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Abstract. The paper defines a new declarative semantics for logic programs, which is based on
interpretations containing (possibly) non-ground atoms. Two different interpretations are intro-
duced and the corresponding models are defined and compared. The classical results on the
Herbrand model semantics of logic programs are shown to hold in the new models too (i.e.
existence of a minimal model, fixpoint characterization, etc.). With the new models, we have a
stronger soundness and completeness result for SLD-resolution. In particular, one of the two
models allows the set of computed answer substitutions to be characterized precisely.
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1. Introduction

One of the nice features of logic programming has always been the correspondence

between the declarative (model theoretic and fixpoint) semantics and the operational
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semantics. In the case of ground atoms, this correspondence is complete. In fact,
the minimal Herbrand model M of a program W is equal to its success set [6].
However, the notion of success set

SS={A|Ais a ground atom and « A has a refutation}

is not completely adequate as operational semantics, since it hides one of the
fundamental aspects of a logic program: the ability to compute substitutions.
A more adequate definition should be

SS'={(A, ?)| A is an atom and « A has a refutation with computed answer
substitution 9}.

Unfortunately, the correspondence of M with SS’ does not hold any more. Even
the stronger result of Clark [3], given in: térms of general models, does not fully
characterize this set declaratively.

We think it is important to fill this gap. In this paper we propose a semantic
construction for logic programming, which is mcre adequate to describe the relations
between the different kinds of semantics and is also able to deal with the meaning
of universally quantified formulas. As we will show, one of our model-theoretic
semantics characterizes exactly the set of computed answer substitutions and is
therefore “‘equivalent™ to SS’. The basic idea is to allow variables in the Herbrand
Universe. We want to point out here that the elimination of the variabies in the
standard semantics was due to the need to eliminate existentially quantified variables,
while the presence of variables in the Herbrand Universe allows universally quan-
tified variables to be modeled. Essentially we want to have a syntactic way to capture
the meaning of universally quantified formulas and then to be able to talk about
validity not only for standard Herbrand models but for any other kind of models.

In the paper we will present the standard concepts in Section 2, and then the
new Herbrand structures in Section 3. Section 4 is devoted to Herbrand interpreta-
tions and models. C-models and S-models are both based on Herbrand Universes
with variables, but they are different in the ability to capture the operational behavior
of the programs. In Sections 5 and 6 we will present the new model theoretic and
fixpoint semantics. Finally Section 7 contains the main results of soundness and
completeness for this semantic characterization, and in Section 8 some examples
are discussed. Throughout the presentation we will give the relations between our
semantics and the standard one [1, 6, 17].

2. The language: standard concepts

Let us recall the main definitions of Horn Clause Logic (HCL). Any concept not
formally defined in the paper refers to [17].

The language alphabet is (I3, V, P). D is a family indexed on N (non-negative
integers), where D, is a (possibly empty) set of n-adic operators a, b, c, ... (data
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constructors). If d € D, then n is the arity of d. Constants are 0-adic constructors.
V is a (infinite) denumerable set of variable symbols x, y, z,.... P is a family
indexed on N, where P, is a (possibly empty) set of n-adic predicate symbols
Dgr,....

The free D-algebra on V, Tp(v,), is inductively defined as the least family such that:
® Vce D,. ce Tpv)(D, contains always at least an element);
® Yve V.ve Tpv);
©® Vt. € TD(V) o Vt,, € TD(V)- Vde D,,. d(‘l, ceny tn)e TD(V)'

The elements of Tp(v, are called terms. Tpy, is the word algebra, or the Standard
Herbrand Universe (U). Its elements are called ground terms. The Standard Herbrand
Base (B) is the set of all predicate symbols applied to ground terms.

The HCL basic construct is the atomic formula p(t,,...,t,), where pe P,,, and
the t;s are elements of Tp(v,. A definite clause is a construct of the form A«
B,,..., B, (n=0), where A and the B;s are atomic formulas, “<«” and *,” denote
logic implication and conjunction, respectively, and all variables are universally
quantified. A is the head of the clause and B,,..., B, is the body. If the body is
empty the clause is a unit clause (denoted by A). A HCL program is a finite set of
definite clauses W={C,,..., C,}. A goal statement is a construct of the form
«A,,..., A, where each A, is an atomic formula.

Let E be an expression (term or formula). We denote by Var(E) the set of
variables occurring in E.

A substitution is a mapping 3:V - Tp(y, such that Dom(?3) is finite, where
Dom(9) is the set {xe V|3(x)#x}. Let Im(9) denote the set {te Tp,|Ixe
Dom(9), 8(x) = t}. & is a valuation if itis ground, i.e. Im(9) < U. 9 is a variable-pure
substitution if Im(3)< V (i.e. the image of ¥ contains only variables). Given a set
X of variables, 8|x (3 restricted to X) is the substitution whose domain is
D =X n Dom(d) and such that for all variables in D it is equal to 9. For an
expression E, 9|v,,(g) is abbreviated by 3|:. The composition of substitutions is
defined in the obvious way, and induces a preorder on substitutions:

9, <9, iff 3y. 3, y=9, (3, is more general than 3J,).

In the following we will use the symbol o for the composition of substitutions
(& o j = 9j) for readability. The application of a substitution ¢ to an expression
(term, formula or n-tuple of expressions) E, denoted by Ed, is defined as the
simultaneous replacement of every variable x in E with 3(x). The application of
substitutions induces a preorder on expressions:

Els E2 iff 39. E|'ﬂ= Ez.

In the following we will sometimes use E,= E, to denote E,<[L,.
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The intersection of this preorder with its inverse is an equivalence relation (on
expressions) called variance (=). In other words, two expressions E,, E, are variants
(E, = E,) iff there exist two substitutions 9 and vy such that E,9 = E, and E,y=E,.
In this case 9 (resp. ) is called variable renaming with respect to E, (resp. E;). A
different definition of variable renaming, equivalent to the above one, is the follow-
ing: ¥ is a variable renaming for E, iff 9 is a variable-pure substitution, ¥ is injective
and (Var(E,) — Dom(38)) n Im(3)=4.

Note that, in general, E, = E} and E,= E} do notimply (E,, E,) = (E}, E}), while
the converse is always true. As an example f(x)=f(y) and g(x)=g(z), but
(f(x), g(x)) is not a variant of (f(y), g(2))-

Two expressions E, and E, are unifiable iff 39. E, 3 = E,9. If 4 is a minimal
substitution that makes E, and E, syntactically equal, then it is called the mgu of
E, and E, (mgu(E,, E,)).

The operational semantics of HCL programs is based on the notion of refutation.
Let G be the goal «A,,...,Ap,andlet C=A<B,,..., L, be a variant of a clause
of W. Assume that A and A, are unifiable, and let ¥ be their mgu. Then the goal

G'E(—(Al,"°sAi—laBl9"',Bn’Ai+la"'sAm)'8

is derivable from G, by using C with substitution 9. Briefly, G—2 G'. By repeated
applications of this step we obtain a derivation:

9, 9 9,
G— Gi— Gy — G,
C, C, Cn

briefly G »—->2:...C" G,, where 3 =8,0---09,. If G, is empty (null clause, denoted
by [1), then G is refutable in W and 3| is the computed answer substitution (c.a.s.)
(note that in the literature the terminology SLD-resolution is used for this type of
refutation together with a selection rule that chooses, for every goal, the atom to
resolve).

The operational meaning of a program W is (more formally) defined as

SS={p(t,..., t)|p(t,,...,t,) € Band 39 such that
L
<—P(tla'°'s tn) '_—_)* D}

The other standard semantics (model-theoretic and fixpoint), defined in [6],
characterizes a HCL program W from a declarative point of view. Both of them
are based on (standard) Herbrand interpretations (subsets of the Herbrand base).
The model-theoretic semantics has to do with the notion of (standard) Herbrand
model. A Herbrand model is a Herbrand interpretation which satisfies (3 la Tarski)
the program. The meaning of a program W is defined as the minima! Herbrand
model M of W (i.e. the set of the ground atoms that are logical conseqg:ences of
W). The second semantics is given as the least fixpoint (Ifp) of a transformation
Tw on Herbrand interpretations, defined as

Tw(I)={A|3A'< B,,...,B,in W,39 such that
B,9,...,B,3ecIand A'9 = A}.
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In [6] the equivalence of model-theoretic, fixpoint and operational semantics is
proved (M = lfp{ Tw) = SS). This result gives the soundness and completeness of
SLD-resolution for HCL. However, it is worth noting that the operational semantics
definition given abcve does not reflect entirely all the features of the language. In
fact, the above set characterizes only the ground atoms which are refutable in (and
which are logical consequences of) the program.

A more adequate operational semantics should also consider the refutability of
non-grourd goals togetlicr with the notion of computed answer substitution

SS'={(p(t,, esey tn), ‘!’)Itl, ooy ln€ TD(V)a 39 such that

Itis easy to see that SS = {A9p| (A, ¥) € SS’, p is ground}, and SS’ strictly contains
more information than SS (SS’ cannot be defined in terms of SS). Therefore M
and lfp(Tw) do not correspond any more to the new operational semantics. As a
matter of fact, the full soundness and completeness results for SLD-resolution are
given in terms of general models (i.e. models defined on any kind of domain) [17].

(Soundness) if <A,,..., A, has a refutation in W with a computed answer
substitution 39, then (A,,..., A,)d is a logical consequence of W (true in every
model of W).

(Completeness) if (A,, ..., A,)?d is a logical consequence of W then there axisis
a substitution y, more general than 9, such that «A,,..., A, has a ref::tation in
W with y as computed answer substitution.

In Section 4 we give a new definition of Herbrand interpretations and models
which will allow us to fully characterize the program’s behavior from a declarative
point of view.

Another kind of operational semantics, defined in [11], is based on the set of
substitutions on clause heads obtained by unit resolution (a kind of bottom-up
resolution, starting from unit clauses). In [19] this set is denotationaily characterized
by the least fixpoint of a transformation on substitutions. Our work can also be
seen as a characterization of the relations between this kind of semantics and the
standard operational semantics of logic programs (based on top-down resolution,
starting from goals).

Appendix A contains some technical properties of the substitutions and unification
which will be useful in the following.

3. Herbrand structures

The basic idea for the definition of our notion of Herbrand interpretations is to
allow variables in the elements of the domain. The new domain syntactically
characterizes a larger class of possible domains. In fact a term containing variables
(e.g. f(g(x, y))) represents a set of elements whose structure is only partially deter-
mined. In the example, the elements represented by f(g(x, y)) are the ones obtainable
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by the application of functious corresponding to g and f to any pair of elements.
Hence x and y are syntactical notations standing for generic elements. The difference
is that in the standard notion of Herbrand universe, the elements represented by x
and y could be only those made by Herbrand constants and constructors, and in
this way the full representativeness of general interpretauons is lost.

The obvious solution could seem to consider directly Tp(v, as the new Herbrand
universe. This is not an elegant approach because in Tp(v,) there are different terms
that represent the same set. For example Tp(v) contains both f(g(x, y)) and
f(g(w, 2)). A more adequate definition is to consider Tp(v) modulo variable
renamings.

3.1. Definition. The new Herbrand universe Uy (for a given program) is defined as
Tp(vy/~, i-e. the set of equivrience classes (quotient set) of Tp(v, with respect to
the variance equivalence relation =.

It will be useful to extend this definition to uniquely represent tuples of terms of
Uy which differ only because of some variable renaming. We define, for n=1,
UV = Tbv)/~, where Ty, is the nth cartesian product of Tp(v;.

It is well known that the preorder < on Tp(v, induces an order relation on Tpv,),~
(and therefore on Uy ). For the sake of simplicity, the elements of Uy will have the
same representation as the elements of Tp(v,. For example, the intended meaning
of f(x, g(y)) e Uy, is that the equivalence class of f(x, g(y)) belongs to Uy.
Analogously, the order on Uy will still be denoted by <. In the same way the
preorder < on Tpv) induces an ordering (still denoted by <) on UY,.

In the following, the elements of Uy will be called terms, and they will be denoted
by choosing a representative whose variables are renamed, whenever it is needed,
to avoid confusion with other variables. This also holds for any other structure that
we will define (base, interpretations, etc.).

Operations such as the mgu are intended to be performed on arbitrary representa-
tives (with the required renaming) of the equivalence classes. The new Herbrand
base is defined as follows.

3.2. Definition. The new Herbrand base B\ (for a given program) is the set of all
formulas p(t,,...,t,), where pe P, p has arity n, and (t,,...,t,)e UY.

The ordering on the UYs induces an ordering on By, that is, if (¢,,...,t,)<
(t1,...,t,) then p(t,,..., t,)<p(t},...,t5).

If I is a subset of By, let us denote with ground(I) the set of ground formulas
in 1. Note that B = ground(B,).

4. Herbrand interpretations and models

Usually, Herbrand interpretations are subsets of the Herbrand base, and the
notion of truth coincides with the one of being a member of. With the above proposed
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base, and this notion of truth, the simple defii .tion of interpretations as subsets is
not adequate because of the presence of ariables. In fact, as noted above, a variable
stands for any possiblc element and it is not reasonable to have an interpretation
containing {for example) an element p(x) and not p(a). Therefore, we must consider
upward-clos<c! subsets. Let us recall that a subset S of an ordered set is upward-closed
if se S and s< s’ imply s'e S.

This approach is not new; it was first proposed in [3] and later in [13,10]. In
these papers the idea is used to prove specific results. A complete formal treatment
of this approach has been pronosed and used in [4, 8, 9]. It is based on the nction
of termal model and on the formal description of the operational semantics via
proof trees. This allows some interesting results in the treatment of negation.

However, this is not the only possible approach. We could also keep the notion
of Herbrand interpretations as subsets (not necessarily upward-closed) of By and
consider a different notion of truth. This is not merely a difference in the use of
formal tools, but corresponds to a different way of looking at the problem. Consider,
for instance, the programs W ={p(x)., p(a)., q(a).} and W’'={p(x)., g(a).}. In the
first approach, W and W’ have the same Herbrand interpretations (and models).
From an operational point of view, W and W’ are different. In fact, the goal «p(x)
has a refutation with answer {x/a} in W, while this is not the case in W’. In other
words, in W, p is able to produce the data a, while, in W’, p is only able to consume
it (for a similar approach and a more detailed discussion of the producer-consumer
relationship see [15]). We want a notion of interpretation which enables us not only
to characterize the set of atomic logical consequences of a program, but also to
capture the behavioral difference between programs like W and W'.

In the following we describe both of the approaches sketched above. We call
them C-approach (upward-Closed interpretations) and S-approach (Subset interpre-
tations), respectively. Consistently, we talk about C-interpretations and S-interpreta-
tions, C-models and S-models, etc. We show that the S-approach is richer and has
a stronger relation with the operational semantics. Moreover, we show that the
C-approach (and the corresponding results) can be derived from the S-approach,
by relaxing the notion of interpretation struciure (i.e. the pair Herbrand interpreta-
tion, notion of truth).

4.1. S-interpretations and S-models
4.1. Definition. An S-Herbrand interpretation I is any subset of By.

The notion of S-interpretation goes together with an appropriate notion of truth
(S-truth) which defines the meaning of formulae.

4.2. Definition (S-truth). Let I be an S-interpretation. Then

@ a unit clause A- is S-true in I iff A belongs to I,

@ a definite clause A< B,, ..., B, is S-true in [ iff for every Bji,..., B, belonging
to I, if there exists 9 = mgu((B.,..., B.), (B,,..., B,)), then A¥ belongs to I,
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@ an atom A (possibly not ground) is S-true in I iff 3A’, such that (the equivaleace
class of) A’ belongs to I and A'< A,

Unit clauses are singled out for clarity. Their case is already contained in the
definition for definite clauses. Note that the standard notior: of truth can be con-
sistently extended in our Herbrand interpretations by considering a ground atom
trize in I if it i» an instance of an element of I, and by deriving, as usual, the notion
of truth for more complex formulae (in terms of their comporents).

It is easy o snow that the new notion of truth implies the standard one, but it is
not equivalent. For instance, if I is an interpretation containing only p(a) and p(b),
where a and b are the only ground elements of the Herbrand universe, then Vx. p(x)
is true in I from the classical point of view, but it is not true with respect to our notion.

The following definition formally establishes the notion of S-model.

4.3. Definition. Let I be an S-Herbrand interpretation (of a program W). I is an
S-Herbrand model of W iff every clause of W is S-true in L

Note that atoms and unit clauses are treated differently in the notion of S-truth.
This corresponds to the idea that the programs W and W’ at the beginning of
Section 4 have different S-models (even if they have the same models both in the
classical approach and in the C-approach developed below).

4.2. C-interpretations and C-models
4.4. Definition. A C-Herbrand interpretation I is any upward-closed subset of B,.

4.5. Definition (C-truth). Let I be a C-interpretation. Then

® a unit clause A- is C-true in I iff for every substitution 9, Ad is C-true in [,

® a definite clause A« B,,..., B, is C-true in I iff for every substitution 9, if
B,9,..., B3 are C-true in I, then A9 is C-true in I,

® an atom A (possibly not ground) is C-true in I iff (the equivalence class of) A
belongs to I

4.6. Definition. Let / be a C-Herbrand interpretation (of a program W). I is a
C-Herbrand model of W iff every clause of W is C-true in I

The C-approach differs from the standard one for reasons similar to those
expressed for the S-approach. As a matter of fact, it can be considered a particular
case of the S-approach. Some immediate relations between the two approaches are
shown by the following results.

4.7. Proposition. Let I be an S-inieipretation. Let us denote by up{(I) the upward
closure of I, which obviously is a C-interpretation. Let F be an atom or a definite clause.
(a) If Fis S-true in I then it is C-true in up(I).
(b) If Fis C-true in up(I) then it is S-true in up([).
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Proof. (a) If F is an atom and F is S-true in I then 3A€ I, 39 such that A9 = F
and therefore Feup(I). Now assume F is a definite clause A« B,,..., B,. If
B\d,...,B,d€up(l), then 3B;,...,B,c] such that B,<B,9,...,B,<B,?.
It is possible to choose Bj,..., B}, in such a way that they do not share variables,
either among them, or with B,3,..., B,9. By Proposition A.2, (B,,..., B')<
(B,,..., B,)9. Then, by Proposition A.3, there exists 9'=mgu((B.,... , Bh),
(B,,..., B,)), therefore A%'e I and then A9 € up(I), since A3’ < A9¥.

(b) If F is an atom the proof is obvious. If F is a definite clause A« B,,..., B,
and 3B,,..., B,€up(I) and 3 =mgu((B;,...,B}),(B,,..., B,)), then B}3,...,
B, ¥ € up(I), and therefore A3 e up(l). O

4.8. Corollary. Let I be a subset of By. If I is an S-model then up(I) is @ C-model.
Proof. It follows immediately from Proposition 4.7(a). O

4.9. Corcllary. If I is an upward closed subset of By, then
(a) a formula F (atom or definite clause) is S-true in I iff it is C-true in I.
(b) Iis an S-model (of a program W) iff I is a C-model of W.

Proof. It follows immediately from Proposition 4.7(b) and Corollary 4.8, since,
whenever I is upward closed, I =up(I). O

4.3. Relation with standard semantics

In the following we discuss the relation between our semantics and the standard
semantics. Let us define some useful transformations.

4.10. Definition. Let W be a set of definite clauses.

(a) Given a (standard, not necessarily Herbrand) interpretation I of W, we define
th. corresponding C-interpretation (and S-interpretation) H(I)={A|A€ By and
VA is true in I}, where VA is the universal closure of A.

(b) Given an S-interpretation (a C-interpretation) I for W, given an arbitrary
pre-interpretation J (i.e. a domain D, and a mapping ¥ which maps every n-adic
constructor ¢ into a function ¥(c): D" - D, see [17]), we define the standard
interpretation G,(I) on J such that for every predicate p, for each a,,...,a,€ D

(i) p(a,,...,a,) is verified in G,(I) iff 3¢,,...,t,€ Uy such that p(¢,,...,1t,)

is S-true (C-true) in I and there exists an assignment p from the variables
of t,,...,t, into elements of D such that a,= ¥,(t,),..., a,= ¥,(¢,), where
¥,(t) represents the element of D obtzined by applying ¥ and p to the
components of ¢

(ii) p(a,,...,a,) is false otherwise.

Note that
(a) the first definition is correct, i.e. H(I) is upward-closed; in fact, if A is true
in I, then, for each 9, A9 is true in I;
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(b) if I contains ground atoms only, then the predicates can be verified in G, (1)
only on the subset of D which corresponds to the Herbrand universe.

The following proposition shows that the above defined mapping H maps models
in C- (and S-)models.

4.11. Proposition. Let W be a set of definite clauses. If I is a model then H(l) is a
C-model (and therefore an S-model).

Proof. Consider a claus: A< B,,..., B, true in I Let 9 be a substitution, and
assume B,9,..., B,d beiong to H(I). Then V(B,,..., B,)? is true in I and thus
VA®¥ is true in 7 Therefire A3 belongs to H(I). O

Proposition 4.11 allow: the basic result in the standard Herbrand approach (that
is, the existence of a Herbrand model for consistent sets of clauses) to be extended
to our approaches.

4.12. Corollary. Le: W be a set of definite clauses. If W has a model then it has an
S-model and a C-model.

Proof. Immediate from Proposition 4.11. O

We can prove the counterpart of Proposition 4.11, i.e. G, maps S-models (C-
models) into models.

4.13. Proposition. Let W be a set of definite clauses. If I is an S-modei then for every
pre-intevoretation J, G,(I) is a model.

Proof. Consider a clause A« B,,..., B, true in I Let p be an assignment, and
assume B,,...,B, true in G,(I) under p. Then there exist B},..., B, true
in I, and there exists ¥ such that B,9=Bj,...,B,9=B,. Vi=1,
nBi(Yp'(1), ..., ¥ (1i,)) = B, (1), ..., ¥,(ti)), where p'® = p. Therefore A¥ is
true in I, then Ad is true in G,(I) under p’ and thus A is true in G,(I) under p. O

4.14. Corollary. Let W be a set ¢j definite clauses. If W has an S-model (a C-model)
then it has a model.

Proof. Immediate fron. “ropositio: 4.13. O

4.15. Corollary. If I is an S-model or a C-model for a set of definite clauses W then
ground(up(I)) is a stardard Herbrand model of W.

Proef. Immediate from Proposition 4.13. In fact, if the pre-interpretation J has
domain U, and the mapping V¥ is the standard mapping for constructors in the
Herbrand interpretations, G,(I) is equal to ground(up(I)). [
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5. Model-theoretic semantics

In this section we define an ordering relation on the classes of S-interpretations
and C-interpretations, and we show that both of them are complete lattices. Further-
more, we show that for the two notions of Herbrand models the standard properties
still hold. In particular, the Herbrand base is an S-model (a C-model) and the
greatest lower bound of all S-models (C-models) is an S-model (a C-model) (see
[14] for a similar proof). Therefore there exists the minimal S-model (C-model),
which we define as the S-model-theoretic (C-model-theoretic) semantics of the
program.

5.1. The lattice of S-interpretations and the S-model-theoretic semantics

5.1. Definition (Ordering on S-interpretations). Let I, I' be S-interpretations. I <g I’
iff I is included (in the set-theoretic sense) in I'.

This definition of ordering reflects the idea that if an interpretation I is less than
I' then I gives value true to less (or the same) atoms, by means of a proper subset
of elements.

5.2. Proposition. If I <g I' then, for every atom A S-true in I, A is S-true in I'.
Proof. Immediate. (]

5.3. Proposition. The class of S-interpretations is a complete lattice with respect 10
<, i.e. every set of S-interpretations has a greatest lower bound and a least upper bound.

Proof. Immediate. If L is a set of S-interpretations then glb(L)={" L and lub(L) =
U L. (Where () and | denote the set-theoretic intersection and union respec-
tively.) 0O

Note that @ and (the Herbrand base) By are respectively the bottom and the top
element of the lattice.

5.4. Proposition (Model intersection property). If L is a non-empty set of S-models
of a program W, then () L is an S-model of W.

Proof. Consider the definite clause A< B,, ..., B, of W. Assume Bi,..., B, belong
to () L, and there exists & = mgu((Bi,..., B,), (B,,..., B,)). Then, for each I in
L, B;,..., B!, belong to I, and thus A9 belongs to I. Therefore Ad belongs to
L O

5.5. Corollary. The class of S-models is a complete lattice.

Proof. Immediats by Proposition 5.4. In fact, it is sufficient to show that for any
set L of models lub(L) exists. Thus, let L’ be the set of the upper bounds of L. If
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L' is empty then lub(L)= By. Otherwise it is immediate to see that lub(L)=
infL'=(\L. O

5.6. Corollary (Existence of the minimal model). For every program W there exists
a minimal S-model M;.

Proof. The proof follows from Proposition 5.4, since By is an S-model of W. []

As usual, the minimal S-model Mg (whose existence is guaranteed by Corollary
5.6) can be defined to denote the S-model-theoretic semantics of a HCL program
W. The following theorem shows that M represents the set of the atomic (possibly
non-ground) logical consequences of W. Therefore M is more meaningful than
the standard minimai Herbrand model, which represents the ground logical conse-
quences only.

§.7. Tieorem. Let W be a program, and M be its minimal S-model. For every atom
A€ By, A is S-true in Mg (A is an instance of an element of M) iff VA is true in
every model of W (VA is a logical consequence of W).

Proof. (=) (by contradiction): Consider an atom A S-true in Mg and assume there
exists a model I in which VA is not true. Therefore for each A’'< A, VA' is not true
in 1. Hence H(I) (see Definition 4.10(a)) does not contain any atom A’< A. Since
H(I) is an S-model (by Proposition 4.11), Mg cannot contain any A’'< A, which
contradicts the hypothesis of A being S-true in Mj.

(&) (by contradiction): Consider an atom A such that VA is true in every model.
Assume that A is not S-true in Ms. Let x,, ..., x,, be the variables occurring in A.
Consider a pre-interpreiation J on the domain of ground terms built on the construc-
tors of W augmented with n new constants a,,...,a,. G;(Ms) (see Definition
4.10(b) does not satisfy A under the assignment which instantiates each x; with a;,
and then VA is not true in G,(Ms). Since G,(Ms) is a model (by Proposition 4.13),
this contradicts the hypothesis. [

5.2. The lattice of C-interpretations and the C-model-theoretic semantics

The definitions and propositions of the C-approach are developed along the lines
of those given for the S-approach in the previous section.

5.8. Definition (Ordering on C-interpretations). Let I, I' be C-interpretations. I <¢ I'
iff I is included in I'.

In this case the definition of ordering as set inclusion simply reflects the idea that
an interpretation is less than another one iff it gives value true to less atoms.
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5.9. Propesition. I < I' iff, for every atom A C-true in I, A is C-true in I'.

Proof. Immediate. O

Note that this result is stronger (it is an iff relation) than the corresponding one
(Proposition 5.2) about the relation between S-ordering and S-truth. This is due to
the more constrained nature of C-interpretations (being upward-closed).

5.10. Proposition. The class of C-interpretations is a complete lattice with respect to

<, ie. every set of C-interpretations has a greatest lower bound and a least upper
bound.

Proof. If L is a set of C-interpretations then (YL and |J L are upward-closed,
therefore glb(L)=( L and lub(L)=U L. 0O

Also in this case @ and (the Herbrand base) By are respectively the bottom and
the top element of the lattice.

5.11. Proposition (Model intersection property). If L is a non-empty set of C-models
of a program W, then () L is a C-model of W.

Proof. From Corollary 4.9(b) and Proposition 5.4, being () L upward-closed. [
5.12. Corollary. The class of C-models is a complete lattice.
Proof. Analogous to Corollary 5.5. [

5.13. Corollary (Existence of the minimal model). For every program W there exists
a minimal C-model M.

Proof. The proof follows from Proposition 5.11, since By is a C-model of W. [1

It can be shown that there is a strong relation between the minimal models in
the two approaches.

5.14. Proposition. For every program W, M = up(Ms).
Proof. (<): By Corollary 4.8 up(Mj) is a C-model, then M¢ < up(Ms).

(2): By Corollary 4.9(b) M, is an S-model, then Ms < M. Therefore up(Ms) <
up(Mc)=Mc. O

The minimal C-model M, can be defined to denote the C-model-theoretic seman-
tics of a HCL program W. The following theorem corresponds to Theorem 5.7.
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5.15. Theorem. Let W be a program, and M( its minimal C-model. For every atom
Az=By, A is C-true in M- (A is an element of Mc) iff VA is true in every model
of W.

Proof. Since an atom A € By is S-true in [ iff it is S-true in up([I), the proof follows
immediately from Theorem 5.7 and Proposition 5.14. O

This result allows us to prove as a corollary the theorem [6, 17] that relates the
minimal Herbrand model M of W and the set of the ground atoms that are logical
consequences of W.

5.16. Corollary. Let W be a program, and consider its minimal (standard) Herbrand-
model M. Then M ={A e B| A is a logical consequence of W} = ground(Mc).

Proof. Le: GC ={Aec B|A s alogical consequence of W} and NGC ={A€ By|VA
is a logical consequence of W}. Clearly GC = ground(NGC). By Theorem 5.15
ground(NGC) = ground (M ). Finally, we have to prove that M = ground(Mc).
(<): Immediate by Corollary 4.15.
(2" M < H(M). Therefore ground (M) < ground( H(M)) = M (see Definition
4.10). O

Theorem 5.7 and Theorem 5.15 show that our approach is richer than the standard
one. In fact, it allows the set of correct answer substitutions to be characterized for
a given goal (Theorem 6.6 of [17]) not only in the ground case.

5.17. Corollary. Let W be a program and G a goal < A,,..., A,. Then the following
are equivalent:
(a) 3 is a correct answer substitution for Wou G (i.e.Y((A,, ..., A,)?d) is a logical
consequence of W);
(b) (Ay,..., A,)? is true in every S-model (C-model);
{c) (A,,...,A,)d is true in the minimal S-model (C-model).

Proof. The equivalence of (a) and (c) is an immediate extension of Theorem 5.7
(Theorem 5.15), and the equivalence of (b) and (c) is obvious. [

5.18. Example. Let us consider the following program W:

(1) p(x)< q(x).

(2) p(a).

(3) p(b).

(4) q(x).

The standard (ground) model must contain at least all ground instances of
the unit clauses, ie. the atoms p(a), p(b), and gq(a), q(b). The set

{p(a), g(a), q(b), p(b)} is a standard Herbrand model for W, and therefore it is
the minimal one.
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By our definition of S-model, any S-model must contain at least (variants of) the
unit clauses, i.e. the atoms p(a), p(b), and q(x). Moreover, by clause (1) p(x) must
also belong to any S-model.

We can note now that { p(a), p(b), q(x), p(x)} is an S-mcdel and therefore it is
the minimal S-model.

The case of C-models is analogous. It can be easily shown that the minimal
C-model is {p(a), 9(a), 9(b), p(b), p(x), g(x)}.

6. Fixpoint semantics

The denotational characterization of a program is usually given in terms of the
least fixpoint of a continuous transformation associated to it. In the case of logic
programs this transformation can be seen as an inference operator, and its least
fixpoint is also used to prove the effectiveness of the minimal model and its relation
with the operational! semantics. In this section we define two transformations, one
on S-interpretations and one on C-interpretations, for the S-approach and the
C-approach, respectively. We prove that they are continuous, and we show the
relation with the corresponding model-theoretic semantics defined in the previous
section.

6.1. S-transformation and S-fixpoint semantics
6.1. Definition. Let W be a program. The mapping Ts on the set of S-Herbrand
interpretations, associated to W, is defined as follows

Ts(I)={A’e By|3A<«B,,...,B,in W,3Bj,...,B,<],

39 =mgu((B,,...,B)), (B,,..., B,)), and A'= Ad}.
6.2. Proposition. T is monotonic and continuous.

Proof. Monotonicity is straightforward. Let us show that Ts is continuous. Let K
be a chain (i.e. a totally ordered set) of S-interpretations. We have to prove that
TS(U K)= U Ts(K).

(2): Immediate by monotonicity.

(c): Let A’e Ts(\U K). Then 3A<«B,,...,B, in W, 3B;,..., BlelJK, 39=
mgu((B,,...,B,),(B,,...,B,)),and A'= Ad. Then there exist I,,..., [,€ K such
that B'el,,...,B.el,. Let I=max{l,,...,I,}. Then A’e Ts(I)cU Ts(K). O

6.3. Corollary. There exists the least fixpoint of Ts, lfp(Ts) and lfp(Ts) = Uneo Ts(0).
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Proof. Standard. O
6.4. Lemma. An S-interpretaiion I is an S-model iff Ts(I)< I (Ts(I) <gs ).

Proof. I is an S-model
iff (VA«B,,...,B,e W, if 3B,,..., B,€l, such that
39 =mgu((Bi,..., B;), (B,,..., B,)), then Adel)
iff (VA’ such that 3A«B,,...,B,e W, 3B,,...,B, €], and
39 =mgu((B;,..., B,), (B),...,B,)), and A'= A9, then A’eI)
iff Ts(I)eL a

6.5. Theorem. For every program W, Ms = lfp(Ts) =U,c. Ts(0)(=Ts? o, see [17]).

Proof. It follows from Corollary 6.3 and Lemma 6.4, since, by monotonicity,
min{I | Ts(I)=I}=min{I|Ts(I) <sI}. O

6.2. C-transformation and C-fixpoint semantics

6.6. Definition. Let W be a program. The mapping T on the set of C-Herbrand
interpretations, associated to W, is defined as follows

Tc(I)={A’e By|3A<B,,...,B,in W,
39 such that B,93,..., B,de ,and A'= Ad}.

It is easy to show that this definition is correct, since T-(I) is upward-closed.
6.7. Proposition. For every S-interpretation I, T(up(I))= up(Ts(I)).

Proof. (2): If Ac up(Ts(I)) then 3A'e Tg(I) such that A’< A. Therefore A" «
B,,...,B,in W,3B;,...,B,eI,39=mgu((B;,...,B,),(B,,...,B,)),and A'=
A"9. Hence A"9 € Tc(up(I)) and therefore A€ up(T-(up(I))) = Tc(up(I)).

(€): Let AeTc(up(I)). Then 3JA'«B,,...,B, in W, 339 such that
B\9,..., B,3cup(I),and A= A'9. Therefore, 3B, ..., B, € I, sharing no variables
mutually and with B,,..., B,, such that B{<B,9,..., B, < B,9. By Proposi-
tion A.2, (By,..., B,)<(B,,..., B,)9. Therefore, by Proposition A.3, there exists
9"=mgu((B,,..., B,), (B},...,B})),and 9"| 5,5 <93 Hence A=A'"9=A'd€e
T(I). O

6.8. Proposition. T is continuous (and, therefore, monotonic).

Proof. This proposition can easily be proved as a consequence of the corresponding
Proposition 6.2. Let K be a chain of C-interpretations. Then T (| K) = (by Proposi-
tion 6.7) up(Ts(U K)) = (by Proposition 6.2) up(U Ts(K)) = up(Ts(K)) = (by
Proposition 6.7) |J T-(K). O

6.9. Corollary. There exists the least fixpoint of T, lfp(Tc) and Ifp(To)=
Uscw Te(0).

Proof. Standard. [
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6.10. Lemma. A C-interpretation I is a C-model iff T-(I)< I (To(I) <c ).

Proof. It can easily be proved by the corresponding Lemma 6.4. Let I be a C-
interpretation. I is a C-model iff (by Corollary 4.9(b)) I is an S-model iff (by Lemma
6.4) Ts(I)< I iff (since I is upward-closed) up(Ts(I)) < I iff (by Froposition 6.7)
Tc(Del O

6.11. Theorem. For every program W, M¢ = lfp(T¢) =Unecw T¢(0)(= T w).

Proof. It follows from Corollary 6.9 and Lemma 6.10, since by monotonicity,
min{I | Tc(I)=I}=min{Il|Tc(I) < I}. O

Let us now relate our transformations with Ty, (the standard transformation on
ground Herbrand interpretations).

6.12. Proposition. (a) For every C-interpretation I, ground(Tc(I)) = Ty /(ground(I)).
(b) For every S-interpretation I, ground (up(Ts(I))) = Tw/(ground(up(I))).

Proof. Immediate by the definitions of T and Ty, and Proposition 6.7. [

6.13. Corollary. For every n€ w,
(a) ground(T¢(9)) = Tw(D).
(b) ground(up(Ts(9)))=Tw(D).

Proof. (a) (by induction): (n=0) ground(T&(0)) =0= Tw(D);
(n>0) ground(T&(0)) = ground(T(TE (D))
= Tw(ground(TE'(@))) (by Proposition 6.12)
=Tw(TWw"'(@)) (by inductive hypothesis)
= Tw(9).
(b): We only need to show that up(T5(0)) = T¢(0). The proof follows from
Proposition 6.7 with an inductive argument similar to case (a). O

Theorem 6.11 allows us to prove as a consequence the theorem [6, 17] about the
equivalence between the minimal Herbrand model M of a program W and the least
fixpoint of Ty.

6.14. Corollary. For every program W, M = lfp(Tw) =Uncw TW(0)(=Tw 1 ).
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Proof.
M = ground(Mc) (by Corollary 5.16)
= ground(|J T¢(0)) (by Theorem 6.11)

new

=J Tw(®) (byCorollary 6.13). O

new

6.15. Example. Let us consider the same program W of Example 5.18, and the
construction of its minimal S-model by our fixpoint transformation, starting from
the empty set. The case of the C-model is analogous. Thus we consider the S-case
only.

Tg(ﬁ) = ﬂ.‘
Ts(®) =/ n{a), p(b), q(x)}, applying clauses (2), (3) and (4),
T30 = 7:({p(a), p(b), q(x)}) ={p(a), p(b), q(x), p(x)}

wher:z p(x) is obtained from ¢q(x) and clause (1),
T3(®) = Ts({ p(a), p(b), q(x), p(x)}) ={p(a), p(b), q(x), p(x)} = T5(®),
thus T5(0) ={p(a), p(b), q(x), p(x)} = Ms.

7. Relation between the declarative and the operational semantics

Let us now give two important results of our semantic construction, i.e. a soundness
and a completeness theorem which fully characterize the correspondence between
our model theoretic semantics and the operational semantics.

7.1. Theorem {Strong soundness). Let W be a program, let G be a goal <A,,..., A,
and assurie G—-°*0. Then 3A),...,A,eMs and 39 =mgu((A,,...,A,),
(A:, ey A:,)) such that '!?'IG = "IG-

Proof {i . induction on the length k of the refutation). Assume (without loss of
generzlity) that A, is the first atom selected for the derivation.

(k=17 In this case n=1, 3A;- (uait clause) in W and 39 = mgu(A,, A}). Then
A€ ¥ and J' = 9 satisfies the required properties.

(k> 1': In this case
® 3_ = H<«B,,..., B, which is a variant (sharing no variables with G) of a clause
in W,
28 =wmgu(A,, H)=8],,08|u,
G'~"*[ (in k—1 steps), where G'=«(B,,..., B, A,, ..., A,)s, and
4=0- ¢ and 19|c;=(5|A.° ¥le)le
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Then, by inductive hypothesis,  :
e 3B},...,B.,, A%,..., A’ vatidnts (sharing no variables mutually and with C, G
and G') of atoms in Mg,
® 3y’ =mgu((B,,..., B, Az,...,A,)8, (B},..., B, A},...,Al))=¢'|cu |y
where V= Var(B;,...,B,,, A5,..., A)).
® y'|lg=¢|g-
We have to prove that
(a) 3A},...,AL,e Mg
(b) 31,,= mgu((Ala LA ] An)s (A:Q RN} A:l))
(c) ¥lg=(8°¢)|g.
We note that
® by Proposition A.3, (6 ¢'| )L ¢'| v is a unifier of (B,, ..., B,, A,,..., A,) and
(B;,...,B,A3,..., A}); then
® there exists y=mgu((B,,..., B,), (Bi,..., B,)) =7y, v, where v, = y|s, .5,
® y<(8°y'|g)u |y, and therefore y,< 8|y ° ¢'| 5,
® Hy,<H8|yf'|c=Ab6|a¥'|c.
Let £ be the least substitution such that Hy,£ = A,8| 4,¢'| 6. For the S-truth of C
in Mg, Hy, € M;.
(a) Consider the following choice of the Ajs (belonging to M;):

Ai=Hy, A;=A;j,...,A,=A,.

(b) {=EUY'|vUd|a ¥ g is a unifier of (A,,...,A,) and (A],..., A}),
and therefore there exists &' = mgu((A,,..., A,), (A},..., A})). In fact

(A}, Az, ..., AR)E=(A], A, ..., AL)(EU YY)
=(Hn& A |v, ..., An¥'lv)
=(A8|a¥' G, A8| A G55 ABla¥ | G)
=(A), Az,..., A)8|a¥ |G
=(A,,As,..., A

() 9'<¢ and then &' |G <8|a,°¢¥'|G=8]|4,°¥|c. Therefore &'|g<(6°¢)|q.
Now, we only need to show that (8c¢)|c<9¥|g. Let Z=
(Var(G)—Dom(8| 4,)) u Var(Im(8] 4,)). We note that
® by Proposition A4, Ta=08|1,°mgu((A8]a,, A2bla,,---,Anb]a),
(A}, A,..., A}))|z then, 8'| g =8| 4 9", where

19’”= Mgu((AlslA,,AzalA,,- --’An8|A|)9 (H‘YIsAgs""AZ))IZ'

Let ¢ = mgu(A,8|,, Hy1)|z, then
o by PrOPOSition A'SQ ﬂ"= (‘P ° mgu((A26lA|‘p9 L ] An6|.4|¢), (Ags recy Alr,l)))lz,
® ‘P? 7, Where n= mgu((Bl9 ceey Bm)sle (B;, sy B:n))lH«S'
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In fact,
@ =mgu(A,8| a,, Hn)|z
= mg“(AlslA,, H‘Yl)lA.s
= mgu(H8| 4, Hy))| ns
=mgu((x,, ..., %8|, (X15. .o, X)71) | 13y
where {x,, ..., x,} = (Dom(y,) " Var(H))u Dom(8|;}
=mgu((y1,--->¥)8|us (D15, )70 15
where {3\, ..., ¥} = Dom(y,)u Dom(8| ;)
= mgu((zy,...,2)8| 1, (21,5, 2) ) | 15,
where {z,, ..., z} = Dom(y,)u (Dom(8|4) N Var(B,,..., B.))
=mgu((By, ..., Bn)8|u, (By,..., Bu)¥)lns
=mgu((B,, ..., Bn)8|u,(Bi,..., Bu)7)|ns
=mgu((B,,...,Bn)8|u,(B},.-., Bw))|us (by Proposition A.6)
=17

Then

® by Proposition A.7, 3"=(n o mgu((A;8|am, ..., Ab|am). (A3,..., Az

® by Proposition A.5, (n°mgu((A8|am,...,Ad|an),(AS,...,A)))|2z=
mgu(((Bla LR Bm)8|Hs (AZa LS ) An)alAl), (B;a LR ) B:Ils Ag, IR K A:))IZ
=¢'| 2.

Moreover, we note that Z n Dom(y) = Z n Dom(y') < Var(G’), and then §'| ;=

¢ | z. Therefore

Nc=(8|a°9Nc=(8|a°¥'|2)lc=(8|a¥|2)c=D%sc. O

The same result of strong soundness holds also in the case of C-models, as shown
in the following coroliary.

7.2. Corollary (Strong soundness with respect to the C-semantics). Let W be a
program, let Gbeagoal <A,, ..., A, and assume G —°* . Then A}, ..., A, € Mc
and 39’ =mgu((A,,..., A,), (A},..., A})) such that &'|g=9|s.

Proof. Immediate by Theorem 7.1, since M is contained in Mg (in fact, by
Proposition 5.14, M~ = up(Ms)). O

The standard soundness property [ 17] can be inferred from our strong correctness
result, as shown by the next corollary.
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7.3. Corollary (Standard soundness). Let W be a program, let G be a goal
«A,,..., A, and assume G —°* ). Then YG? is a logical consequence of W.

Proof. By Theorem 7.1, G9 is S-true in Ms. Then, by Theorem 5.7, VG?¥ is true in
every model of W. [0

Now, to prove the completeness theorem, we borrow the following two technical
lemmas from [17] (see Lemmas 8.1 and 8.2), and we prove an important technical
lemma. Let us recall that an unrestricted reduction is a resolution step in which a
unifier instead of a mgu is used. An unrestricted refutation is a sequence of
unrestricted reductions whose final goal is the empty goal.

74. Lemm2 (Mgu lemma). Let G be a goal. Assume that G has an unrestricted
SLD-refutaiion G —2 ...c.* O, then there exists an SLD-refutation G —....c.* O of
the same l2ngth with the same clauses and y< 9'.

Proof. S [17). O

7.5. Lemma (Lifting lemma). Let G be a goal <A,,..., A, and G8 »3’,...Cm* a,
then there exisis G —{., ..c.*O and y< 99

Proof. See [17]. O

In the foliowinng we use tite symbol E to represent an n-tuple of expressions
E,,...,E,.

7.6. Lemma. Let A}, ..., A, € Mgand G’ be the goal <A\, ..., A}, then there exists
a cheice ¢ clauses C,, ..., C,, such that

(a) VAY ..., Al such that (A}, ..., A))=(A}L,..., A]) there exists a refutation
jor ike goa! G" = «AY,..., An, G"—¢ ..o, * O, where ¢| g-= ¢ (as a particular case
we obiain G'— ... *0).

(b} Ifagoal «A,,...,A, =Y, . 0Othen (A,,...,A,)y=(A],...,A}).

Proof. If A},..., A, e Mg then there exists k such that A},..., A,e T5(@): We
prove {a) and (b) together by induction on k.

(k=1) (Part a): There exist n unit clauses C,,..., C, with heads H,,..., H,
that are variants of A},..., A,. Then A{=H,,...,A;,=H,. Hence < Aj,..., A,
has a refutation, with an empty computed answer substitution, which will use the
clauses C,,..., C,, independently from the order of application; for example
G"—%,..c, *0, where ¢|g-=«.
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(k=1)(Part b): Let us consider the same clauses of part (a). Given the
refutation (—/‘l geens 14,l ’—)Z-‘I"'C,,* a, Al'yl = Hl Yiseoos A,,‘y,, = H,,y,,, where vi=
mgu(Ayy, ... Yi, Hi),1<i<n and y,°---°y,=v. Then (A,,...,A)r=
(Hy,...,H,)=(A},..., A}). In fact,

AyzAnm=Hy,=H =A],

Ayy= Az‘)’n‘Vz =H,y,=H,=A;},

An‘)’:An‘YI---'yn=Hn7n>Hn=A:|-

(k> 1)(Part a): There exist n (variants of ) clauses C,=H,« B,,...,C,=H, < B,
such that 3Bi,..., B,e T '(0) and ,=mgu(B,, B),..., M. = mgu(B.., B;) and
Hyn,=Aj,..., Hn,=A,. By inductive hypothesis,

& &,
3C!,..., C} such that B] —*[,. "%

Ci Cn

and & |g;=¢,...,&|p;=¢ for every (By,..., B;)=(Bi,..., B,).

Let us cons.der any order of application of the clauses C,,..., C,. Being A} = A]
and Hp, = A!, there exists 7= mgu(H;, A]) with Hp;=A{, i=1,...,n, and,
consequently,

.
"= Al AL % <(B,,..., B’

Cl...C"

where n'=n1°:- -2 7, and n'|g-=&.(Notethat (B,,..., B,)n'=(Bn,..., B.n,)
because 1’| g-=¢ and the B;s do not share variables.) Moreover, by similar argu-
ments, there exist 9; and y; such that nje 5] =n;° 'y, and Hyyy,=A],i=1,...,n,
and each n{ does not instantiate the variables in ., Ar. Thus there exists the
unrestricted reduction

/]
”_<—A °9Az P_—_)*Q—(Bln;n;’s°"33n7’:lnz
Cy--C,y,

where n=nj1°797°---°n,°n, and
(Bis..os B)n=(Byminy ... mnMns---s Baminy ... mamy
=(Bimnis---» Baamn) =(Bim¥1,- .-, Balln¥n)
=(Bim7Y1,---» Bunava) =(Bi, ..., B).
By inductive hypothesis

4
'"E(_(Bla-'-agn)n '__—)*D WhereflG"';-e'

CiCh
Therefore there exists an unrestricted refutation
" n " 3
G —*G" —*0O with (n°§)|g-==.
Cy--C, Ci-C},

Now, by Lemma 7.4, Part (a) is proved.
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(k>1) (Part b): Let us consider the same (variants of) clauses of part (a).
C,=H,<B,...,C,=H,<B, such that 3Bj,...,B,cT5'@) and 7,=
mgu(B,, B}), ..., n,=mgu(B,,B,) and H,m,=A,...,Hn,=A,. Let 9=
Mo °n, I isthe mgu((B,,..., B,), (Bi,..., B,)) because, for an appropriate
choice of the variants, the atoms in different clauses do not share variables. Moreover

(A’ls"°’A:l)=(Hlnla'° v H‘?nii)=(Hl""’ Hn)ﬂ' (i)
We know (Part (a)) that «B,,..., B, —&,..c.* O, where £|p,...5,) =&

Thus, if we assume that cur derivation is the following:

"y 72
(_AIQ-",An '—)*(-(Bl’°",3n)71 ._’,*D (7=71072)’

Cy-C, Ci Gy
by inductive hypothesis, (B,, ..., B,)v:v.= (B, ..., B},). By the definition of mgu,
Y1° Y2 ¥ g8 = F ity o B B
Thus
(H,,...,H,)3<(H,,...,H,)v7-- (ii)

We can prove, in analogy to the case k=1, that (H,,..., H,))v,=(A,,..., A7,
and therefore, together with relations (i) and (ii),

;"",A:l=(Hla'"aHn)ﬂS(Hls'°‘,Hn)7172=(A19"'9An)7172
=(A;,...,A)y. O

Let us now give the strong complzteness theorem.

7.7. Theorem (Strong completeness). Let W be a program, let G be a goal
«A,,...., A, If 3A},...,A,e Mg and 39 =mgu((A,,...,A,), (A],...,A})),
then 39 such that G—"*[, and ¥'|g=9|c.

Proof. By Lemma 7.6(a), there exist m clauses C,, ..., C,, such that

£
'=€A},..., A, —> *[ (with &|g=¢).
Cy--Cpy
Since (A}, ..., A< (A],...,A))¥ =(A,,...,A,)d, by Lemma 7.6(a),
£
G'=«(A,,...,A)Y —*0O (with§|g-=¢).

Cy---Cpy

By the lifting lemma, < A,,..., A, —2,..c,*0and

m

Fo<(@o8)|g=(é&lg)lc=(¥°¢e)|c=%]c
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By Lemma 7.6(b), (A}, ..., A,)<(A,,..., A,)?. Since &' is an mgu, ¥'|c<I|c.
Therefore ¥|g=9'|¢. O
~
In the case of the C-semantics the completeness result we obtair is less strong,
due to the lower degree of structure of the C-models with respect to the S-models.

7.8. Corollary. Let W be a program, let G be a goal <A, ..., A,. If 3A],..., A€
Mc and 39’ =mgu((A,,...,A,), (A},..., A})), then 39 such that G—>’*[],
and &'|g= 8| .

Proof. Assume the hypotheses of the corollary are verified. By Proposition 5.14,
M = up(Mj). Therefore, AT, ..., Ane Mgsuchthat (A],..., A})<(A},..., A}).
Let & be the substitution such that (A}, ..., A7)6=(A],..., A}). Then

(Ag’y"'vA::)aﬂ’:(A’l:"',A:l.)"':(Als‘"’An)a'-

By Proposition A2, {6°3')|a;...ar0®'|a,. .4, is a unifier of Af,..., A, and
Ay, ..., A, Let 3"=mgu((A7,...,A}), (Ay,...,A)). Then 3"|g=3"]4,.a, <
'] a,..a, = ¥'| G- By Theorem 7.7, G—>*[J, and 9"|g = 9|s. Therefore, ¢|c=
Fic=¥|c. O

The standard completeness theorem is just a special case of Corollary 7.8.

7.9. Corollary. Let W be a program, let G be a goal «<A,,...,A,, and &' be a
substitution. If V(A,,..., A,)d is a logical consequence of W then 39 such that
G-"*0, and ¥'|g= 3.

Proof. By Theorem 5.15, if V(A,,..., A,)d' is true in every model of W, then
(A,...,A))¥' e M.. Of course, &' =mgu((A,,...,A,), (A,...,A,)¥), then
apply Corollary 7.8. O

Note that our completeness results are actually stronger than the standard ones,
since we are able to denotationally characterize exactly the set of c.a.s. In fact, in
Theorem 7.7, the substitutions we can infer from the minimal model are obtainable
as c.a.s., while this is not the case in the standard result (only an approximation
can be computed). Note that (A, 3) e SS' iff AA’e Mg and 39’ = mgu(A, A’), with
¥|a=19

Theorems 7.1 and 7.7 also state that if a goal G has an empty computed answer

substitution (restricted to the variables of G), then a less or equal set of atoms can
be found in Mg, and vice versa.

8. Examples

Let us now consider some examples to clarify our construction.
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8.1. Example. Let us consider the following definition:

(1) p(x, y).

(2) #(0).

(3) r(s(x)).
In this simple case, the minimal fixpoints of standard semantics, C-semantics and
S-semantics are the following,

MS = {P(x9 y)’ r(O), r(S(x))},
Mc ={p(x, y)ix, ye Us}u{r(s(x))|xe Uy} u{r(0)},
My, ={p(x,y)|x,ye Utu{r(x)|xe U},

where the standard Herbrand universe is U ={t|t=s"(0), n=0}.

This example shows that the model Ms of a program without recursion is finite,
while both M- and My can be infinite.

8.2. Example. Let us consider the following definition:

(1) Length([ 1,0).

(2) Length({x|y], s(z)) < Length(y, z).

(3) List2(l) « Length(l, x), x < s(s(0)).

4) O=<x.

(5) s(y)ss(x)ey=x

This is the usual program to implement the operation Length of a list, and the
relation <. List2 is a predicate on lists which is true if the list has a length less than
or equal to two. As usual, [ ] represents the empty list, and [x,, . .., x,| y] represents
the list which has x,,..., x, as first elements and y as the rest of the list.

Let us compute the minimal fixpoint in the case of the S-semantics. The minimal
S-model is the following:

T(®) ={Length([ 1,0),0<x}, by clauses(1)and (4)
Ts(9) = T4(P) v {Length([x], s(0)), s(0) < s(x), Lise2([ D},
by clauses (2), (3), (5)

Thus
Mg ={Length([x,,...,Xx,],s"(0))|ne N}u{s"(0)<s"(x)|ne N}
u{List2([ 1), List2([x]), List2{[x,, x,])} (with s°(0)=0).

Note that the model of the predicate List2 is finite even if it depends on a recursive
one.
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If the definitions of the predicate Length were inserted into another program with
different constants and constructors, the part of the model for the predicate Length
would not change. Thus we have a more compositional and clear semantics. In fact,
the semantics for the predicate Length is fully independent from that of other
possible predicates and from the functions and constants which appear in them.

Let us give a final example where the relations between the various models are
discussed.

8.3. Example. The following program defines a predicate whose third argument is
the sum of the others.

(1) Plus(x,0, x).

(2) Plus(x, s(y), s(z)) « Plus(x, y, z).

Let us compare the minimal fixpoint in the case of standard semantics, C-semantics
and S-semantics. The minimal S-model is the following:

TL(9) ={Plus(x, 0, x)}, by clause (1)
T5(0) = Ts({Plus(x, 0, x)}) = { Plus(x, 0, x), Plus(x, 5(0), s(x))}
= Ts(#) L {Plus(x, 5(0), s(x))},
where Plus(x, s(0), s(x)) is added by annlving Plus(x, 0, x) to clause (2)
T%(9) = Ts({ Plus(x, 0, x), Plus(x, s(0), s(x))})
={Plus(x, 0, x), Plus(x, s(0), s(x)), Plus(x, s°(0), s*(x))}
= T5(0) U { Plus(x, s*(0), s*(x))}

Thus
Mg ={Plus(x, s"(0), s"(x))|ne N} (with s°(0)=0).

The standard Herbrand universe is U ={t|t=s"(0),n=0} and M,= Msu
{Plus(t, s"(0), s"(¢))|ne N and te Uy}, while the standard minimal model My, is
{Plus(t,s"(0), s"(t))|ne N and te U}. Hence My, c M,..

Note that all universally quantified conjunctions of formulae in My are theorems
of the theory given by the program. For example, all the formulas Vx.
Plus(x, s"(0), s"(x)), which, roughly speaking, assert that the third argument is x+n
when the first argument is x and the second argument is n, are theorems.

Let us now consider some queries: for example < Plus(x, s*(0), y). There is only
one possibility for the reduction of this query, that is to apply clause (2) twice and
then clause (1). Thus we obtain the computed answer substitution, restricted to the
variables of our query, #|;.,;={y/s’(x)}. Let us now consider which kind of
information the three minimal models can give us about the possible computed
answer substitutions. With My, we obtain no useful information. In fact, atoms
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such as Plus(t, s"(0), s"(¢)) with te U are not computed as answers. M contains
information about variables, but it is too large to characterize the answers. It is
useful to give the most general answers plus all their possible instances.

In the case of Mj, instead, according to Theorems 7.1 and 7.7, the only possible
unification between atoms in Mg and the initial query is

' = mgu(Plus(x, s*(0), y), Plus(x, s*(0), s*(x))).

Thus we obtain exactly &, ={y/s*(x)}=9|x,, as expected.

Let us now consider the query « Plus(x, y, s(0)). There are two possible success
paths which give the computed answer substitutions 3}, ,; =1x/8, y/s(0)} and
9| x.,» ={x/5(0), y/0}. Through unification with atoms in M, we obtain

3 = ingu( Plus(x, y, s(0)), Plus(x, s(0), s(x)))
and

35 = mgu(Plus(x, y, s(0)), Plus(x, 0, x)).
Therefore

Pl ixyy =1x/0, y/5(0)} = 3| ixy)
and

32y = {x/5(0), ¥/0} = I .3 -

Note that Vx. Plus(x, s*(0), s*(x)), Plus(0, s(0), s(0)), and Plus(s(0), 0, s(0)), i.e. the
universally closed quantifications of the atoms resulting from the computations, are
instances of corresponding more general theorems given by Ms.

9, Conclusions

In the case of pure logic programs, our semantics differs from the standard
vanEmden-Kowalski semantics [6] essentially for the presence of variables in
interpretations (and models). This allows
e the truth of universally quantified atoms to be modeled: Vx. p(...x...) is valid

iff p(...y...) belongs to M (for counterexamples in the standard case, see [17]).
® a completeness theorem (in the non-ground case) more elegant than the standard

one.

Our declarative semantics therefore capture the difference between answers which
are effectively computed and answers obtained by instantiation of universally quan-
~ tified variables. The ability to model such a difference fills the gap between the
operational and the declarative semantics. Moreover, it provides a declarative
characterization of relevant operational properties. We only mention two aspects,
i.e. logic data bases and partially determined data structures. One important property
of logic data bases is that the query evaluation process always computes ground
answers. This property has a straightforward counterpart in the declarative semantics
(no atom in My contains variable symbols). Logic programs which compute partially
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determined data structures, on the other hand, have in M atoms containing variables

(possibly within a data structure).
We are currently looking into some promising applications of our approach,

namely:

e the characterization of the non-ground finite failure set by T w.

o the semantics of general logic programs which contain negation and, in particular,
universally quantified atoms, which are valid iff they belong to our minimal model.

® the generalization of our construction to a logic programming scheme, in the
style suggested in [12]. In our case, the initial algebra is a set of (possibly)
non-ground terms.

® the possibility of using our notion of models as the basis for abstract interpretations
and program analysis and transformation techniques {2, 5, 9, 18].

® the possibility of using and extending our notion of models to cope with the
semantics of concurrent logic languages such as CP and GHC [14, 15, 16] and
of committed-choice logic languages [7].

Appendix A. Technical properties of substitutions

A.l. Definition (Union of substitutions). If 3,,9, are substitutions such that

Dom($,) n Dom(9,)=@, then 8,U9, is the substitution whose domain is
Dom($8,) u Dom(9,) and such that

%(x) if xe Dom(9,)
3(x) if xe Dom(9,).

Note that the operator U (on substitutions) is associative and commutative.

U (x)= {

A.2. Proposition. Let E,,...,E,, E\,...,E, be expressions such that E,<
is++s En<E,, and E,,...,E, do not share variabies. Then (E,,...,E,)<
(E;,..., El,) holds.

Proof. Let &,...,9, be the substitutions such that E,8,=E;,..., E,d,=
E,,. Define the substitution 3 = &,| ;U - - U 3,,| g, . Since E,, ..., E,, do not share
variables, (E,,...,E,)%=(E#&,...,E,8,) holds, then (E,,...,E,)d8=
(Ey,...,EL). O

A.3. Proposition. Let E, and E, be two expressions such that E,d,= E,9, and E,
and E; do not share variables. Then & = 9| g, U 3| g, is a unifier for E, and E,.

Proof. Since E, and E, do not share variables, E, 3 = E, 3, and E,9 = E, 9, hold,
therefore E, 8 =E,9. O

Ad4. Proposition. Let E,,...,E, and E},..., E., be expressions, and let y be a
substitution such that

® E\,...,E,and E\,..., E,, do not share variables,
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® there exists 3 = mgu(E,, E}),

® Dom(y) is contained in Var(E}), E} does not share variables with E}, ..., E},
and (E,,...,E,)% and (E\v, E5,..., E,,) do not share variables,

® there exists o = mgu((E,, ..., E,), (E\y, E5,..., EW)).

Then, there exists mgu((E,,..., E,)?9, (E\y, E5,..., E},)) and

Proof. We prov< the proposition for the case m = 1. The extension to the case m > 1
is left to the reader. Since E,o = E}yo, by Proposition A.3 we have that o}z U
¥ ¢ v| gy is a unifier for E, and E}. Therefore, 3|g <o|g,. Let 8 be the minimal
substitution such that 9| g, ° 8 = o| g,. We have E, 98 = E,0 = E yo. Then, by Propo-
sition A.3, 8| g,5 U | g;, is a unifier of E,¥ and E}y. Let @ = mgu(E, S, E\ 7). Then,
a|g,0 < 8| g,s. On the other side, (¥|g, ° a|g,s) U a|g;, is a unifier of E, and E\,
then #|g °86=0|g=<9|g °a|gs, and, therefore, <a|g,. Then, we obtain
8!5,6 = alg s =mgu(E,9, E}vY)| s, and thus

o|g, = 3|, o mgu(E\d, E17)| g0 =(3 o mgu(E,8, Eiy))|g,. O

A.S. Proposition. Let E,,...,E,, E|,..., E,, be expressions such that
® there exists 9 =mgu((E,, ..., E,),(E},..., Ewn)),

® E, and E; do not share any variable with E;, ... E,,,

® there exists = mgu(E,, E\).

Then, 3 =6 o mgu((E,,...,E,)d, (E5,..., E,)).

Proof. By definition, (E,,..., E,)3 =(E},..., E,,)?, then E,9 = E|J, and there-
fore 8 <19J. Let o be the substitution such that § e ¢ = 9. Hence, (E,,..., E,)éc=
(ES,...,E!)é0. Then, since Var(E})n Var(E;,...,E,)=0, Dom(8)n
Var(E},..., E!,)=0holds; thus (E,,..., E,)éc =(E,,..., E,)o. Therefore there
exists a =mgu((E,,..., E,)8, (E3,...,E}L)) and a<o, from which it follows
Sca<doco=9. On the other side, (E,,...,E,)da=(E3,...,Ep)a=
(ES,..., E',)éa,and E,8a = E|8a, then (E,,..., E,)éa=(Ei,..., E,)da. There-
fore, 3<6°a,and thus 9=é°ca. []

A.6. Proposition. Let E, and E, be two expressions, and let 'y be a substitution such that
e E, and E, do not share variables,

® Dom(y) is contained in Var(E,), and E, and E,y do not share variables,

® there exists 3 = mgu((E,, E,vy)).

Then, there exists o = mgu((E,, E>)) and o | g, < 9|, holds.

Proof. Immediate, since, by Proposition A.3, 3|g U y° 3|E,y is a unifier of E,
and E,. O

A.7. Proposition. Let E, and E, be two expressions sharing no variables, and let v,
8 be two substitutions such that
e Dom(y) and Dom(8) are contained in Var(E,),
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e Im(y) and Im(8) do not share variables with E,,
® there exists 9 = mgu((E,v, E,)), and

® there exists o = mgu((E,$, E,)),

® =<y

Then, (8°0)|g,<(y°3)|s,.

Proof. Let ¢ be the substitution such that 8 ° ¢ = y. We have E,8¢3 = E,y3d = E,?.
By Proposition A.3, (¢ °9)|gsU 3|g, is a unifier of E;é and E,, then o|g;s<
(¢ © 9)| g 5. Therefore (8°0)|g<(8° o I)|gs=(y°I)|g. O
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