A Model-Theoretic Reconstruction of the
Operational Semantics of Logic Programs*

MORENO FALASCHI

Dipartimento di Ingegneria Elettronica e Informatica, Universita di Padova,
Via Gradenigo 6{A, 35131 Padova, ltaly

GIorGI10 Levt

Dipartimento di Informatica, Universita di Pisa,
Corso ltalia 40, 56125 Pisa, Italy

AND

MAURIZIO MARTELLI AND CATUSCIA PALAMIDESSI

Dipartimento di Informatica e Scienze dell’Informazione, Universita di Genova,
Viale Benedetta XV 3, 16132 Genova, ltaly

In this paper we define a new notion of truth on Herbrand interpretations
extended with variables which allows us to capture, by means of suitable models,
various observable properties, such as the ground success set, the set of atomic con-
sequences, and the computed answer substitutions. The notion of truth extends the
classical one to account for non-ground formulas in the interpretations. The various
operational semantics are all models. An ordering on interpretations is defined to
overcome the problem that the intersection of a set of models is not necessarily a
model. The set of interpretations with this partial order is shown to be a complete
lattice, and the greatest lower bound of any set of models is shown to be a model.
Thus there exists a least model, which is the least Herbrand model and therefore
the ground success set semantics. Richer operational semantics are non-least
models, which can, however, be cffectively defined by fixpoint constructions. The
model corresponding to the compuled answer substitutions operational semantics is
the most primitive one (the others can easily be obtained from it). ¢ 1993 Academic
Press, Inc.

1. INTRODUCTION

The least Herbrand model semantics was originally proposed (van
Emden and Kowalski, 1976) as the correct declarative semantics for

* Partially supported by the ESPRIT Basic Research Action P3020 (“Integration™).
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definite horn clause logic (HCL) programs. This characterization is
meaningful from a purely logical point of view and has some real
minimality properties, as we will point out in the following.

Unfortunately, if we look at the problem from a programming language
point of view, this kind of semantics is not rich enough to model important
properties of HCL programs.

In general the declarative semantics of a programming language should
be equivalent to the operational semantics, which, in turn, is strongly
influenced by what are called observable properties. A specific operational
behaviour (captured by the operational semantics) can be relevant or not
depending on which kind of properties we are interested in. These same
properties should have a counterpart in the declarative semantics and this
may require defining a richer model-theoretic semantics. Of course, this
semantics should also encompass the classical approach, ie., the least
Herbrand model semantics. A first partial solution to this problem was
given by Clark (1979). We extended this solution in Falaschi er al. (1988,
1989) by defining two semantics modeling important observable properties
and by characterizing them as fixpoints. The same motivation can be found
in Gaifman and Shapiro (1989a, b), which introduce a proof-theoretic
approach, able to deal with compositionality.

In this paper we outline a formal framework to describe and compare
different semantics. Qur approach is essentially model-theoretic rather than
proof-theoretic. In the resulting construction different semantics correspond
to different models, including the standard semantics which is still the least
model.

Section 2 defines various operational semantics with different (already
proposed) notions of observable properties, such as the ground success set,
the set of atomic consequences, and the computed answer substitutions. It
also discusses the induced program equivalence relations.

Section 3 describes the new notions of interpretations and models.
Interpretations contain non-ground atoms and include standard Herbrand
interpretations. The notion of truth extends the classical one to account for
non-ground formulas in the interpretations.

The various operational semantics are all models. However, one relevant
property of Herbrand models does not hold: the intersection of a set of
models is not necessarily a model.

In order to overcome this problem a new partial order on interpretations
is defined (Section 4). The set of interpretations with this partial order is
shown to be a complete lattice, and the greatest lower bound of any set of
models is shown to be a model. Thus there exists a least model which
happens to be the least Herbrand model and therefore the ground success
set semantics.

Richer operational semantics are non-minimal models which can,
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however, be effectively defined by fixpoint constructions. In Section 5 four
different fixpoint operators are defined. One of these (T;), which
corresponds to the computed answer substitution operational semantics
and to the S-semantics in Falaschi et al. (1988, 1989), is the most primitive
one in the sense that the others can easily be obtained from it.
Correspondingly, in Section 6 various equivalence relations are shown,
and, again, the one corresponding to the S-semantics turns out to be the
finest one.

Finally, in Section 7 the fixpoint semantics are proved equivalent to the
operational ones.

2. OPERATIONAL SEMANTICS

The reader is assumed to be familiar with the terminology of and the
basic results in the semantics of logic programs (Lloyd, 1987; Apt, 1990).
Let the language L consist of:

* a finite set C of data constructors,
» a finite set P of predicate symbols
» a denumerable set V of variable symbols.

Let T be the set of terms built on C and V. A substitution is a mapping
9: ¥V — T such that the set D(8)={X|3(X)# X} (domain of 9) is finite. &
denotes the empty substitution. The composition 3o of the substitutions §
and ¢ is defined as the functional composition. The pre-ordering < on
substitutions is such that 3 <o iff there exists 3’ such that 39’ =o.

An atom A is an object of the form p(s,..,1,), where pe P and
ty, .., t,€T. The application of the substitution J to the atom A is denoted
by A9. We define 4 < A’ (A is more general than A4’} iff there exists $ such
that A3=4A'. The relation < is a preorder. Let =~ be the associated
equivalence relation (renaming).

A definite clause in the language L is a formula H« B,, ..., B, (n=0),
where H and the B/’s are atoms, “+~" and “,” denote logic implication and
conjunction respectively, and all variables are universally quantified. H is
the head of the clause and B,,.., B, is the body. Given a clause
H« B, .., B,, a substitution 9 is grounding if HY, B, 9, ..., B, 3 are ground
atoms. If the body is empty the clause is a unit clause. A HCL program on
L is a finite set of definite clauses W= {C,, .., C,} in L. A goal statement
is a formula «A4,, ..., A,,, where each A4, is an atom in L.

G+ O denotes the SLD-refutation of a goal G with computed answer
substitution 9.

The aim of this paper is to relate the declarative (model-theoretic and
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fixpoint) semantics to various observable (operational) properties of logic
programs. In fact the standard declarative and operational semantics are
not fully equivalent (as already noted in (Clark, 1979; Falaschi et al., 1988,
1989)). Morcover many different operational semantics can be defined
according to different notions of observable properties (Gaifman and
Shapiro, 1989a, b).

We will consider in the following some of these operational semantics
and induced program equivalence relations, of which some can be found in
Mabher (1987).

2.1. Success Set Semantics
Let W be a program. Its success set semantics is

O,(W)={A|Aisground and «A+—— O}.

This is the standard operational semantics, which is equivalent to the
least Herbrand model, as stated by the weak soundness and weak
completeness theorems (van Emden and Kowalski, 1976).

However, the observational program equivalence based on the success
set semantics (W=, W' iff O,(W)=0,(W’)) is too weak.

ExampLE 2.1. Consider the programs W, and W, in the language L,
defined by C= {a\0} and P={p\1,q\1}:

W, = {p(a).
a(X).}

W,={pla).
g(a).}.

W,x, W, since O(W,)=0,(W;)={p(a),q(a)}. However, the two
programs have quite diflerent operational behaviours. In fact, the goal
«—g(X) computes an empty answer substitution in W,, while it computes
the answer substitution {X\a} in W,.

Moreover, if the program alphabet is extended to contain the constant
b, then W, =, W, does not hold anymore, since the goal «g(b) is refutable
in W,, while it finitely fails in W,.

A better equivalence relation can be based on a differently observable
property, i.e., the set of atomic consequences or non-ground success set.

2.2. Non-ground Success Set Semantics
Let W be a program. Its non-ground success set semantics is:

0,(W)={A| ~A+=s O}
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O,(W) is the same as the set of atomic logic consequences of W,
as stated by the strong soundness and strong completeness theorems
(Clark, 1979).

The corresponding equivalence relation ~, (W=, W' iff O)(W)=
O,(W')) is stronger than =,. In fact, if we consider Example 2.1,
W, =, W, does not hold, since

OL(W)) = { p(a), ¢(X), g(a) } # O,(W>) = { p(a), qla)}.

However, =, is still too weak to characterize computed answer
substitutions, as shown by the following example.

ExaMmpLE 2.2. Consider the programs W, and W, in the language L, of
Example 2.1:

W, ={p(a).
q(X).}

W, ={pla).
q(X).
gla).}.

Wz, W, since O,(W,)=0,W.)={p(a), g(a), 9(X)}. However, the
goal «g(X) computes an answer substitution {X\a} in W, only.

This difference can be modeled by a stronger notion of observable
property, i.e., computed answer substitutions.
2.3. Computed Answer Substitution Semantics

Let W be a program. Its computed answer substitution semantic is
O4(W)={A|3peP,
X, .., X, distinct variables in V, 39,
—p(X,, . X)) 0O,
A=p(X,, .. X,)8.}

The corresponding equivalence relation = 3 (W=, W’ iff Oy(W)=0,(W"))
is stronger than =z ,. In fact, if we consider Example 2.2, W, =, W, does
not hold, since

04(W1)= { p(a), q(X)} # Ox(W,) = { p(a), q(a), ¢(X)}.

This operational semantics fully characterizes computed answer
substitutions. Indeed, the semantics of a program W can be viewed as a
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possibly infinite set of (unit) clauses and the computed answer substitutions
can be obtained by executing the goal in the “program™ O,(W).

O3(W) has a declarative counterpart in the S-semantics (see the
soundness and completeness theorems in Section 7).

In the following we try to find a model-theoretic counterpart to the
above different notions of observable properties.

3. INTERPRETATIONS AND MODELS

Two of the above introduced operational semantics (O,(W) and 0,(W))
are defined as sets of non-ground atoms. Therefore interpretations must
contain non-ground atoms.

DerINITION 3.1, (Base). The Herbrand base B is the quotient set of all
the atoms with respect to =. The ordering induced by < on B will still be
denoted by <. For the sake of simplicity, we will represent the equivalence
class of an atom A4 by A itself.

DEFINITION 3.2. (Set of Interpretations .#). An interpretation 7 is any
subset of B,

It is worth noting that B (and therefore the set of interpretations .#)
depends upon the language L and not upon the program. Note also
that the definitions of O,(W) and O4(W) should be given in terms of
equivalence classes.

Let us now introduce some useful definitions of abstraction operators on
interpretations, and then the notions of truth and model.

DerFINITION 3.3 (Abstraction Operators on Interpretations). Let 7 be an
interpretation.

upward closure [17={AeB|3A’el, A'< A},
ground atoms LIl={A€I|Ais ground}
minimal elements Min(l)={Ael|VA'eIifA'<Athen A=A4"}.

Let us introduce the notation [I] as a shorthand for | [ /7] ]. Note that
[1] is the set of all the ground instances of atoms in 1.

DermNiTION 3.4 (Truth). An atom A or a definite clause 4 <~ B,, .., B,
is true in 1 iff it is true (using the standard definition of truth in a Herbrand
interpretation) in [1].
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A few remarks are in order. A (possibly non-ground) atom A is true in
Iiff [{A}]<[I]. Note also that if Ae[ /7] then A is true in L

DeriNmioN 3.5 (Models). A model of a logic program W is any
interpretation M in which all the clauses of W are true.

Note that for each standard Herbrand interpretation I there exist
(possibly infinitely) many different interpretations 7,, I, .., such that
[(,]=[I]=:--=1 I is a standard Herbrand model if and only if
1,, I, ... are models. The I's are therefore equivalent from the viewpoint of
model theory. Nonetheless, as we show in the following, they are different,
because they exhibit different computational properties.

PROPOSITION 3.6. The (standard) Herbrand models are models (according
to Definitions 3.4 and 3.5).

Proof. Immediate, from which I is a standard Herbrand interpretation
I=[1]. §

CoRrOLLARY 3.7. Every logic program has a model (according to
Definitions 3.4 and 3.5).

Proof. Immediate from Proposition 3.6. 1}

The following technical lemmas will be useful in later sections.

LemMA 3.8. For any interpretation I, [ I'=[Min(I)] and Min([ )=
Min([) hold.

Proof. It is a straightforward consequence of Lemma 5.4 in (Lassez
etal, 1987) which, according to our terminology, states that for any
atom A there exists only a finite number of atoms A< A4 up to variable
renaming. |

LEMMA 3.9. Lert A be any atom and I be any interpretation. A is true in
IV iff A is true in 1.

Proof. Straightforward, since [[I1]1=[7]. |

LemMa 3.10. For any interpretation I, [ 17 is a model of a program W
iff I is a model of W.

Proof. This follows immediately from Lemma 39. 1§

LemMMA 3.11. Let A be any atom and I be any interpretation. A is true in
Min(I) iff A is true in L
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Proof. Immediate (by Lemma 3.8), since [Min(/) =17 |}
Lemma 3.12.  For any interpretation I, Min(I) is a model of a program
W iff I is a model of W.
Proof. This follows immediately from Lemma 3.11. |}

In Section 7 we formally prove that the interpretations corresponding to
the operational semantics defined in Section 2 are all models according to
the above definition. Let us now give an example.

ExampLE 3.13. Consider the program W in the language L,, defined by
C={a\0,f\1} and P={p\1,4\1}:

W= {p(f(a)).

p(X).

qla). }
0,(W)={q(a), pla), p(f(a)), pf(f(a))), ..}
0,(W) = { g(a), p(X), pla), p(f(X)), p(f(@)), p(S(S(X))), P(S(f(a))), ..}
0,(W) = {q(a), p(X), p(f(a)) }-

It is easy to check that these interpretations are also models. However, the
example shows that one relevant property of standard Herbrand models
does not hold anymore; namely, the intersection of a set of models is not
always a model. In this case the intersection of O,(W), O,(W), O:(W) is
{q(a), p(f(a))}, and it is not a model.

Therefore in general there exists no least model with respect to set
inclusion. Hence we try to define a partial order on interpretations to
restore the model intersection property, thus making it possible to define a
unique model as the model-theoretic semantics. This partial order also
allows us to compare various interesting models.

4. MODEL-THEORETIC SEMANTICS

The absence of the least model with respect to set inclusion can easily be
explained by noting that set inclusion does not adequately reflect the
property of non-ground atoms of being representatives of all their ground
instances. This is the first property to be considered in the definition of the
new partial order relation. An additional property is related to the ability
of modeling computed answer substitutions. This is shown by the fact that
the interpretation {p(X), p(a)} has more information than the interpreta-
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tion {p(X)}, even if it has the same ground instances. The two properties
are embedded in the following definition.

DErFINITION 4.1. Let [, I, be interpretations. We define:

. thz iﬂ.VAlell,aAze.’z such thatA,éA,.
] I] ;Iz iﬁ(l]élz) and (lzgll implics Ilglz).

The intuitive meaning of the above defined relations is the following:
1, <I, means that every atom verified by [, is also verified by I,
(I, contains more positive information). Note that <, with some abuse of
notation, has different meanings for atoms and interpretations. I, & I,
means either that I, strictly contains more positive information than 7, or
(if the amount of positive information is the same) that I, expresses it by
fewer elements than 7, (7, is more redundant).

The following two lemmas have a straightforward proof.

LEMMA 4.2 (< Is a Preorder). The relation < of Definitiond.1 is a
preorder.

LEmMA 43. (a) IfI,c1; then I, <1,.
(b)y Li<Lff( <]

PrROPOSITION 4.4 (= on Interpretations Is an Ordering). The relation
c of Definition 4.1 is an ordering.

Proof. (reflexivity) I I In fact, I<I (by Lemma4.2) and f< L

(antisymmetry) Assume [, = [, and I, = I,. Then, by definition,
1,<1I;, and I,<1,. Then, again by definition, we obtain both f, = I, and
I, I,. Therefore I, =1,.

{transitivity) Assume I, = I, and I, = I,. Then, by definition,
I,<I,, and I,<I;. By Lemma 4.2, I, <I,. Assume now I;<I,. Since
I,<L, by Lemma42, I,</I, Since I,<I,,I,<I,, by definition. By
applying the same argument to I, and I,, we obtain I, = I,. Therefore
Lel, |

PropoOSITION 4.5. IfI,<1,, then I, c I,.
Proof. Immediate, since, by Lemma 4.3(a), I, < I, implies 1, <1,. |
EXAMPLE 4.6. Let the base B be the set {p(X), p(a), p(b)}. The set 5

of interpretations is ordered as shown in Fig. 1, where a directed arc from
1,10 I, denotes I, . I,.
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{ p(x). pla). p(b) }
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FiG. 1. A partially ordered set of interpretations.

(P}

Now we discuss the properties of the relation = on interpretations. We
show that the set of interpretations under the relation ¢ is a complete
lattice.

DerFiNiTION 4.7. Let I be a set of interpretations. We introduce the
following notations:
o VIr=U,.rl
»  Min(l)=Min(VI)
e UIr=Min(NuV{lerMin(INcl}.
Note that Min(I")=Min(| | I").

PROPOSITION 4.8. For any set I' of interpretations there exists the least
upper bound of T, lub(I"), and lub(I"y= || I holds.

Proof. 1. (LTI is an upper bound of I') If I is an ¢lement of I, then
Min()]<[Min()]=Min(] | I')). Therefore, by Lemma 38, [/|c
Ll I'1 holds. Then, by Lemma4.3(b), I<||I. Moreover, if | |I'<],
then, by Lemma4.3(b), [|[I|=[I] Then Min(=Min([[| ')l
Therefore, by Definition of | | I, IS} T.

2. (U I is the least upper bound of I') Let H be an upper bound of
T Since, for every Je I' (by Lemma 4.3(b)) [ J\=[H |, then[ || M= H;

643/103:1-7
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ie,|JI'<H Assume now H<| | Fie, [H)s[|Y M. Then[H =[] M
and therefore Min(/") = Min(| | I') = H. Moreover, for any Ie I' such that
Min{N<l, TH\=[Il and therefore (since I H) IcH. Then
V{le ' Min(I') = I} = H and therefore | | I'< H holds. |}

THEOREM 4.9. The set of all the interpretations ¥ with the ordering =
is a complete lattice. B is the top element and (J is the bottom element.

Proof. For any set I of interpretations, the existence of its least upper
bound is ensured by Proposition 4.8. The greatest lower bound of I is then
given by

gib(N=lub({lesf|VI'eLIcI'}). |

An important property of the standard Herbrand models (that allows us to
show the existence of the least one) is the model intersection property,
which states that the intersection of a set of models is still a model. The
following proposition generalizes this result.

PrOPOSITION 4.10. Let M be a set of models of a program W. Then
glb{M) is a model of W.

Proof. Let A+ B,, .., B, be a clause of W. Consider a substitution 3.
Assume that B,9,.., B,9 are true in gib(M). Then [{B,$,.., B,9}]<
[glb(M)7]. By definition of glb, for any e M, glb(M) < 7 holds. Therefore
[gib(M)]<[ I and then [{B,9,.., B,8}]1<[I] Since A« B,,.., B, is
true in 7, [{48}]1<[ I, by definition. This implies, by Proposition 4.5,
[{A8}] =17 Hence, [{A3}] is a lower bound of M, and therefore
[{49}] c glb(M). By definition, [[{48}]7<[glb(M)] and therefore
[{49}1=T[{48}11<TglbM)T 1§

CoroLLARY 4.11. The set of all the models of a program W with the
ordering = is a complete lattice.

We are now in the position to formally define the model-theoretic
semantics.

DEfFINITION 4.12. Let W be a program. Its model-theoretic semantics is
the greatest lower bound of the set of its models; i.e., M,(W)=glb({Ie #|I
is a model of W}).

In the following we show that the above defined model-theoretic seman-
tics is exactly the standard least Herbrand model. This fact justifies our
choice of the ordering relation.
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LEMMA 4.13. For any model I there exists a standard Herbrand model I
such that I' — I

Proof. Define I'=[I]. Then I' is a standard Herbrand model
(immediate). We show now that I'c I. By definition, [[']=
[[N=[1}<[ T Assume now [I\s[I'). Since [ I''|=1,[IlcI’, and
therefore I is ground (I=|1I]). Hence I'=[I1=I]=1 }

COROLLARY 4.14. There exists a retraction {®,¥), ie, a pair of
Jfunctions {®, ¥ such that ® is injective and ¥ is surjective, from the set
of standard Herbrand models to the set of models such that &(¥Y(I)) c L

Proof. Let I, I' range on the set of models and on the set of Herbrand
models respectively. Define & and ¥ as follows: &(I')=1I' and Y(I)=[T].
By Proposition 3.6 this is a correct definition of retraction. The corollary
follows from Lemma 4.13. |}

THEOREM 4.15. The least standard Herbrand model is the least model.

Proof. Note that the standard Herbrand models are ordered by set
inclusion, then apply Propositions 4.5 and 3.6 and Lemma 4.13. |}

We now consider the relation between our models and C-models and
S-models, which were defined in Falaschi er al. (1989) on the same set of
interpretations. C-models and S-models were intended to capture specific
operational properties, from a model-theoretic point of view. In both cases,
an ad hoc notion of truth was considered. Let us recall the definitions of
C-truth and S-truth from Falaschi et al. (1989).

DEFINITION 4.16 (C-Truth). Let 7 be a C-interpretation, i.e., a subset of
B such that I=[1"]
« A (possibly non-ground) atom A4 is C-true in I iff Ae[ 1],

¢ A (definite clause 4 « B,, ..., B, is C-true in [ iff for each instance
A8+~ BS,..,B,3, if B3, .., B,3 are C-true in I, then A3 is C-true in L

DErFINITION 4.17 (S-Truth). Let I be an S-interpretation, i.e., any subset
of B.

+ A (possibly non-ground) atom A is S-true in [ iff 34'e
[T, A"< A4,

» A definite clause A+« B,,.., B, is S-true in [ iff for each
By, .., B, el if 9=mgu((B,, .., B,), (B}, .., B;)), then A3¢ [

C-models and S-models are defined in the obvious way.
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THEOREM 4.18. Every C-model is a model.
Proof. (atomic case) For each atom 4, A is C-true in a C-interpreta-
tion /iff AeI=[TI} Then [A7<[ 7, and then [{4}]< [7].
(non-atomic case) Consider a clause A+« B,,.,B, and a
C-interpretation I. For each substitution 3, if B, 3, ..., B, 3 are true in /, i.e.,
if ([{B,8, ... B,8}]<[1]), we must show that [{48}] < [7]. Consider a
substitution y such that 43y is ground. Then [{B, %, .., B,%}]1<=T77 Let
n be a substitution such that B,9ym,.., B,9yn are ground. Therefore
B, 9yn, .., B,9me[ I. Since I is a C-interpretation, A9y = A3me[I] for
every y such that A9y is ground. Therefore [{48}]1<[I7 |

The following results are proved in Falaschi et al. (1989).

ProrosiTION 4.19 (Falaschi et al.,, 1989). Let Ie S If I is a C-model
then I is an S-model.

PropoSITION 4.20 (Falaschi et al., 1989). If I is an S-model, then [ 17 is
a C-model.

ProposITION 4.21 (Falaschi et al, 1989). For every program W there
exist both a least S-model and a least C-model.

ProrosITION 4.22 (Falaschi etal, 1989). If I is an S-model for a
program W then [I] is a Herbrand model of W.

ProOPOSITION 4.23 (Falaschi etal, 1989). For every program W,
My(W)=[ M,(W)].

THEOREM 4.24. Every S-model is a model.

Proof. By Proposition 4.20, if I is an S-model, then [ 7] is a C-model
and therefore it is a model by Theorem 4.18. By Lemma 3.10 [ is also a
model. |

Let W be a program. Let us define the following subsets of the set of
interpretations .#:

My = {Ie #|Iis a Herbrand model of W},
M, = {Ie £|Iis amodel of W},

My,= {Ie S| Iis a C-model of W},

M,= {Ie.#|Iis an S-model of W}.
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FiG. 2. Models, Herbrand models, S-models, and C-models.

The following facts are true: .#, c .#, (immediate, since if /e.#, then
I=[I1), #<.#, (Theorem4.18), .4, <.#, (Theorem4.24), .#,<.#,

(Proposition 4.19).
Figure 2 shows the relations among the various sets and models.

DEFINITION 4.25. Let W be a program. We define the following inter-
pretations:
M (W) =glb(.4,),

M (W) = glb(.4}),
M (W)= Min(My(W)).

LemMMA 4.26. For every program W, M, (W) is the least element of .4,
i=1,2,3
Proof. (i=1) This follows immediately from Theorem 4.15.

(i=2,3) (\ .#,€.# by Proposition 4.21. Moreover, () .#; is a lower
bound of .#;, by Proposition 4.5. Therefore [\ .#.=the least element of
M;=glb(.A). |

THEOREM 4.27. For every program W, My (W), M (W), and M (W) are
models.

Proof. For M,(W) and M,(W), this derives from Lemma 4.26 and
Theorems 4.18 and 4.24. For M, (W) it follows immediately from
Lemma 3.12. |

6437103 1-8
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PROPOSITION 4.28. The following relations between the various models
hold:

« M(W)=[MyW)]
o My(W)=[MyW)]
¢ M (W)=Min(My(W)).

Proof. First statement:
Ae M (W)
iffl W= A (by Theorem 4.15)
iff A is S-true in M;(W) (by Theorem 5.7 in Falaschi et al., 1989)
iff Ae[M,;(W)] (since A is ground).

The second statement is Proposition 4.23.
The third statement is by definition. [J

CoROLLARY 4.29. The following relations between the various models
also hold:

o M(W)=|M(W)]
o My(W)=TM(W)]
*  M(W)=Min(M,(W)).

Proof. This derives immediately from Proposition4.28 and Lem-
ma38. |

The relations among the various models are shown in Fig. 3.
THEOREM 4.30. For every program W,
M (W) c M (W) c My(W) c My(W).

Proof. The first relation is immediate since M, (W) is the glb of the set
of all the models. For the second relation note that M,(W)=

M, (W) L] M, (W)
O
Min
[ M
ll"lwl Min M, (W)

Fi16. 3. Models and their mappings.
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Min(M,(W))= M;(W). Then apply Proposition 4.5. The third relation
derives from Proposition 4.28 and from Proposition 4.5. ||

As we show in later sections, M,(W), M,(W), and M,(W) are equivalent
to O,(W), 0,( W), and O,(W). M (W) was originally proposed in Gaifman
and Shapiro (1989a), and will be proved to give the same observational
equivalence as M,( ). Figure 3 shows that M,(#') (the S-semantics) is the
model which has the richest information content. In fact, the other models
can be obtained by applying suitable abstraction operators, and not vice
versa. Note that the ordering relation among the models, as stated in
Theorem 4.30, is not directly related to the information content. In
particular, M,(W), which has the richest information content, is a
non-least model.

5. FIXPOINT SEMANTICS

In this section we show that the four models that were introduced in Sec-
tion4 can all be obtained as least fixpoints of transformations on
interpretations.

DEerINITION 5.1 (Transformations on #).

1. T\(l)={A4€eB|A is ground,
3A'«B,, .. B.eW,
39 grounding,
B9, .., B, 3e[I],
A=A'%}

2. T,()={A€B|34'«B,,..,B,eW,
39,
B,S, .., B3¢l I,
A=A4'8)

3 Ty()={AeB|3iC=4'«~B,,..,B, e W,
3B, .., B, variants of atoms in 7,
with no variables in common
with C and with each other,
39 =mgu((B,, .., B,), (B), .., B})),
A=A'8}

4, T, (I)=Min(Ty(I)).
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LEMMA 5.2,
« Tu(H=T\([1)
o« T(N)=T,(N).
Proof. Immediate.

ProOPOSITION 5.3. The following relations among the various transforma-
tions hold:

o T(N=I[TyD]
o TyN=[Ts(
. Ty )=Min(Ty()).

Proof. The first statement follows from Lemma 5.2 and Proposi-
tion 6.12(b) in Falaschi er al. (1989). Analogously, the second statement
follows from Lemma 5.2 and Proposition 6.7 in Falaschi er al. (1989).

The third statement is immediate by Lemma 3.8. |

It is worth noting that 7, is the most basic transformation, as was the
case for model M;. The models we are interested in are the least fixpoints
of the above defined transformations. This can be shown by first proving
the continuity properties.

PROPOSITION 5.4 (Monotonicity and Continuity of T,). T, is monotonic
and continuous in the complete lattice {.#, C .

Proof. (monotonicity) Let /o I'. Then, [I(=[I'l and therefore
T,(1)< T,(I'). By Proposition 4.5 we derive T,(I) = T,(I'}).

(continuity) lub,_,T\(I) = T,(lub(F})) follows by monotonicity.
Therefore it is sufficient to show that for any chain I, T,(lub(l)) C
tub,. ~ T,(7) holds. It is easy to see that T (VIS U, T,(). Indeed,
{CI117eT} is a chain ordered by set inclusion, T\()=T,([77]), and T,
is continuous with respect to set inclusion. Moreover, since T,(I)=
LT}, Use s Ty(I) is ground. Note that if I is ground Min(f)=],
and the lub, , I, when all the I's are ground, is Min(/N)u
V{Jel|Min(lcJ}=r. Thus U,c, T,(f)=Tub,. - T,(I) holds. Finally,
note that lub{I)cVrI. Therefore, T,(lub(M) T (VNS ,cr T (D=
lub, ., T, (I). By Proposition 4.5, T,(lub(I")) = lub, - T\(). }

Proposition 5.5 (Monotonicity and Continuity of T,, T, (Falaschi et al.,
1989)). T, and T are monotonic and continuous in the complete lattice
{F, <)

PropPoSITION 3.6 (Monotonicity and Continuity of T,). T, is monotonic
and continuous in the complete lattice (¥, C ).
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Proof. (monotonicity) By definition and Lemma 38 T ()=
Min(7y(7)). T, can be shown to be monotonic in the complete lattice
{.#, &) by exactly the same arguments used in Proposition 5.4. Let
Il Then [T =TANTS[TAF)1=T4I')]. Assume now that
[TI')V1S[ Ty(I)]. Then [Min(Ty(I'))]1<[Min(T5(7))] By Lemma 3.8,
T,(I'Ys T,(I). Hence T,(I')=T,(I), and therefore T,(7)=Min(T,(I))=
Min(T5(I')) = T (1)

(continuity) T, is continuous in the complete lattice (¥, € ) and
T5(I)= T,([ ). Then, for any chain I, T,(VIN <, T(I), and there-
fore [T4(lub(rl))] (by Lemma 3.8)=[ Ty(lub(I))=[ T ub()7) 1=
TAVN)1S[User To(I)] (since ub(I}= ;¢ I when I'’ is a chain of
upward closed interpretations}=[lub,.  T5(I)]=[lub, . T4(I)] Assume
now that [lub,.rT(I)1<[ T(lub(r))] Then Min(T,(lub(l)))=
Min(lub,_ - T4(I)). Since Min(T(lub(l))) = T, (lub(l)), T,(lub(IN)) =
lub, . - T,(I). By Proposition 4.5 T,(lub(I')) = lub, . T«(I). |

The continuity of 7', and T, ensures the existence of their least fixpoints
in the complete lattice (#, = ). They are the least upper bounds of the
chains obtained by iterating T, and T, up from . In the case of T, and
T,, they are continuous in the complete lattice {.#, = ) only. However, as
we will show in the following, there exist their least fixpoints in the
complete lattice {(#, £ », which are the unions of the chains obtained by
iterating T, and T, up from .

DermiTION 5.7. For i= 1, 2, 3, 4 define:

. T10=0
e T;Tn+1=T(T,tn)

_ flub(T;Tn) for i=1andi=4,
) T"“"{u,;o(r,.rn) for i=2andi=3.

THEOREM 5.8. For i=1,2,3,4, T;{w is the least fixpoint of T; in the
complete lattice (£, == ).

Proof. For i=1, 4 this follows from Propositions 5.4 and 5.6. Now we
consider the cases i=2, 3.

(a) (U.=o(T;Tn)is a fixpoint of T;) T, is continuous with respect to
set inclusion (Proposition 5.5). Therefore |J,.o (T;1n) is a fixpoint of T;.

(b) (Unxo(T:;Tn) is the least fixpoint of T;) By continuity of T,
UnsolT;Tn) is the least fixpoint with respect to set inclusion. Then apply
Proposition 4.5, ||
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A few remarks are in order to explain the need to resort to the complete
lattice {.#, < ) in the case of T, and T,.

T is not monotonic in the complete lattice {.¥, = ) (and therefore it is
not continuous), as shown by the following example.

ExaMmpLE 59. Consider the program W in the language defined by
C={a\0} and P={p\1}:
W= {p(X).
p(X) ~ p(X).}.

Let I, = {pa}}, I,={p(X)}. Then I, = I,, while Ty(/,)=
{pla), p(X)} & Ts(1;)={p(X)}.

In general, |J,(7T;1n) is different from lub,(T;1n), as shown by the
following example; i.e., the least fixpoint is not the least upper bound. The
relation lub, (T, tn) = J.(T51n) holds in general.

EXAMPLE 5.10. Let W be the program
{p(0, X).
P(s(Y), (X)) < p( Y, X).
p(Y, X)~ p(Y,s(X)). }
in the language L defined by C= {0\0, s\1} and P= {p\2},

T,11={p(0, X)},
TJ T 2= {P(O, X)! P(S(O)- S(X” }s
T313={p(0, X), p(s(0), s(X)), p(s*(0), s*(X)), p(s(0), X)},

Then lub,(T,Tn) is {p(0, X), p(s(0), X), p(s*(0), X), ..} and does not
contain, for instance, p(s(0), s(X))e T 12.

Also in the case of T, the least upper bound is not a fixpoint, as shown
by the following example.
ExaMPLE 5.11. Let W be the program

{p(0, X).
p(s(Y), X) < p(Y, X).}
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in the language L defined by C={0\0,s\1} and P={p\2},
T,T1={p(0,1)|1e T},

Tytn={p(s*(0), 1)|lk<n—1,teT}.
Because of the definition of = and Definition 4.7
lub,(T; 1) = {p(s*(0), X) |k € w}
which is not a fixpoint since
Ty({p(s*(0), X)| ke w}) = {p(s*(0), ) |k w, te T}.

The following lemmas are needed to prove the relation between models
and fixpoints.

LemMA 5.12 (Falaschi er al., 1989). An S-interpretation I is an S-model
ff Tyhsl

Lemma 5.13 (Falaschi et al,, 1989). A C-interpretation I is a C-model iff
TyhHesl

THEOREM 5.14. For i=1,2,3,4 if I is a fixpoint of T,, then I is a model
of W.

Proof. (i=2,3) This derives from Lemmas 5.12 and 5.13 and
Theorems 4.18 and 4.24 (S-models and C-models are models).

(i=1) If Iis a fixpoint of T,, then I=|J] and I is a standard
Herbrand model of W (van Emden and Kowalski, 1976). The result can
now be obtained by applying Proposition 3.6.

(i=4) Let Ibe a fixpoint; i.e,, T,(F)= 1. Under the hypothesis that /
is a fixpoint of T,, we can always express I as Min([J7]) for some J
(To(I)=Min(T(1))=Min([ T,(I)))=1). Thus T,(Min([ J7))=Min([J ).

By definition of T, Min(T,(Min([J7)))=Min([J ).

Since T,(Min(/))=T,(J) (see Lemma 3.8 and definition of T,),
Min(T,([J 7)) = Min([J).

Since both the arguments of Min are closed under the Up operation, we
can deduce that T,([J()=[J"; ie, [ J] is a fixpoint of T,, and thus it is
a model. Finally, by Lemma 3.12 also Min([JJ)=17is a model. J

We can now give the formal definition of the fixpoint semantics.

DEeFINITION 5.15 (Fixpoint Semantics). Fori=1, 2, 3, 4, define F;(W)=
T,To.
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Proposition 5.17 shows the relation between the F's. Let us first prove
a technical lemma.

LeMMa 5.16. Min(Ty(Min(7))) = Min(T(7)).

Proof. (=) Straightforward, since Min(/)c and T; is monotonic
w.rt S,

(2) AeMin(T,([)) implies 34’ B,, ... B,, where B),.. B.el,

3=mgu((B,, .. B,), (B}, .., B,)) and A=A'3.

There exist BY, .., B, € Min(/) renamed apart from B,, .., B, and from
each other, where (Bj, .., B;}< (B}, .., B;).

Thus there exists $”=mgu((B],.., B}), (B,,..B,)) and 35 5 <

SIB o Byt
I-l{enoe A"=A'3"< Ae Min(Ty(I)). But A" € T3(Min(l)) < T,(7) implies

A"=4" |
PROPOSITION 5.17. Let W be a program
(a) F(W)=[F(W)]
(b) Fy(W)=[FyWY]
(c) F(W)=Min(F;(W)}).
Proof. (a) We prove by induction that T, tn=[T,;1n].
(n=1) This is derived by Proposition 5.3.

(n=k+1)

Ty Tk+1=T(T,t1k) (by the inductive hypothesis)
=T([Ts1k]) {by Proposition 5.3)
=T,(Ts1k) {(by Lemma 5.2)
=[Ty(T51k)]
=[T3tk+1]

We can now prove that F,(W)=[F;(W)].
Fl(W)=]ubnim(T|T") (since TlTn=LTlTnJ)

=) T tn (by the previous proof)

= [T1n] (sinoe U [I]=[VI‘])
new lerr

=[ U T_ng]

= [Fy(W)].
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(b) The proof is similar to the one of case (a).
(c) We prove by induction that T, Tn=Min(T;1n).
(n=1) This is derived by Proposition 5.3.

(n=k+1)
T, thk+1=T,T,1k) (by the inductive hypothesis)
= T(Min(T;1k)) (by Proposition 5.3)
= Min(T;(Min(T,1k))) {by Lemma 5.16)
=Min(T; 1k +1)).

We can now prove that F,{( W)= Min(F;(W}).
FW)=lub,(TeTn) (by the previous proof)
=lub, . (Min(T3Tn)) (by definition)
J Min(T;51 n))

new

=Min(

Min ( U Min(T, Tn)) = I}

nEw

uV{le {Min(T51n)}

=Min(U T,Tn)

nEw

uV{Min(T;Tn) Min(U Min(T,Tn))EMin(T,Tn)}

REwW

=Min(U T,T"). '
HE @

It is worth noting that also the properties corresponding to those in
Corollary 4.29 hold, as well as the ordering corresponding to the one in
Theorem 4.30. Figure 4 shows the relations between the various fixpoints
(Proposition 5.17) and the various transformations (Proposition 5.3).

THEOREM 5.18 (Falaschi e al., 1989). For every program W, M (W)=
ip(T5(W)) = Fy(W).

THeoreM 5.19 (Equivalence of Model-Theoretic and Fixpoint Seman-
tics). Fori=1,2,3,4, F(W)=M/(W).

Proof. Fi(W)=M(W) by Theorem 5.18. The rest follows from
Propositions 4.28 and 5.17. |}
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FiG. 4. Fixpoints and transformations.

Let us give a simple example, which shows how the various models are
different.
ExampLE 5.20. Let W be the program
{p(X).
pla).}
in the language defined by C= {a\0, #\0} and P= {p\1},
M (W)= {p(a), p(b)}
M,y(W)= {p(X), p(a), p(b)}
My(W)={p(X), pla)}
M (W)= {p(X)}.

6. PROGRAM EQUIVALENCES

In this section we discuss the previously introduced four models as
abstraction operators; namely, as operators inducing equivalence relations
on programs.

DeFiNiTION 6.1 (Equivalence Relations). Let W, W’ be programs. For
i=12,3,4, we define

W=, Wiff M(W)=M,(W’).
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It is easy to see that the ='s are equivalence relations. They are ordered
as shown by the following proposition.

PROPOSITION 6.2. =, =,C =,; ie, =; is finer than =,, and=, is
finer than =,. Moreover =,= =,.

Proof. (=3 =,) I W=,W then MyW)=M,W'). Then

[ My(W))=Up(M;(W’)] holds. By Proposition 4.28, M,(W)=M,(W');
that is, W=, W".

(== =,) If W=, W then My(W)=M,(W’). Then [ My(W))i=
LM,(W') | holds. By Corollary 4.29, M (W)= M (W’); that is, W=, W'

(=.=,) If W=, W then M (W)=M,(W’'). Then [M (W)=
Up(M,(W’)] holds. By Corollary4.29, M,(W)=M,(W’); that is,
WE: W’-

(Ezg —=-‘) If WEZ W’, then Mz(W)=M2(W). “en Min(Mz(W},=
Min(M,(W’)) holds. By Corollary4.29, M, (W)= M,(W'); that is,
W=,w. |

7. RELATION BETWEEN THE DECLARATIVE AND THE OPERATIONAL SEMANTICS

In this section we give a soundness and completeness theorem, which
fully characterizes the correspondence between the model-theoretic and the
operational semantics.

THEOREM 7.1 (Soundness and Completeness). For i=1,2,3, M, (W)=
0,(W).

Proof. (i=1) O,(W) is the standard success ser of W, and M, (W) is
the standard least Herbrand model. Then the resuits follows from the
completeness theorem for ground atoms (Lloyd, 1987; Apt, 1990).

(i=3) My(W) is the least S-model in Falaschi eral. (1988, 1989).
The soundness Theorem 7.1 in Falaschi et al. (1989) states that

If — 41— [0, then 34’ € M(W) such that $=mgu(4, 4'),,, (1)

where ¢ ; denotes the substitution o restricted to the variables occurring
in B. The completeness Theorem 7.7 in Falaschi ef al. (1989) states that

If A€ My(W), AeB, and $=mgu(A4, A'),,, then «A - 0. (2)

(O5(W)S Ms(W)) Let A€ O,(W). By definition, A = p(X,, .. X,) 3,
where «p(X,, .., X,) =~ 0. By (1), there exists 4’€ M,(W) such that
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I=mgu(p(X,, o, X,), A')ipixy....xn- Lot $={X\ty,.., X,\t,}. Since
P(X;, w X,) < A, then A'=p(ly, . 1,)=p(X,, ... X,) 9= A.

(My(W) € O(W)) Let 4 = plty, .. 1,) € My(W). Let § =
mgu(pX,, .., Xn)g Pl e LD pexy ok = 1 X0\ e X\, ). By (2),
«p(X,, s X,) > O. Then 4 = p(X,, .., X,) $€ O:(W).

(i=2) By Proposition 4.28, it is sufficient to show that
[My(W)]=0,(W), or equivalently (by the case i=3 above), that
[O:(W)1=0,(W).

([O,(W)1€0,(W)) Let A'e[O04(W)] Then there exists
A€ 0,(W) such that A< A’". By the Strong Soundness theorem, 4 is a
logical consequence of W. Then A’ is also a logical consequence of W.
Therefore, by Clark’s Strong Completeness theorem, «— A’ —=— [J; that is,
A' e O,(W).

(05(W)STO4(W)]) Let A=p(t),...1,)EO0(W). Then A4 is a
logical consequence of W. Let X, .., X, € V. By Clark’s Strong Complete-
ness theorem, «p(X,, .. X,) 2> (0 for some substitution 9 such that
P(X,,..X,) 8< A Therefore, Ac[O,(W)\. |

The following corollary shows that the equivalences induced by the
model-theoretic and fixpoint semantics exactly correspond to those induced
by the operational semantics.

CoroLLARY 7.2. Fori=1,23, == =,
Proof. This follows immediately from Theorem 7.1. |}

8. CoNCLUSION

In this paper we have defined a notion of truth on Herbrand interpreta-
tions extended with variables and a complete partial order, which allow us
to capture, by means of suitable models, various operational properties.
Our construction has several nice properties:

 The Herbrand models are models. There exists the least model
(M ,(W)) which is the same as the least Herbrand model and is equivalent
to the ground success set operational semantics.

e The S-models defined in Falaschi eral. (1989) are models. The
least S-model (M,(W), the S-semantics in Falaschi et al. (1989)), is the
same as the derivable atoms semantics in Gaifman and Shapiro (1989b)
and is equivalent to the computed answer substitution operational
semantics.
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s The C-models defined in Falaschi ef al. (1989) are models. The
least C-model (M,(W), the C-semantics in Falaschi er al. (1989)), is the
same as Clark’s semantics (Clark, 1979) and is equivalent to the
non-ground success set operational semantics. M,(W) is in one to one
correspondence with another model (M (W)), which is the atomic
consequences semantics in Gaifman and Shapiro (1989a).

o Each of these four interesting models can be obtained as the
least fixpoint of a suitable transformation on the complete lattice of
interpretations.

s M,(W) is the model which has the richest information content. In
fact, the other models can be obtained by applying suitable abstraction
operators, and not vice versa. This is also shown by the fact that the
program equivalence relation based on M;( W) is finer then those based on
the other models. M,(W), which was already noted to define the correct
semantics for definite clauses viewed as a programming language (Falaschi
et al., 1988), results to be a non-minimal model. This shows that in general
it could be true that minimal models are adequate from a logical point
of view, but some richer models are needed to cope with the typical
programming language features, i.e., observable behaviours.

The usefulness of M,(W) has already been shown by several projects
related to the semantics, the analysis, and the transformation of logic
programs. These include:

« Semantics of concurrent and distributed logic languages (Levi and
Palamidessi, 1987; Levi, 1988; de Boer eral, 1989a, 1989b; Brogi and
Gorrieri, 1989; Murakami, 1990; Falaschi, Gabbrielli, Levi and Murakami,
1990; Gabbrielli and Levi, 1990).

+ Semantics of partial computations (Falaschi and Levi, 1990).

» Abstract interpretation (Barbuti, Giacobazzi, and Levi, 1993;
Barbuti and Giacobazzi, 1992; Codish er al., 1990; Giacobazzi and Ricci,
1990; Kemp and Ringwood, 1990).

» Correctness of program transformation techniques (Levi, 1988;
Levi and Mancarella, 1988; Bossi and Cocco, 1990).

» Semantics of constraint logic programming (Gabbrielli and Levi,
1991).

e Characterization of the non-ground finite failure set (Levi er al.,
1990),

» Semantics of programs with negation (Turi, 1991; Di Pierro er al.,
1991).
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Other promising areas of current research include:

» The fixpoint semantics of perpetual logic processes.

» The extension of the theory to other observable properties (for
example, finite failures) and to language features closer to those of sequen-
tial Prolog (for example, with clause ordering and sequences of computed
answer substitutions as observable properties).
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