operator” is because at present we don’t know how
to encode the ν in a correct way in the probabilistic case. To translate it
homomorphically does not work, because of the re-normalizations induced
by the rule νp that interferes with weak steps. We will explain the problem
in more details in Section 3.2.1.

3.1 The encoding

Our encoding is homomorphic w.r.t. all constructors except the choice.
Thus we only explain the encoding of the choice. Let P be a mixed choice
Σi∈I(pi, xiyi).Pi+Σj∈J(qj , τ).Qj+Σk∈K(rk, xk(zk)).Rk. If I or K are empty,
then the choice is not mixed and [[P ]] = P . Otherwise we begin by making
a blind choice between three branches corresponding to outputs, inputs or
τ ’s. Then in each branch we make a (separate) choice between the outputs,
inputs or τ . As one can go in the outputs branch (for instance) even if the
context enforces communication on an input, we have to include a mecha-
nism to backtrack. To this end, the separate choices contain also a τ -prefixed
branch going back recursively to the beginning, with probability ε, which
needs to be smaller than 1. This means that the process can, in principle,
loop forever. However, such event will have probability the product of ε
with itself infinitely many times, which is 0.

11



3.1.1 Encoding of the weighted mixed choice

[[νx.P ]] = νx.[[P ]]
[[P |Q]] = [[P ]]|[[Q]]

[[rexX .P ]] = recX .[[P ]]
[[X]] = X

Let P be a mixed choice of the form Σi∈I(pi, xiyi).Pi + Σj∈J(qj , τ).Qj +
Σk∈K(rk, xk(zk)).Rk. We define the encoding of P as follows:

[[P ]] = recX .( (Σi∈I(pi), τ).Psend

+(Σj∈J(qj), τ).Pτ

+(Σk∈K(rk), τ).Preceive

)

where:

Psend = Σi∈I(
pi(1− ε)
Σi∈I(pi)

, xiyi).[[Pi]] + (ε, τ).X

Pτ = Σj∈J(
qj(1− ε)
Σj∈J(qj)

, τ).[[Qj ]] + (ε, τ).X

Preceive = Σk∈K(
rk(1− ε)
Σk∈K(rk)

, xk(zk)).[[Rk]] + (ε, τ).X

3.2 Correctness of the encoding

3.2.1 The structure of the proof

We establish the correctness of the encoding by Theorems 1 and 2 in the
probabilistic case, and 3 and 4 in the quantitative case. In both cases the
theorems correspond to a sort of weak bisimulation.

Theorems 1 and 3 correspond exactly to one direction of weak bisimu-
lation. They state that if P can perform a step, then [[P ]] can perform the
corresponding weak step. To prove these results, we use Lemma 1. Essen-
tially, the properties stated by points i-v of this lemma show that the weak
variants of Rules SUM, REC, CONG, COM and νq, respectively, are sound
with respect to Rules wea1, wea2 and wea3, i.e, the definition of =⇒. By
“weak variant” of rule X here we mean the rule obtained by replacing −→
with =⇒ in X.

Unfortunately the same result does not hold for the rule νp. The follow-
ing is a counterexample.

12



Example 2 Let P = (1/2, c).0+(1/2, τ).X and X = (1/2, b).0+(1/2, a).0.
We have P{ c−→1/2 0,

b=⇒1/4 0,
a=⇒1/4 0}. If the equivalent of Lemma 1.v for

νp were to hold, then we should have also νa.P{ c=⇒2/3 0,
b=⇒1/3 0} (the co-

efficient are different from the νq case because we need to apply renormaliza-
tion). However, we have only the strong steps νa.P{ c−→1/2 0,

τ−→1/2 νa.X} and

νa.X{ b−→1 0}, so by Rule wea2 we can only obtain νa.P{ c=⇒1/2 0,
b=⇒1/2 0}.

The discrepancy illustrated by the above counterexample is due to the
fact that the renormalization in the weak variant of Rules SUM-COM would
take place at a different time than in Rules weak1-weak3.

Lemma 1

i. If Q{
ηj−→qj Qj} can be derived by using only SUM, then Q{

ηj=⇒qj Qj},

ii. If P [recXP/X]{ µi=⇒pi Pi}, then recXP{ µi=⇒pi Pi},

iii. If P ≡ P ′, P{ µi=⇒pi Pi} and ∀i.Pi ≡ P ′
i , then P ′{ µi=⇒pi P ′

i},

iv. If P{ µi=⇒pi Pi}, Q{
ηj=⇒qj Qj}, ∀i, j.bn(µi)

⋂
fn(Qj) = ∅ and bn(ηj)

⋂
fn(Pi) =

∅, then (P |Q){
αi,j=⇒piqj Ri,j}, where the αi,j’s and the Ri,j’s are defined

as in the COM rule,

v. If P{ µi=⇒pi Pi} and ∃i.(x /∈ fn(µi) ∨ (µi = zx ∧ z 6= x)), then

νx.P{zi(x)
=⇒pi Pi, µi = zix, zi 6= x}

⋃
{ µi=⇒pi νxPi, x /∈ fn(µi)}.

In the other direction, to get a standard weak bisimulation, we should
have that if [[P ]] can perform a step, then P can perform the corresponding
weak step. However we cannot get this result: since the translation divides
a mixed choice into various separate choices, we get more possibilities in the
translated term than in the original.

Indeed, as a translated term can only make a blind choice, to get a
standard bisimulation we would need that the Psend, Preceive et Pτ resulting
from the encoding are associated to P by the bisimulation. This does not
work, one can easily see that these terms have in general steps different from
those of the initial term.

However, all the weak steps that [[P ]] can perform can be continued so
to get one that is included in the ones of P . For instance, after [[P ]] has
performed the blind choice, it can perform the output choices, which will
result in a weak step of the form [[P ]]{xiyi=⇒pi [[Pi]]}

⊎
{ τ−→Σjqj Pτ}

⊎
{ τ−→Σkrk

Preceive}. By repeating this for the other two kinds of branches, we will get

a weak step of the form trP{xiyi=⇒pi Pi}
⊎
{ τ=⇒qj Qj}

⊎
{xk(zk)

=⇒ rk
Rk}, that

corresponds exactly to the step of P .

13



This situation is well known in the classical (non-probabilistic) setting:
it is often the case that an encoding does not preserve the operational se-
mantics at each step. In other words, it may happen that some intermediate
states in the computation of an encoded process do not correspond to the en-
coding of any derivative of the original process. However, it is often the case
that the encoding satisfies a property of the following form: if [[P ]]

µ
=⇒ Q,

then there exists P ′ such that [[P ]]
µ

=⇒ Q
τ=⇒ [[P ′]] and P

µ
=⇒ P ′.

To formalize the above idea in the probabilistic setting, we introduce the
notion of completion of a step:

Definition 1 Let P be a process and let P{ µi−→pi Pi} be one of its steps.
A completion of this step is a weak step resulting of a derivation that be-
gins with a wea1 applied to P{ µi−→pi Pi}, and then continues with successive
applications of wea2 and wea3.

Intuitively, completing a step means to explore the possible continuations
of this step, going deeper each time we get a τ . The wea3 rule indeed
only modifies coefficients and the rule wea2 permits to extend only silent
transitions. Thus the completion of a step does not go further, in each
branch, than the first non-silent action.

We remark that the notion of completion is quite robust, in the sense that
it does not reduce the interactions possibilities, as shown by the following
proposition.

Proposition 1 Let P be a process. Let P{ µi−→pi Pi} be one of its steps, and
let P{

ηj=⇒qj Qj} be one of its completions. Consider now a process R, and
let R{ αk−→rk

Rk} be one of its steps. Let X be a step of the form P |R{. . .}
obtained by applying the COM rule to P{ µi−→pi Pi} and R{ αk−→rk

Rk}. By
using Lemma 4 with premises P{

ηj=⇒qj Qj} and R{ αk−→rk
Rk}, we obtain a

step Y of the form P |R{. . .} which is a completion of X.

We are now ready to complete the formal assessment of the correctness
of the encodings: Theorems 2 and 4 represent the other direction of bisimu-
lation, but only “modulo completion”. More precisely, they state that each
step of [[P ]] can be completed into a step corresponding to one of P .

3.2.2 Correctness results for the probabilistic case

Theorem 1 In the probabilistic semantics, if P{ µi−→pi Pi} can be derived
without using the rule νp, then [[P ]]{ µi=⇒ pi[[P ]]i}.

Theorem 2 In the probabilistic semantics, if [[P ]]{ µi−→pi Pi}, then there exist
Qj’s such that [[P ]]{

ηj=⇒qj [[Qj ]]} is a derivable completion of the above step

and P{
ηj=⇒qj Qj}.

14



3.2.3 Correctness results for the quantitative case

Theorem 3 In the quantitative semantics, if P{ µi−→pi Pi}, then [[P ]]{ µi=⇒
pi[[P ]]i}.

Theorem 4 In the quantitative semantics, if [[P ]]{ µi−→pi Pi}, then there exist
Qj’s such that [[P ]]{

ηj=⇒qj [[Qj ]]} is a derivable completion of the above step

and P{
ηj=⇒qj Qj}.

3.3 Reduction of the size of a separate choice to two

This encoding reduces the language to a very simple form of separate choices:
blind choices, and choices of size 2 in which one of the branches is prefixed
by a τ .

The encoding works exactly in the same way as the previous one. We
separate each branch of the separate choice, as we separated inputs from
outputs and from τ . The theorem of correctness are identical.

[[Σi∈I(pi, µi).Pi]] =
recX .(

Σi∈I (pi, τ).Qi

)
where: Qi = (1− ε, µi).[[Pi]] + (ε, τ).X

4 Expressiveness of the separate choices

We just showed how the mixed choice can be reduced to separate choices of
size two. The question is now to compare the pair of the two separate choices
to only one (typically the probabilistic asynchronous π-calculus proposed in
[6]).

We conjecture that there is no encoding of the two separates choices by
one of them.

Note that the encodings of Section 5 prove that input guarded choice
and output guarded choice are equivalent. So we can restrict to compare
the pair of separate choices to input guarded choice.

4.1 A failed attempt to encode the separate choices

We present here our best attempt to encode separate choices by input
guarded choices, we discuss the reason why it does not work, and we con-
jecture that it is not possible to define such an encoding.

15



In a non probabilistic setting, various kinds of choice have been encoded
by using the parallel operator. The basic idea is to put in parallel the
branches of the choice, making sure that only one of them would be executed.
See for instance [10, 9]. This idea however cannot work here, since the
transitions would not be in the same step anymore. In other words, we
cannot encode choice by parallelism since in the choice the decision between
two branches is ruled by probabilities, while in the parallel product it is
ruled by non-determinism. So a choice can only be translated in another
choice similar for actions and probabilities.

So, our only hope is to translate the separate choices into input guarded
choices. Let us use, for instance, the idea of [7] for translating output prefixes
into inputs and asynchronous outputs:

[[x(y).P ]] = νz(xz | z(y).[[P ]])
[[xy.Q]] = x(z).(zy | [[Q]])

This encoding can be lifted to choices in the following way:

[[(p, x(y)).Px + (1− p, τ).Pτ ]] =
νz(
xz | (p, z(y)).[[Px]] + (1− p, τ).[[Pτ ]]
)

[[(px, xy).Px + (1− px, τ).Pτ ]] =
(px, x(z)).( zy|[[Px]] )
+ (1− px, τ).[[Pτ ]]

However this does not work since the translation of the output guarded
choice can synchronize with xz while simultaneously the translation of the
input guarded choice can execute its τ . The input choice performed its τ but
the output choice began its branch of synchronization, and there is no way to
go backwards. As we do not have output choices, the backward mechanism
of the previous encoding can not work for the outputs. The translation of
the output guarded choices is now in a deadlock which was not possible in
the original term.

A solution could be to replace the τ of the translation of the input choice
by an input on channel x so that the xz can synchronize either with this
branch or with the input branch of the translation of the outputs guarded
choice. But then another input guarded choice on x can interfere. It also

16



contains a xz′ that can be received by the first input guarded choice while
the xz would be received by the output guarded choice. Here again we get
an unexpected deadlock.

5 Encodings between input and output guarded
choices

Finally, we present encodings between input and output guarded choices.
We use the idea of [7] already illustrated in previous section.

These encodings highlights the symmetry between the two choices and
establishes that they are equally expressive. One has to note that the en-
coding only use asynchronous outputs (although they can be used within
choices). So all the four languages with either input or output choice, and
with asynchronous output or not, are equivalent.

Encoding the input guarded choice into the output one

[[Σi∈I(pi, xi(yi)).Pi]] = (νzi)i∈I( Σi∈I(pi, xizi) | Πi∈Izi(yi).[[Pi]] )

[[xy.P ]] = x(z).(zy | [[P ]])

Encoding the output guarded choice into the input one

[[x(y).P ]] = νz(xz|z(y).[[P ]])

[[Σi∈I(pi, xiyi).Pi]] = Σi∈I(pi, xi(z)).(zyi|[[Pi]])

6 Discussion on the design of our calculus

In the design of our language we took some design decisions that are strictly
related to the nature of choice in calculi with synchronous communication
(in the sense of Concurrency Theory), such as CCS [8], TCSP [4], and ACP
[2], besides the π-calculus. In these calculi, the commitment to a certain
branch in a choice takes place at the same time as the transition, and in
agreement with the partner of the communication action. In other words,
there is no possibility for a partner to commit on a communication action

17



before the other partner decides what to do. As a consequence, the choice
in these languages is memoryless.

In order to illustrate this point, consider the following example, suggested
by Roberto Segala during a discussion:

• P = (1/2, a).0 + (1/2, b).0

• Q = recX((1/2, a).X + (1/2, c).X)

A possible step for P |Q is:

P |Q{ τ−→1/4 Q,
a−→1/4 P |Q,

c−→1/2 P |Q}

If the communication does not occur then the system P |Q stays in the
same state. Thus by scheduling always the above step, we have a computa-
tion where the communication occurs eventually with probability 1.

The key point is the above example is that it is not possible to commit
unilaterally on a certain communication action, and to keep memory of such
commitment in the subsequent transitions. Indeed if the synchronization
does not occur, it could be the case that P had tried to make a b. But
at the next step, we can reschedule the same step (with probability 1/4 of
synchronizing) without taking into account the fact that P had selected b
in previous transition.

Roberto Segala did not find this acceptable: since a has probability 1/2
in P , he argued that there should be no context where the synchronization
on the channel a occurs with a probability greater than 1/2.

In our opinion, on the contrary, it is perfectly plausible that the context
may increase the probability of a communication event, and it is in line with
the philosophy of synchronous communication in concurrency theory. So in
the above example we find correct that the communication occurs eventually
with probability 1.

7 Future work

We are interested in proving (or disproving) our conjecture (see part 4). We
are currently looking at some impossibility results for probabilistic systems
in the Distributed Computing literature.

We also aim at studying whether our results extend to the stochastic
calculi proposed in [15, 13]. The author of [15] claims that the mixed choice
is necessary to model certain biological phenomena, so it would be interesting
to see in which way the stochastic aspects may interfere with our result. If,
on the contrary, our result extends to the stochastic case, then it may be
useful to know it in order to get a more efficient implementation.

Acknowledgments: We thank Roberto Segala for insightful discussion
and for helping to fix some problems in the operational semantics.

18



References

[1] Falk Bartels, Ana Sokolova, and Erik P. de Vink. A hierarchy of prob-
abilistic system types. Theoretical Computer Science, 327(1-2):3–22,
2004.

[2] J.A. Bergstra and J.W. Klop. Process algebra for synchronous commu-
nication. Information and Control, 60(1,3):109–137, 1984.

[3] Luc Bougé. On the existence of symmetric algorithms to find leaders
in networks of communicating sequential processes. Acta Informatica,
25(2):179–201, February 1988.

[4] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communi-
cating sequential processes. Journal of the ACM, 31(3):560–599, 1984.

[5] Yuxin Deng and Catuscia Palamidessi. Axiomatizations for proba-
bilistic finite-state behaviors. In Proceedings of FOSSACS’05, vol-
ume 3441 of Lecture Notes in Computer Science, pages 110–124.
Springer, 2005. http://www.lix.polytechnique.fr/∼catuscia/
papers/Prob Axiom/fossacs05.pdf.

[6] Oltea Mihaela Herescu and Catuscia Palamidessi. Probabilistic asyn-
chronous π-calculus. In Jerzy Tiuryn, editor, Proceedings of FOS-
SACS 2000 (Part of ETAPS 2000), volume 1784 of Lecture Notes in
Computer Science, pages 146–160. Springer, 2000. http://www.lix.
polytechnique.fr/∼catuscia/papers/Prob asy pi/fossacs.ps.

[7] Kohei Honda and Mario Tokoro. An object calculus for asynchronous
communication. In Pierre America, editor, Proceedings of the European
Conference on Object-Oriented Programming (ECOOP), volume 512 of
Lecture Notes in Computer Science, pages 133–147. Springer, 1991.

[8] R. Milner. Communication and Concurrency. International Series in
Computer Science. Prentice Hall, 1989.

[9] Uwe Nestmann. What is a ‘good’ encoding of guarded choice? Jour-
nal of Information and Computation, 156:287–319, 2000. An extended
abstract appeared in the Proceedings of EXPRESS’97, volume 7 of
ENTCS.

[10] Uwe Nestmann and Benjamin C. Pierce. Decoding choice encodings.
Journal of Information and Computation, 163:1–59, 2000. An extended
abstract appeared in the Proceedings of CONCUR’96, volume 1119 of
LNCS.

19

http://www.lix.polytechnique.fr/~catuscia/papers/Prob_Axiom/fossacs05.pdf
http://www.lix.polytechnique.fr/~catuscia/papers/Prob_Axiom/fossacs05.pdf
http://www.lix.polytechnique.fr/~catuscia/papers/Prob_asy_pi/fossacs.ps
http://www.lix.polytechnique.fr/~catuscia/papers/Prob_asy_pi/fossacs.ps


[11] Catuscia Palamidessi. Comparing the expressive power of the syn-
chronous and the asynchronous pi-calculus. Mathematical Structures
in Computer Science, 13(5):685–719, 2003. A short version of this
paper appeared in POPL’97. http://www.lix.polytechnique.fr/
∼catuscia/papers/pi calc/mscs.pdf.

[12] Catuscia Palamidessi and Oltea M. Herescu. A randomized encod-
ing of the π-calculus with mixed choice. Theoretical Computer Sci-
ence, 335(2-3):73–404, 2005. http://www.lix.polytechnique.fr/
∼catuscia/papers/prob enc/report.pdf.

[13] Andrews Phillips and Luca Cardelli. A correct abstract machine for
the stochastic pi-calculus. Technical report, 2005.

[14] Sylvain Pradalier, 2005. Rapport de stage. Master Parisien
de Recherche en Informatique. http://mpri.master.
univ-paris7.fr/attached-documents/stages-2005-rapports/
rapport-2005-pradalier.pdf.

[15] Corrado Priami. Stochastic pi-calculus. The Computer Journal,
38(7):578–589, 1995.

[16] Roberto Segala. Modeling and Verification of Randomized Distributed
Real-Time Systems. PhD thesis, Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology, June
1995. Available as Technical Report MIT/LCS/TR-676.

[17] Roberto Segala and Nancy Lynch. Probabilistic simulations for prob-
abilistic processes. Nordic Journal of Computing, 2(2):250–273, 1995.
An extended abstract appeared in Proceedings of CONCUR ’94, LNCS
836: 481-496.

20

http://www.lix.polytechnique.fr/~catuscia/papers/pi_calc/mscs.pdf
http://www.lix.polytechnique.fr/~catuscia/papers/pi_calc/mscs.pdf
http://www.lix.polytechnique.fr/~catuscia/papers/prob_enc/report.pdf
http://www.lix.polytechnique.fr/~catuscia/papers/prob_enc/report.pdf
http://mpri.master.univ-paris7.fr/attached-documents/stages-2005-rapports/rapport-2005-pradalier.pdf
http://mpri.master.univ-paris7.fr/attached-documents/stages-2005-rapports/rapport-2005-pradalier.pdf
http://mpri.master.univ-paris7.fr/attached-documents/stages-2005-rapports/rapport-2005-pradalier.pdf

	Introduction
	Contribution
	Overview:

	An operational semantic of the quantitative and probabilistic -calculus with mixed choice
	Syntax
	Structural congruence
	Operational Semantics
	Rules common to both semantics
	The two  rules

	Weak steps

	Encoding of the mixed choice by the separates choices
	The encoding
	Encoding of the weighted mixed choice

	Correctness of the encoding
	The structure of the proof
	Correctness results for the probabilistic case
	Correctness results for the quantitative case

	Reduction of the size of a separate choice to two

	Expressiveness of the separate choices
	A failed attempt to encode the separate choices

	Encodings between input and output guarded choices
	Discussion on the design of our calculus
	Future work

