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Abstract—This paper introduces g-leakage, a rich general- the processing of whatever piece of a larger secret that we
ization of the min-entropy model of quantitative information wish to consider. While this can be useful, it is clumsy to
flow. In g-leakage, the benefit that an adversary derives from need to analyze multiple sub-channels of the same channel.

a certain guess about a secret is specified usinggain function Al h vsis i isleading in th fach |
g. Gain functions allow a wide variety of operational scenarbs SO, such an analysis Is misieading in the case ot a channe

to be modeled, including those where the adversary benefits that poses little threat to anyarticular piece of the secret,
from guessing a valueclose to the secret, guessing @art of the  yet is very likely to leaksome piece of the secret. To

secret, guessing groperty of the secret, or guessing the secret jllystrate, suppose that the secret is an atkayontaining
within some number of tries. We prove important properties of 10-bit, uniformly-distributed passwords for 1000 userewN

g-leakage, including bounds between min-capacityy-capacity, - . A .
and Shannon capacity. We also show a deep connection between consider the following probabilistic channel, which leaks

a strong leakage ordering on two channelsC; and Cs, and ~ Somerandomly-chosen user’s password:

the possibility of factoring C, into C2Cs, for some Cs. Based ”

on this connection, we propose a generalization of theattice u < {0..999}; (Ex1)
of Information from deterministic to probabilistic channels. Y = (u, X[u]);

If we analyze the min-entropy leakage of (Ex1), we find
that the prior vulnerability i2 19990 since there are 10000
A fundamental concern in computer security is to controlcompletely unknown bits, while the posterior vulnerafilit
information flow whether to protect confidential information is 27999, sinceY reveals 10 of the bits. The min-entropy
from being leaked, or to protect trusted information fromleakage is the logarithm of the ratio of the posterior and
being tainted. In view of the pragmatic difficulty of prevent prior vulnerabilities:
ing undesirable flows completely, there is now much interest 99990
in theories that allow information flow to bguantified so L =log
that “small” leaks can be tolerated. (See, for example, [1], ] ]
121, [3], [41, 5], [6], [7], [8], [O], [10], [11], [12].) For  |fwe instead analyze the sub-channel focused on any partic-
any leakage measure, a key challenge is to establish itdar useri's password, the prior vulnerability 5%, and the
operational significanceso that a certain amount of leakage POSterior vulnerability i9).001 - 1+0.999 - 271 ~ 0.00198,
implies a definite security guarantee. since with probability0.001, the adversary learns usés
Min-entropy leakage [10], [13] is a leakage measure basefassword fromY, and with probabl_l|ty0.999, he must still
on the amount by which a channel increasestiiaerability ~ Make a blind guess. Thus the min-entropy leakage of the
of a secret to being guessed correctly in one try by arsub-channel |siog2.0_23 ~ 1.016 bits. Hence we see that
adversary. This clear operational significance is a strengththe threat of (Ex1) is not well described by min-entropy
of min-entropy, but it also leads to questions about whethel®@kage—the whole channel leaks just 10 bits out of 10000,
min-entropy leakage is relevant across the wide range ofnd the sub-channel just 1.016 bits out of 10, even though
possible application scenarios. For instance, what if theomeusers password is always leaked completely.
adversary is allowed to makeultiple guesses? Or what if I light of the wide range of possible operational threat
the adversary could gain some benefit by guessing the secigg€narios, there is growing appreciation that no singlee-lea
only partially or approximatel§ age measure is likely to be appropriate in all cases. For
With respect to guessing the secpeirtially, we can note this reason, in this paper we introduce a generalization of

that we could in fact analyze a sub-channel that model§1in-entropy leakage, calleg-leakage The key idea is to
generalize the notion of vulnerability to incorporate what

1The precise definition is reviewed in Section II. we call again functiong that models the benefit that the
adversary gains by making a certain guess about the sefcret. |
This work has been partially supported by the European USerenth Framework the adversary makes gueszNhen the secret’s actual value
Programme under grant agreement no. 295261 (MEALS), antiéjintia large scale . . .
initiative CAPPRIS: Collaborative Action for the Protemti of Privacy Rights in the ISz, the_ng(w, I) mode_ls the benefl_t that the adversary gains
Information Society. from this guess, ranging from 0 (ih has no value at all)
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to 1 (if w is ideal). Given gain functiog, g-vulnerability is its basic properties. Sections V and VI present our results o
defined as the maximum expected gain over all guesses. capacity and on comparing channels. Finally, Sections VII
As we will see in Section Ill, gain functions let us and VIII discuss related work and conclude.
model a wide variety of scenarios, including those where
the adversary benefits from guessing a vatleseto the
Secret’ guessing mrt of the Secret’ guessingmopertyof In this Section, we bl‘leﬂy recall the basic definitions of
the secret, or guessing the secret withitries. We can also  information-theoretic channels [18], vulnerability, anmin-
model the case when there ipanaltyfor incorrect guesses. €ntropy leakage [10], introducing the non-standard notati
Thus g-leakage seems fruitful in addressing a great numbethat we will use.
of practical situations. A channelis a triple(X, Y, C'), whereX and) are finite
In addition to introducing the new concept gfleakage, Sets (of secret input values and observable output values) a
we also make significant technical contributions, printtjpa €' is achannel matrixan|X| x || matrix whose entries are
in Sections V and VI. between 0 and 1 and whose rows each sum to 1; the intent
In Section V, we establish important boundsaapacity IS thatC[z, y] is the probability of getting outpuy when
the maximum leakage over all prior distributions. We provethe inputisz. ChannelC' is deterministicif each entry ofC
that min_capacity is an upper bound gmapacity, forany is either O or 1, Implylng that each row contains eXaCtIy one
gain functiong—this means that a channel with small min- 1, Which means that each input produces a unique output.
capacity is (in a sensedafe in every possible scenario.  Given aprior distribution = on X', we can define goint
Moreover, we prove that min-capacity is also an upper boundlistributionp on X' x Y by p(z, y) = w[z]C[z, y]. This gives
on Shannon Capacitﬁetﬂing a Conjecture in [14] jOInt|y distributed random variableX andY with marginal
In Section VI, we consider the problem @bmparing Probabilitiesp(z) = > p(z,y), conditional probabilities
two channels(C; andC,, asking whether oeveryprior the — p(y|z) = ”Igg(”m’g) (if p(z) is nonzero), and similarly(y) and
leakage ofC is less than or equal to that 6f,. Yasuoka p(z|y). As shown in [19],p is the uniquejoint distribution
and Terauchi [15] and Malacaria [16] recently explored thisthat recoversr and C, in thatp(z) = «[z] and p(y|z) =
strong ordering in the case whefg andC, aredetermin-  Clz,y| (if p(x) is nonzero).
istic, focusing on the fact that deterministic channels induce We now define vulnerability, introducing a new notatfon.
partitions on the space of secrets. They showed that the Definition 2.1: Given prior # and channel’, the prior
orderings produced by min-entropy leakage and Shannowulnerability is given by
leakage are the same and, moreover, they coincide with the
partition refinemenorderingC in the Lattice of Information V(r) = maxwla],
[17]. Since partition refinement applies only to deterntinis
channels but leakage ordering makes sensarigchannels,
this equivalence suggests an approach to generalizing the V(r,C) = Zmaxw[:z:]C’[:z:,y].
Lattice of Information to probabilistic channels. yey "€

generalization of partition refinemeft. We show that on  channelC are known to the adversary. ThenV (r) is the
deterministic channelg;, C C; iff there exists dactoriza-  prior probability that4 could guess the value of correctly

tion of C into acascade ', = C,C3, for some channel jn one try. To understand posterior vulnerability, notet tha
Cs. In this case we say thdt; is composition refinedy

C,, written C; C, Cs. In the most technically challenging V(r,C) =3, max, p(z,y)
part of our paper, we show a deep connection betwegen = >, p(y) max, p(z|y)
and leakage ordering. We show first in Theorem 6.2 that _ Z‘ p()V(px1,)

Cy C, Cy implies thatCy’s g-leakage is less than or equal v ly

to Cy's, for every prior and every ¢g; we denote this by making it the (weighted) average of the vulnerabilities of
C1 <g Cy. We conjecture that the converse implication, the posterior distributiong x|, .

C1 <g Oy impliesC; C, (s, is also true, butit turns outto ~ We convert from vulnerability tanin-entropyby taking

be extremely subtle and we have been unable so far to prowbe negative logarithm (to base 2):

it in full generality. We have proved it in important special ~ Definition 2.2:
cases_(e_.g. wheidy’s columns are Iinearly. indepgnd?nt) Hoo(7) = —log V()
even limiting to a very restricted kind of gain function; we

have also shown that the unproved case is inherently harder, Hoo(m,C) = —logV(m, C).

in that much richer gain functions are required.
9 d 2We deviate from the standard notatidn(X) and V(X|Y) used in

The rest of the papgr i_S st_ructure(_j as follows. Sections II[14] and elsewhere, because we wish to express explicidydépendence
lll, and IV present preliminaries, defingleakage, and show on Xs prior distribution.

Il. PRELIMINARIES

and theposterior vulnerabilityis given by



Note that vulnerability is grobability, while min-entropy Definition 3.2: Given gain functiong and prior 7, the

is a measure dbits of uncertainty prior g-vulnerability is
Next we definemin-entropy leakageZ(w,C) and min- v B
capacity ML(C): o(m) = max »  mlzlg(w, z).
Definition 2.3: vex
The idea is that adversant should make a guess that
L(7,C) = Hoo(r) — Hoo(m,C) = log V(r,C) maximizes the expected gain; we therefore take the weighted
V(m) average ofy(w, z), for every possible value of X3
ML(C) = sup L(m, C). Definition 3.3: Given gain functiory, prior 7, and chan-

nel C, the posterior g-vulnerability is
The min-entropy leakagé(w, C') is the amount by which

channelC decreases the uncertainty about the secret; equiv- V(. C) = Z max Z m[z]Cla, ylg(w, z)
alently, it is the logarithm of the factor by whiaf increases vey TeX
the vulnerability. The min-capacity1 £(C) is the maximum = max Z p(z,y)g(w, )
min-entropy leakage over all priors it can be seen as the yey ' zex
Wor§t-case leakage af. . . . _ Zp(y)Vg(pX\y)

Finally, we recall [13] that the min-capacity ¢ is easy vey

to calculate, as it is simply the logarithm of the sum of the
column maximums ot’:
Theorem 2.1:ML(C) = log ), max, C[z,y], and it is

Now we defineg-entropy, g-leakage, andy-capacity in
exactly the same way as in Section Il

. ) . Definition 3.4:
realized on a uniform prioft.
I11. GAIN FUNCTIONS, g-VULNERABILITY, AND Hy(m) = —log Vy ()
. g'LE,AKAGE ’ Hg(?T,O) = _1Ogvg(ﬂ'ac) v c
We now develop the theory of gain functions and the g(m,C) = Hy(m) — Hy(m,C) = log%;r))
)

leakage measures that they give.
Implicit in the definition of prior and posterior vulnerabil

ity V{r) andV'(, C') is the assumption that the adversary In Section 1V, we will explore the mathematical properties

benefits only by guessing thentire secretexactly But, of g-leakage. But first we present a number of example gain

as motivated in Section |, there are certainly situation% : :
. T : . unctions that illustrate the usefulness gfeakage.
where this assumption is not appropriate. This leads us to

introduce what we calyjain functionsas abstract models of A. The identity gain function

the particular operational scenario. The idea is that in any gpe obvious (and often appropriate) gain function is the

such scenario, there will be some setgifesseshat the  gne that says that a correct guess is worth 1 and an incorrect
adversary could make about the secret, and for any guess guess is worth O:

and secret valug, there will be somgainthat the adversary Definition 3.5: Theidentity gain functiony;q : X x X —
gets by choosings when the secret's actual valuedis A (g 1] is given by
gain functiong will specify this gain ag/(w, ), using scores )
that range from O to 1. gia(w, x) = { b !f oo
A first question, however, is what should be the set of 0, if w#u.
allowable guesses. One might be tempted to assume that thigote that forg;; we assume thatV = X, since there is
should just beX, the set of possible values of the secret.no gain to be had from a guess outsidef In terms of
But given our desire to model scenarios where the adversamgpresenting a gain function as a matiy; corresponds to
gains by guessing pieceof the secret, or a valueloseto  the identity matrix/; v|. Also notice thay;, is theKronecker
the secret, or somproperty of the secret, we instead let a delta, sinceg;q(w, z) = Sya-
gain function use an arbitrary s&V of allowable guesses. Now we can show thag-vulnerability is a generalization
Definition 3.1: Given a set¥ of possible secrets and a of ordinary vulnerability:
finite, nonempty setV of allowable guesses,gain function Proposition 3.1:Vulnerability underg;; coincides with
is a functiong : W x X — [0, 1]. vulnerability:
Sometimes it is convenient to represent a gain funggion Vigsu (M) = V().
as a|\W| x | X| matrix G, whereG[w, z] = g(w, x); the rows
of G correspond to guesses and the columns to secrets. ?We remark that our assumption that gain values are between Q &
We now adapt the definition of vulnerability to take unimportant. Allowingg to return a value irf0, a], for some constani,

i - just scales alp-vulnerabilities by a factor ofi and therefore has no effect
account of the gain function: on g-leakage.

L
MLG(C) =sup Ly(m,C)



Proof: Note for anyw, > w[z]gia(w,z) = w[w]. SO Moreover, the assumption gymmetryis sometimes in-

Vi, (m) = max,, ww] = V(). B appropriate. Suppose that the secret is the time (rounded to
This means thaty;;-leakage coincides with min-entropy the nearest minute) that the last RER B train will depart
leakage. from Lozeére back to Paris.The adversary (i.e. the weary

. . . . . traveler) wants to guess this time as accurately as possible
B. G_aln functions induced from metrics or other dIStancebut note that guessing 23:44 when the actual time is 23:47
functions is completely different from guessing 23:47 when the actual
Exploring other gain functions, one quite natural kind of time is 23:44! If we normalize so that a wait of an hour
structure thatt’ may exhibit is a notion oflistancebetween  or more is considered intolerable, then we would want the
secrets. That is, there may benwetricd on X, which is a  distance function
function =W jfr-60<w<zx

) — 60
d: X x X —[0,00) d(w,z) = { 1 otherwise

satisfying the properties
« (identity of indiscernibles)i(z1, z2) = 0 iff 21 = 2o,
o (symmetry)d(zy,z2) = d(z2,21), and g(w,z) =1—d(w,x).
« (triangle inequality)d(x1, z3) < d(x1, z2) + d(z2, x3).
Given a metricd, we can first form anormalizedmetric d
by dividing all distances by the maximum value @fand  C. Binary gain functions
then we can define a gain functigg by

and the gain function

But d(w, x) is not a metric, because it is not symmefic.

The family of gain functions that return either 0 or 1
ga(w, ) =1 —d(w, z). (and no values in between) are of particular interest, since
) _ we can characterize them concretely. For given such a gain
(Note that here we are _tal_<|rig/ = &) In th|s_cas4e W€ SaY  function, each guess exactly corresponds tosthigsetof X
that g, is the gain functiorinducedfrom metricd. _ for which that guess gives gain 1. (Moreover we can assume
Metrics induce a large class of gain functions—note in it loss of generality that no two guesses correspond to

particular that the identity gain function is induced by the o samesubset of¥. since such guesses may as well be
discrete metricwhich assigns distance 1 to any two distinctmerged into one.) Hénce we can use the subtbetsmselves
values. However, there are several reasons why it is usefuls e guesses, leading to the following definition:

to allow more ge.nerallty. i _ Definition 3.6: Given W C 2%, W nonempty, thébinary
For one thing, it may make sense to generalize to a met”ﬁain functiongyy is given by

on a setW that is asupersetof X. To see why, suppose

that the space of secrets is the set of corner points of a (W, z) = {

unit squareX’ = {(0,0), (0, 1), (1,0), (1,1)}. Suppose that I

we use the gain functiop(w, ) = 1 — d(w, z), where the

metric d is the normalized Euclidean distance:

1, ifzeW
0, otherwise.

Now we can identify a number of interesting gain func-
tions by considering different choices b¥.

(2r.0). (2. 2)) = \/(:101 —22)% + (Y1 — y2)? 1) 2-block gain functionsif W = {W, X \ W} then we
TIEATE 2 can seelV as aproperty that the secre might or might
Now, not satisfy, andg,y is the gain function corresponding to
V,,(7) = maxZw[a:](l —d(w, 1)) an adversary that just wants to decide whether or Xot
wo = satisfies that property.

Such 2-block gain functions are reminiscent of the cryp-
tographic notion ofndistinguishability which demands that
from a ciphertext an adversary should not be able to decide
v, (x) = 1(1 Lo i) +0) ~ 0.3964 any property of the corresponding plaintext.

4 V2 2) Partition gain functions:More generally)V could be

But the adversary could actually do better by guessingtny partition of X’ into one or more disjoinblocks where

(3,1), a value that isnot in X, since that guess has the adversary just wants to determine which block the secret

normalized distancg from each of the four corner points, belongs to.

and if 7 is uniform, then it is easy to see that any of the
four corner points are equally-good guesses, giving

giving V,,(7) = i, which is larger than the previous This is equivalent to saying tha = &'/~, where~ is
vulnerability. an equivalence relation of.
4However, it is also rather natural to define a gain functiamrfra metric SIt is well known that RATP uses sophisticated techniqueshsas the

by g(w,z) = e~4(w,2): note that here we would actually wadtto be droit de retrait to make this time as unpredictable as possible.
an extended metric, so that a gain of 0 becomes possible. 6Such a function is sometimes callecjaasimetric



There are two extremes. # is the identity relation, then These values match our intuition that ungethe adversary
the elements oV are all singletons, which meansthiat =  just needs to guess any single 10-bit password; uggdem
gia- And if ~ is the universal relation, thew’ consists of contrast, the adversary needs to guess 1000 such passords.
a single blocky = {X'}, andg.. = g-, the “happy” gain Turning now to the posteriog-vulnerability, we have

function such thay.- (X, z) = 1, for everyu. Vy(m,Ex1) = 1, since givenY = (u, X[u]), ‘A can guess
3) Thek-tries gain function: Interestingly, we can sub- (u, X[u]) and be sure of getting gain 1.

sume the theory of-tries vulnerability in which the adver- Hence we have

sary is allowed to maké guesses, rather than just 1. For if V, (, Ex1) 1

we define L, (7, Ex1) = log —L-— = log == = 10 bits.

Vo(m) 72

Curiously, theg-leakage is thesameas the standard min-
entropy leakage, namely 10 bits. But the significance of
leaking 10 bits is completely different undgrand under
giqa- If we convert from vulnerability to entropy (see Defini-
tion 3.4), we see thall, () = 10, while H,, , (7) = 10000.

In other words, channel (Ex1) leaks 10 bits out of 10
under g, as compared with 10 bits out of 10000 under
h o Yid: In conclusion,g-leakage under gain functiog allows

us to model accurately the threat tos#ructured secret
(like a password database), composed of “pieces” that are
individually valuable; as we saw in Section I, such threats
are not well modeled using min-entropy leakage.

Finally, it is interesting to consider a variant of chan-
nel (Ex1) that selects 10 random users and leaks just the
last bit of each of their passwords. Because the variant still
reveals 10 bits to the adversary, the min-entropy leakage
remains 10 bits. But thg-leakage is now only 1 bit: the
posteriorg-vulnerability is now2~? since (at least) 9 bits of
each user’s password remain unknown. In other words, gain
function g captures thestructure of the password database,
where certain sets of bits are worth more than others.

Wi ={W e2% | |W| <k}

thenVy,, () is exactly the probability that the adversary
could guess the value oX correctly within & tries. This
gain function is particularly appropriate for a login pragr
that allows the user only tries before locking him out.

Notice thatgyy, is not a partition gain function fak > 1,
since its blocks overlap.

4) General binary gain functionsin general,)V can
be an arbitrary nonempty subset »f. In this case, eac
element oW can be understood as a property thamight
satisfy, andgyy is the gain function of an adversary that
wants to guesany of those properties thaX’ satisfies.

Given an arbitrary gain functiog, we can define the
complemengain functiong® by ¢¢(w, z) = 1—g(w, x). It is
interesting to notice that iV C 2%, theng,, is essentially
the samé as gy, where W' = {W¢ | W € W}. For
example, forg$, we have thatV’ is the set of complements
of singletons. This means thaf, is the gain function of an
adversary that just wants to guess some vditferentfrom
the actual value of the secret; in the context of anonymity.
this corresponds to wanting to guessianocentuser.

D. A gain function and theg-leakage of the password ) ) o
database example E. Gain functions that distinguish two channels

We now show how we can craft a gain function We conclude this section by revisiting two example chan-
appropriate for the password database example (Ex1) fromels from [10]:
Section |. The intuition thay will implement is that the .
adversaryA simply wants to guessomeuser’s password, if (X%8 == 0)Y =X; elseY =1; (Ex2)

with no preference as to whose it is. So we will take Z=X|0T: (Ex3)

= <u< <z<
W ={(,2) |0 < u <999 and0 < 2 < 1023} Assuming thatX is a uniformly-distributed 64-bit unsigned

and define integer, both channels have min-entropy leakage of 61.000
1, if X[ul=x bits, even though they present quite different threats2JEx
9((u, ), X) Z{ 0. otherwise. leaks all of X one-eighth of the time and leaks almost

. nothing seven-eights of the time, while (Ex3) always leaks
How does our analysis of channel (Ex1) change when wey put the last three bits ok .

use gain functiory (rather thary;q, used implicitly in min-

entropy leakage)? 81t is interesting to notice that we would get a much biggerompri
We first see that the prior vulnerability is vastly higher vulnerability if we used a gain functiog’ that allows.A to guess just

th bef Under th if ot it | ¢ that a pgsswordn, without specifyingwhoseit is, and which gives a gain of 1
an pbetore. Un .er € uniform priat, 1t IS easy 0 see tnat it ; is correct forany of the users. For then we would have

the expected gain of every elemefat, z) of W is 2719, 1000

since for every, X [u] is uniformly distributed or0..1023]. Vy(m) =1- (%) ~ 0.6236

HenceV,(r) = 271°, compared withV,, ,(7) = 2710000, 0

But ¢’ is not such a reasonable gain function, since really a passiso
“They don't actually have the same set of guesses. valuable only with respect to a particular user.



We now show how these two channels can be distin- Theorem 4.1:For anyr andC, Vy(m, C) > V, (), which
guished by gain functions that model different attack sceimplies thatL,(w,C') > 0.
narios, showing that each channel can sometimes be worse Proof:
than the other.

Consider first the 3-try gain function from Section 11I-C3. V(. C) = 32, maxy 32, p(@,y)g(w, z)
Becausey,y, gives a gain of 1 if the adversary can guess max}’, >, p(z,y)g(w, )
X within 3 tries, the prior vulnerability is tripled: = max > Zy (@, y)g(w, )

v

— —64
Allowing 3 tries also triples the posterior vulnerabilitgrf =V, (n)
(Ex3):
Vy(m,C
Vo (r Ex3) = 3 HenceL, (r, C) = 1o.g% > log1 > 0. n
oY 8 A mathematical issue, however, is that we could have
$0L,,,,, (,Ex3) remains 61 bits. But allowing 3 tries hardly Vy(7) = 0, since we could havg(w, ) = 0 for everyw
helps (Ex2): and everyx with 7[x] > 0. But in such a case it is easy to
1 7 1 see that we must also ha¥g(r, C) = 0, for anyC, so we
Vi, (M, EX2) = = -1+ = -3 270 2 could simply define theg-leakage to be 0 in that case. In this
" 8 8 8 paper, however, we will instead rule out such “pathological
so thegyy,-leakage of (Ex2) becomes smaller: gain functions, by insisting that for every secrethere exist
-3 some guess such thatg(w, z) > 0.
Lg,,. (1,Ex2) =~ log e <994 ) )
3 3-2 A. Comparingg-leakage and min-entropy leakage
Thus (Ex3) is worse than (Ex2) undeyy, . How can theg-leakage and min-entropy leakage of a

But now suppose that making a wrong guess triggers @hannel compare? We can first observe thgakage can be
penalty (say, opening a trap door to a pit of tigers). Thisarbitrarily smaller than min-entropy leakage. A trivial yva
scenario can be modeled through a gain funcli@qer USiNg  that this can happen is to use the “happy” gain function
W = XU{L}, where the special value is used to opt not ;. from Section I1I-C2. With this gain function, the prior
to make a guess: vulnerability is always 1, so the- -leakage is always 0, no
matter the channel.

1, fw==x | ) _
dtiger(w, ) = %’ ifw= 1L More interestingly, consider the channel
0, otherwise. v | Yo
1 1
Now we get il % (5) (Ex4)
2
1
Vatiger () = Vatiger (T, EX3) = 5 23] 011

If we assume a uniform prior = (3, %, 1), then the min-

entropy leakage idog2 = 1. Now suppose we use the
following metric-induced gain functiopy:

since A’s best choice isL both a priori and also giver?,
since knowingZ gives only a% probability of guessingX,
and$ < 3. In contrast,

1 71 9 gd | ®1 | ®2 | w3
Vo (MEX) == 14 +.2=". "
stiger(™EX2 =514 g5 = 1 ne——""__ e ! (1) (1) o%g
Hence thegtiger-leakage_of (Ex3) is 0O, _While that of (Ex2) ! s xz 0 1 0.98 '1
is log1.125 =~ 0.17, showing that (Ex2) is worse than (Ex3) )
undergriger- We find that
Having shown some examples of the usefulness of gainV _ 1 14040.0+1+0980+098~+1
functions, we turn in the next section to a study of the 0a () 3max{ +0+0,0+1+098,0+0.98+1}
mathematical properties gfleakage. = 0.66
IV. M ATHEMATICAL PROPERTIES OFg-VULNERABILITY reflecting the fact that, andxs behave almost like a single
AND ¢-LEAKAGE secret value. Turning now to, (7, Ex4), we calculate that
the posterior distributiopx|,, = (3, 2,0). Hence

We now establish some mathematical propertiesg-of
leakage. First, because gain functions return valug, it,
it is easy to see that-vulnerabilities are also if0, 1]. Also, Voa(Px|y,) = max
prior vulnerability cannot exceed posterior vulnerailit

-1+§-0+0-o, 5
0+2-14+0-0.98, 3 ==

0+2.098+0-1

O | 0o =



Similarly, we can calculate thaty, (px|,,) =

11

2. So, since
py = (3, 3), we getV,, (m,Ex4) = 2, giving

2
L,,(m,Ex4) = log ﬁ ~ log 1.0101 ~ 0.01450

Here the min-entropy leakage is about 70 times the
leakage. Intuitively, (Ex4) lets us distinguish between
and z3, but since these are so close together untighis
hardly increases thg;-vulnerability.

Theorem 4.2:Given channet’, gain functiorg, and prior
m, the g-leakage is 0 iff there exists a guess that gives
the best expected gain for all outputs:

Yw,y : Eg(w*,y) = Eg(w,y).
If such a guess exists then it also gives the best prior gain:
Vw : Eg(w*) > Eg(w).

Proof: Assuming that such a guess™ exists, we first

We may wonder ifg-leakage can ever exceed min-entropy show that it gives the best prior gain. We have

leakage. Indeed it can, as the following example shows:

Y1 | Y2
1 06|04
- 1 (Ex5)
I3 0 1

Under priorm = (0.6,0.2,0.2), the min-entropy leakage
is 0, becaused’s best guess is unaffected Hy; indeed
(0.375,0.3125,0.3125), so

Px|y, = (13070) and Pxly. =
the best guess is always.

In contrast, we find that thg;-leakage is positive, where
ga is the same as in (Ex4) above. Firg}, (7) = 0.6 because
the combined probabilities afs andx3 are only 0.4. Next
we find thatV, (px,,) = 1, Vy,(px)y,) = 0.61875, and
py = (0.36,0.64), so

V,,(m,EX5) = 0.36 - 1 + 0.64 - 0.61875 = 0.756,
giving g4-leakage oflog %736 = log 1.26 ~ 0.3334.

B. Ong-leakage of 0
We can characterize precisely whetteakage is 0. As in

the case of min-entropy leakage, we find that a changel’'s
leakage is 0 iff the adversary’s best guess about the secret

not affected by channel’s output. Before stating this prope
formally, we first introduce some notion, given prierand
channelC:

Ey(w) =3, mlz]g(w, z)
Eg(w,y) =3, n[z]Clz, y]g(w, x)

E,(w) is the expected gain of guess a priori, while
E,(w,y) is the expected gain fow given outputy. These
satisfy the following properties:

Vy(m) = max Eg(w)

Vo(m,C) = Zy max,, Eg(w,y)
Ey(w) =22, Eg(w,y)

and, in the case of min-entropy, they reduce to

Egid (‘T) = 7T[$C]
Egid (xv y) = W[x]C[x, y]

Vg(ﬂ'v C) = Zymawag(w,y) = ZyEg(W*v y) = Eg(w*)'

Since E,(w*) = max,, E,(w) = Vy(n), the g-leakage is 0.

Now assume that such a guess does not exist, and*let
be a guess giving the best prior gain. Then there exisy
such thatt, (v', y) > E,(w*,y). Now we have

Vo(m,C) = Zy max,, Eg(w,y) > Z’y Eg(w*,y) = Vy(m)
which implies that thegj-leakage is greater than 0. ]

C. Ong-vulnerability as a linear optimization problem

It is sometimes useful to think af-vulnerability as the
solution to an optimization problem, where the adversary
assigns guesses to channel outputs, with the goal of max-
imizing his gain. LetC be a channel from® to ) and
let g : Wx X — [0,1] be a gain function. A function
s : Y — W is called astrategy Intuitively, s(y) is the
attacker’s guess when he sees the ougplitis also possible
to write s as a deterministic channél from ) to W (i.e.
Sy, w] = 1iff s(y) = w).

Now consider the definition of posterigrvulnerability
(Def. 3.3) and let be anoptimalstrategy, i.e. such tha(y)
is aw giving themax,, for eachy in the definition. Viewing
s, g as matricesS, G, we havey(s(y), z) = SG[y, x], SO we
can writeV(w, C) as:

Vg(ﬂ-v C) = Zyey maXyew ZmeX W[I]C[x, y]g(wv I)
= ZmGX Zye'y W[.I‘]C[CC, y]SG[y7 CC]
— tr(D,CSG)

where D, is the matrix havingr in the diagonal and)
elsewhere (note thab,Clx,y] = 7[z]Clz,y]), andtr(A)
denotes the trace of, i.e. the sum of its diagonal elements.
So, seeing now the elements 8fas variablesy, (r, C)

is the solution to the linear optimization problem (for fixed
w, C,G):

maximizetr(D,CSG)

subject toS being a channel:

Sly,w] >0 YyeY,weWw
Zw S[va] =1 Vy ey

Note that in the optimization probler§i is not necessarily

deterministic, meaning that the choice of guess can be made
probabilistically. However, from linear programming tigo



we know that there is always an optimal solution oreatex Theorem 5.3:For any channel’, C's min-capacity is at

which here corresponds t& being deterministic. least as great as its Shannon capacity.

We should clarify that this linear programming formu- Proof: Our argument makes crucial use dénsen’s
lation is not particularly useful if we just wish to com- inequality which says that iff is a concave ) function,
pute V, (m, C), since we can directly evaluate the formula A\, Xs, ..., )\, are convex coefficients, angy,xs,...,z,

in Definition 3.3. The value of these linear programmingare arbitrary, then
insights will be demonstrated later, especially in the proo
of Theorem 6.2 and in the challenging algorithmic problems 2 Aif (i) < (2 Aia)-

considered in Section VI-F. Let prior = on X be arbitrary. We reason as follows:

V. RESULTS ON CHANNEL CAPACITY I(X:Y)
In this section, we compare min-capacity witkcapacity =H(Y)-H(Y|X)
and Shannon capacity, proving some important relatiosship
==, p(y)logp(y) + 3=, p(x)>_, p(y|z)log p(y|x)

A. Min-capacity andy-capacit _ p(ylz)
pacity andy-capacity = Zm,y p(z,y)log »(¥)

When we compare thg-leakage and min-entropy leakage < [by Jensen’s inequality and the concavitylog]
of a channel under some particular prior we saw in (yl2)

Section IV that each may exceed the other greatly. log>=q.y P2, 9) 50
Remarkably, when we turn our attention to capacity, we =log}_ >, p(z|y)p(y|z)

find that a definite order must hold: min-capacity is an upper |, ‘ 2lv) (max T

bound ong-capacity, foreverygain functiong. < log 2.y 2. plaly) (maxe p(ylz))

Theorem 5.1 (“Miracle”): For any channelC and gain = log}_, (maxg p(y|2))3_, p(z]y)
function g, ML,(C) < ML(C). =log}_, max; Clz,y]
Proof: For anyC, g, andw, we have = ML(C)
Vy(m,C) = Zy maxy, », Clz, ylr[z]g(w, ) Because this inequality holds for every it follows that

< Zy maxy y ., (maxm C[:v,y])w[:v]g(w,x)

Shannon capacity of' = sup I(X;Y) < ML(C).
= (Zy max, Clz, y]) (max, >, 7[z]g(w, z)) ™

= 2MEC) v (), .
using Theorem 2.1 in the last step. Hence C. Practical implications of capacity bounds
Vy(m,C) ML(C When we consider the risk to confidentiality caused by a
Ly(m, C) = log V, () < log 249 = ML(0), systemC, different leakage measures may be appropriate in
o different scenarios, depending on factors like the stmectu
which implies thatM L, (C) < ML(C). B of the set of secrets, the design of the system, and the
This gives a nice corollary abodéttries leakage: adversary’s strategy or power. For this reason, Theoreins 5.

Corollary 5.2: The capacity of a chann€l under thek-  and 5.3 can be very useful in simplifying our security
tries scenario is no greater than its capacity under thg 1-tranalysis. For they tell us that if we can show that the min-
scenario (i.e. its min-capacity). capacity of C' is small, then we are guaranteed that the

Proof: Follows from Theorem 5.1 and the fact that the |eakage undeany gain functiong and underany prior T
k-tries scenario is given by they, -leakage, whergyy, is s also small, as is the Shannon leakage. In such a case, the
the gain function from Section I1I-C3. B multitude of possible gain functions need not burden us.

So, while allowing more than one guess obviously increases This is not to say that we can simply forget about the
both the priOI‘ and pOSteI’iOI‘ Vu|nel’abi|itieS, it cannotrease gain function g, since a particu'arg can make the prior
the capacity. vulnerability much larger (as in (Ex1), for example). Indee
we could say that leakage bounds addressctireservation

of confidentiality, while prior vulnerability addresses it

The significance of min-capacity as an upper bound ortreation involving parameters like the sizes of passwords
leakage is further attested by another result that we havegnd their prior distribution.
achieved—we have been able to show that min-capacity is Moreover, when weomparetwo channels, we may find
also an upper bound o8hannon capacityi.e. the maxi-  that one has worse min-capacity than the other, even though
mum mutual information/ (X;Y") over all priors7 [18]),  the opposite ordering holds under the gain function and prio
confirming the conjecture made in [14]: relevant for the scenario of interest.

B. Min-capacity and Shannon capacity



To illustrate, recall (Ex1) from Section I, which leaks a

randomly-chosen user’'s 10-bit password, giving it a min-

capacity of 10 bits. Compare that channel with

n < {0..9};
if n =0 then

Y = (762, X[762]) (Ex6)
else

Y :=(0,0)

Since (Ex6) has only q% probability of leaking anything,

it is easy to see that its min-capacity is less than 10%its.

So, with respect to min-capacity, (Ex1) is worse than (Ex6)
But suppose that it turns out that user 762 is Bill Gates

that of C'3, on everyprior. For this question to make sense,
both channels need to have the same input spgdaut they
need not have the same output space.

Definition 6.1: Given channelg’; from X to Z andCy
from X to Y, and a leakage measure write C; <,,, Cs if
the m-leakage ofC; never exceeds that @f,, on any prior.

Notice thatC; <,,, Cy implies that them-capacity ofCy
is less than or equal to that 6f,, but not conversely.

One would expect that,,, will depend on the particular
choice of leakage measure. Interestingly, Yasuoka and
Terauchi [15] and Malacaria [16] show that daterministic

channels, we get theameordering <,,, whenm is either

Shannon, min-entropy, or guessing entropy leakage. They

whose password is vastly more valuable than all the othefhOW moreover a connection to thattice of Information

passwords. In this scenario, it would make sense to replace

g from Section III-D with a gain function like

1, if u=762andz = X[762]
g ((u,r), X) =< 0.01, if us762andz = X][u]
0 otherwise

Underg’, the min-capacity ordering is reversed: now we find
that (Ex6) is worse, since it hasﬁ probability of revealing
Bill Gates’s password, which undef is worth 100 times

as much as every other passwéfd.

D. The prior that realizeg-capacity

Recall (e.g. [17], [7]) that a deterministic chandéfrom
X to Y gives rise to an equivalence relation (or partition)
on X, given byx; ~¢ x4y iff C(z1) = C(az2). (By C(z)
we denote the uniqug such thatClz,y] 1.) In the
Lattice of Information, we order these equivalence retatio
by partition refinement

Definition 6.2: Given deterministic channels; and Cs,
write ¢y, C Cy if the partition of C; is refined by the
partition of Cs, in that each equivalence class st-, is
contained within some equivalence class~af;:

X1 ~Cy T2 implies T ~c, T2.

A property of min-capacity that makes it easy to calculateYasuoka and Terauchi [15] and Malacaria [16] show that

is that it is always realized on a uniform prior. We have
found, however, that this doewt hold for g-capacity.

Consider channel (Ex5) above and its gain functign
Under a uniform priorr, we calculate thav/,, (7) = 0.66,
py = (0.2,0.8), V,,(px1yn) = 1, Vyu(pxy,) = 0.825, and
V,, (m, EX5) = 0.86, giving L, (7, EX5) = 0.3819.

Now if we consider the priorr’ = (0.5,0.5,0), we find
that V,,(7') = 0.5, py = (0.3,0.7), V,(px}y,) = 1,
Voa(Px1y,) = 2, and Vg, (7’,Ex5) = 0.8, which gives
Ly, (' EX5) = log1.6 =~ 0.6781. Hence thegq-capacity
of (Ex5) is not realized on a uniform distribution.

Notice here thatlog1.6 is also (Ex5)'s min-capacity.
Hence, by Theorem 5.1, we know that; 1.6 must in fact
be its g4-capacity, realized on’.!! But, so far, we have not
found a general technique for calculatiggcapacity; this
remains an area for future study.

VI. COMPARING CHANNELS

Given any leakage measure (for example, Shannon
leakage, min-entropy leakage, gieakage for somg), an
interesting question that can be asked about two chafiels
and(C, is whether the leakage @f; is less than or equal to

9n fact, its min-capacity turns out to be about 6.6907 bits.
10ynder ¢/, the prior vulnerability is2—10. Under (Ex1), the posterior
vulnerability is 0.01099, givingy’-leakage of 3.492 bits. Under (Ex6), the
posterior vulnerability is 0.10088, giving'-leakage of 6.6907 bits.
UCuriously, #’ also realizes (Ex5)'snin-capacity

on deterministic channels;,,, (for m being Shannon, min-
entropy, or guessing entropy leakage) all coincide With

The Lattice of Information applies only to deterministic
channels, since probabilistic channels do not give pantiti
of X. On the other handg,, does make sense for prob-
abilistic channels, so a natural question is: how can we
generalizeC to probabilistic channels, and what leakage
ordering would characterize it? This is what we explore in
this section.

Our first result (already observed in [17]) is that partition
refinement on deterministic channels coincides with the
existence of a channel factorization:

Theorem 6.1:Let C; from X to Z andC; from X to )Y
be deterministic channels. The, T C, iff there exists
deterministicC5 from )Y to Z such thatC; = CyCs.
(C2C5 denotes thecascadeof C5 and Cs, corresponding
to multiplication of the channel matrices.)

Proof: If C7 = CyC3, for some deterministi€’s, then
02(561) = CQ(IQ) Implles thatC’l(arl) = 03(02(171)) =
03(02(:62)) = Ol(IQ). Hence(C; C Cs.

Conversely, ifC; E Cs, then for everyy € ), C; maps
all z € Cy'(y) to the same value, say,. If we define
deterministicC’s that maps each € ) to z,, then it is easy
to see thatC; = C>C5. [ |

Given this theorem, it seems promising to generalize
partition refinement to probabilistic channels by introitigc
what we callcomposition refinement



Definition 6.3: Given channelC; from X to Z and Cs
from X to ), we say that’; is composition refinedy Cs-,
denotedC; C, O, if there exists a channéls from ) to
Z such that01 = (5C5.

In terms of notation, we us€, to denote<,,, whenm is
g-leakage for a specific gain functian that is,C; <, C
iff Vor: Ly(m, C1) < Ly(m,C2). Note that this is equivalent

Conjecture 6.3 (“Coriaceous”):If C
C1 G, Co.

If the conjecture holds, therg and C, coincide, pro-
viding an extension of Yasuoka, Terauchi, and Malacaria’s
equivalence to the probabilistic case (the only difference
being that we need to consider the ordering under all
gain functions). The conjecture, however, turns out to be

<g (5, then

to YV : Vy(m, C1) < Vy(m, C2). We also use<s, whereS  remarkably subtle, and we have not yet been able to prove
is a set of gain functions, to denote the ordering under allt in full generality. But we have been able to prove it
gain functions inS (i.e. <s= Nges <y). In particular, we  in substantial special cases, using techniques that we now

use<g, <g,, <g. to denote the ordering undell, 2-block
and partition gain functions, respectively.

The key question, then, is whether the previous equiva~

lence betweem. and <,,, carries over somehow ta, and
<4 Or <g.

describe.

A. The case of invertibl€)y

We begin with a useful tool for showing that a leakage
ordering doesot hold.

In fact, a recent result in Espinoza and Smith [19] shows Definition 6.4: Vector v is a cat-vectorfor C; and Cs

that C; C, C, implies C; Smin-entropyc‘z-lz We now
show that we can generalize this implication ¢deakage
underany gain function:
Theorem 6.2:If Cy C, Cy, thenC; <g (5.

Proof: A direct proof is given in the Appendix. We here
discuss a more intuitive proof in terms of viewifg(r, C1)
as the solution to a linear optimization problem. Recalirfro
Section IV-C thatV,(w, Cy) is the solution to the problem
of maximizing¢r(D,C1SG) subject toS being a channel
matrix. LetS; be any feasible solution to this problem (i.e.
any channel matrix) and assunig = C>C5. ThenS; =
(35, is a feasible solution to the optimization problem for
Cs, giving gain

tT(Dﬂ—CQSQG) = tT‘(Dﬂ—CQC351G) = tT‘(DﬂClSlG)

That is, for any feasible solution @f;’s problem, there is
a feasible solution fo’y’s problem, giving the same gain.
Thus, the optimal solution fof'; (i.e. V,(w, C2)) can be no
smaller than the optimal solution f@r; (i.e. Vy (7, C1)). &
Now it is natural to wonder aboutonversesto Theo-

rem 6.2. We might first wonder whether (as in the determin-

istic case)C; <, C; for a particularg is sufficient to imply
that C; T, Cs. This turns out not to be true fay;4 (i.e.
min-entropy leakage) and the following channel matrices:

/4 3/4 2 0 1/2
Ci=| Y 34 Cy = 0 12 1/2
3/5 2/5 a2 12 0

if the inner product ofv with eachcolumn of Cy is non-
negative, and the inner product ofwith somecolumn of
C1 is negative.
Lemma 6.4:If there exists a cat-vectar for C; andCs,
then there is a 2-block gain functignsuch thatC; £, Cs.
Proof: Assume that”; goes fromX to Z andC> from
X to ). Given cat-vectow indexed byX, let z* be (the
index of) a column ofC; whose inner product with is
negative:

Y owex V[T]Ci[r, 2] < 0. Q)
In contrast, for every colump of Cs, we have
Ywex vr]Calz,y] = 0. )

It follows from these two facts that must contain both
positive and negativeentries. This lets us split set’ into
two nonempty parts:

Xt ={zecx | v[z] >0}

and
XT ={zxeX | v[z] <0}.

Now let us define priotr using the absolute values of the
entries inv:

]

1
S oLl

where normalizing factory is defined asy = ___ . |v[z]].
The intuition behind this choice of is that because of

It can be verified (using the decision procedure of Sec{2). we know that unde€’, thea posterioriprobability of

tion VI-F) that C; <,,, Cs but C; Z, Cs, so <4, by

itself does not imply composition refineméfit.
But what if the g-leakage ordering holds foall gain

functions? We conjecture that this is sufficient to imply

composition refinement:

12550, the classicdata-processing inequality18] shows (essentially)
the same implication for Shannon leakage.

13we also mention that we have experimental evidence (butoafjpthat
C1 <shann

to imply composition refinement.

onC2, so the Shannon leakage order also appears insufficien

X~ never exceeds that of ™, for any outputy. In contrast,
because of (1), we know that undél;, the a posteriori
probability of ¥~ doesexceed that oft ™ on outputz*.

We can define a 2-block gain function to exploit this
difference. DefineV = {x¥*, X~} and

1, ifeeW
Q(W"”)—{ 0, if 2 g W

in other words,g cares only about whether we correctly

guess whether belongs toX'+ or to X~.



Now we will argue that undey and =, C;, has greater B. The case of “skinny”, full-rankCs

leakage thanCs; in fact we show thaty's g-leakage is We now strengthen Theorem 6.5 to the case wéels

positive, whileC,'s is zero. columns are linearly independent, dropping the assumption
Looking atCs's leakage, we have that its rows are linearly independent; this is the case of a
full-rank Cs that is “skinny”, with at least as many rows as
Vy(m,Cy) columns.
Theorem 6.6:If Cy’s columns are linearly independent
=Y max > wlz|Calr, ylg(W, ) andC, <g, Cs, thenC; C, Cs.
yfy vex Proof: The key idea is that i, <g, Cy and the rows
= max Z [v[z]|Ca [z, y]g(W, x) of C; are linearly dependent, then the rows@f must be
VW iex linearly dependent with theamecoefficients. For if there
1 S exr v[x]Colz, ylg (W, z) ?s a vectorv who_se inner produc.t with each column Gﬁ
5 55125(\,< =3 ex— v[E|Calz, ylg(W, z) > is 0 but whose inner product with some column @f is
v nonzero, then either or —v is a cat-vector folC; and Cs.
1 Hence a factorization exists iff there is a factorizationtfee

5 max{ Z vla]Colz,y], — Z v[z]Cy [:C,y]} linearly independent rows af>» and the corresponding rows
yey TEXT TE€XT of C;. On the assumption that’s columns are linearly
independent, the linearly independent rows(sf form an

Now, in light of equation (2) we can see that in the final invertible matrix, and so we are done by Theorem 6.1

“max”, the left sum is greater than or equal to the right
sum, for everyy. HenceX'* is the best guess under every C. The case of “fat"Cs

y, which |_mpl|es by Theorem 4.2 that™ is also the best As we discussed in the previous sections, in the case when

guessa prior, a”‘?' thatL, (m, C3) - 0. C, is invertible or “skinny” the conjecture can be shown to
When we conside€’;'s leakage, in contrast, we can show po|q (j.e. leakage ordering implies factorability), evéme

by a similar calculation that equation (1) implies that test  consjder only2-block gain functionsBut when we consider

guess under output is X~ But, sinceX'* is the best guess  the case of a full-rank’s that is “fat”, with more columns

a priori, we conclude by Theorem 4.2 thaf(r,C2) > 0. than rows, the situation becomes far more difficult. It turns

B out then that neither 2-block gain functions nor egemeral

Lemma 6.4 allows us to prove some significant speciabinary gain functiongsee Section 111-C4) are sufficient.

cases of Conjecture 6.3, as we now show. Consider the following channels (note th@ is “fat”):
Theorem 6.5:1f Cs is invertible andC; <g, Cs, then 9 99 58 1 4 1 4
Cr Bo Co. N =2 4 4 Co=| 2 2 3 3
Proof: We argue the contrapositive. Suppose tfiatis 35 4 95 5 1 1 .3

invertible andC; Z, Cs. Then there does not exist a channel
matrix Cs such thatC; = C,C3. But, assuming thaf, is It can be verified (using the decision procedure of Sec-

invertible, we do have?; = C»(C; ' C}), so it must be that  tion VI-F) that C1 <, C> for all general binary gain func-
05101 is not a channel matrix. tions g, but C; Z, Cs. Nevertheless, these channels ao¢

Now, a basic property of matrix multiplication is that & counterexample to Conjecture 6.3, because the following

multiplication on the right by a channel matrix preserves ro 9@in functiong (again computed using '_‘he techniques of
sums. Sincel = C; ' Cy, it follows that each row of; ! Section VI-F) make<; leak more tharCs:

sums to 1. And this implies that each row (6‘5‘101 also g 71 T T3
sums to 1. Hence fo€; 'C; to not be a channel matrix, wy | 153/206 0 1/3
it must contain a negative entry, say at positigsi, z*]. wo 0 289/296 | 63/296
This is equivalent to saying that the inner product of rgw ws | 21/148 1 0

of C;! and columnz* of C; is negative. Moreover, since ) ) )
C;'Cy = I we know that the inner product of rog of ~ For this gain function we have

C;l and any (_:olumry of _CQ is non-negative (in fact the V, (m, C1) = 0.412117 V, (1a, C2) = 0.409797
inner product is always either 0 or 1). Hence we see that :

row y* of C{l is a cat-vector foC; andC’, and the result  which implies thatC Zq Co.

follows from Lemma 6.4. [ |
Note that<g C <g,; the above theorem shows that in the
case wher(} is invertible, the conjecture holds even if we  Another special case in which we are able to settle our
restrict to 2-block gain functions. conjecture is the one whaeti, is deterministic (without any

D. The case of deterministic channels



restriction onC, which could be “fat”). In fact, the conjec- Theorem 6.10:For all channels”, C, Cs, if C; <g Cs

ture holds even if we restrict tpartition gain functions. thenCCy <g CCs.
Theorem 6.7:If C is deterministic and’; <g_ Cs, then o .
Cy T, Cs. F. Decision procedures for comparing channels

The main idea of the proof is to construct a partition gain In this section, we discuss algorithms for two decision
function using the partition-c, induced byC. In terms of ~ problems related to the leakage orderings. Note that odr goa
representing gain functions by matrices, this correspomds is not to develop efficient algorithms that can be used in
taking G = C{ (the transpose of’). practice, but rather to be able to obtain the examples and
We next focus on the purely deterministic case, i.e. whergcounter-examples presented in the previous sections, Stil
bothC; andC, are deterministic. In this case we can prove athe problems we tackle are of interest on their own.
stronger result, namely that the ordering induced Isjngle Problem 6.1:GivenC, Cs, g, decide whethet'; <, C.
gain function is enough to imply factorability. This is incfa The challenge is clearly the quantification over all
expected, since we already know by the result of Yasuokapriors. Recall from Section IV-C thatVy(r,C1) =
Terauchi, and Malacaria, together with Theorem 6.1, thatnaxg tr(D,C1SG) subject toS being a channel matrix. To
<,.., implies factorability. We generalize this to the class of decide<, we can solve the following optimization problem,

single-optimalguess functions: with 7, 51, .52 being variables.

callljee(;lgilrt':glr;-%;irﬁa%;m functiong : W x & — [0,1] is max (Hg?XtT(Dw0151G) - Hg%XtT(DwCQSZG))
VeeXFweW: g(w,z) =1 subject tor being a probability distribution anél; , S, being

channel matrices. Note that, <, C» holds iff the solution

is non-positive.

Intuitively, a gain function is single-optimal if for every  There are however two issues with this problem: first, it

secret there is an optimal guess (giving gain 1) and eacl$ quadratic and second, it contains nested optimizations.

guess can be optimal for at most one secret. Note ghat TO cope with these issues, we notice that there is a finite

and all gain functions induced by metrics are single optimalnumber of deterministic strategie® (in particular, there

Vo, e X,weW :g(w,z) =1Ax #2' = glw,2) <1

However partition gain functions are not (except Q). afe|W|lz‘ such strategie_s)_ and we know tHat can alway_s
Theorem 6.8:If C1,C» are deterministicg is a single- ~Pe given by a deterministic strategy. Moreover, for a fixed
optimal gain function, and’; <, Cy, thenC; C, Cs. S1, the property # is a prior such thaf; is optimal” can be

Note that the above result does not always hold forexpressed by a set of linear constraints (the variablegbein
non-single-optimal gain functions. A trivial example isth )
“happy” gain function sinceC,. (7,C) = 0 for all «,C. Ey(51(2),2) = Eg(w,2) Vz€Z,weW
Moreover, even for non-trivial gain functions, such as the
2-try gain functiongyy,, the result might not hold. Let";
be the identity channel an@, be the deterministic channel
C2(1) = C2(2) =1 andCs(z) = z,z € {3,...,n}. Thus
C:1 Z, Cs. In the case ofC; the gain is alwaysl since
the input can be completely inferred from the output. In
the case of’;, seeing the output the attacker is confused
betweenl and2, but having 2 tries, he can guefk 2} and
still get gain 1. Sovr : L, (7, C1) = Ly, (7,C2), thus max (tr(DzC151G) — tr(DzC25:G)) 3)
C1 <y, Co. ’T

(using the notation of Sec IV-B; note th&t, depends on
m and C1). Intuitively, the constraints require that the guess
chosen byS; for each output is no worse than any other
guess. We refer to these constraintspsg.S1).

Then, the solution to the above (non-linear) optimization
problem will be the maximum of the solutions to the
following linear problems:

subject tor being a distribution andpt(S1), opt(S2)

E. Other results on leakage ordering for each Sy, Ss, i.e. [W|IZIT1Yl systems in total. In case

We present two other general results abel. First, ¢, ¢, ¢, the solution also provides a counter-example
note thatCy; <g C contains a double quantification: it  proplem 6.2: Given Cy, Cs, n, decide whetheC; <g
requires that theg-leakage ofC’, does not exceed that of ¢, whereg, denotes the set of all gain functions with
¢ for all priors and all gain functions. It turns out that possible guesses (i.e. wheid)| = n).
quantifying over gain functions is powerful enough that weNpote that the exact s@ of guesses is not important, as any
can limit ourselves taniform priors 7, without weakening  gain function withn possible guesses can be represented by

the ordering. ~anx|X| matrixG. First, from Theorem 6.9 (adaptedq;,
Theorem 6.9:If L,(m,, C1) < Ly(mu,Co) for all gain  instead of<g), we know thatCy <g, Cs iff Ly(m,, C1) <
functionsg, thenC; <g Cs. Ly (my, Co) for all g € G,. We can then decide this problem

Also, <g is preserved under left multiplication. by solving the same finite number of linear optimization



problems as in Problem 6.1, the only difference being that As future work we intend to identify algorithms to cal-
m is now fixed to a uniform one, while the variables are theculate g-capacity, possibly using linear programming. Also,

elements ofG (with the constraints?[w, z] € [0, 1]). it would be interesting to extengtleakage to the scenario
where the adversary does ratowthe prior, but instead
VIl. RELATED WORK has (possibly incorrec)eliefsabout it, as in the works of

Clarkson, Myers, and Scheider [31] and Hamadou, Sassone,

The converse of gain functions, usually calleds func- 4 Palamidess: 1321, Finall | 1o i tiqat
tions have been used for a long time in fields such agind raiamicessi [32]. Finally, we also want to investigate
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We simply use the columns @f; to determine the partition, Vy(m, Ca)
interpreting each column as a subsettof-note that there _ Z
can be no overlap among the columns of a deterministic
channel. Seeing as a matrixG, this means thafr is just
the transposeof C7, and that the se¥V of guesses i<Z. max m[z]g(w, z)

Clearly, Vy(m,C1) = 1 for any 7, since given output, z€Az
the adversary can guessand be guaranteed of getting gain max (7[z1]g(w, z1) + 7[z2]g(w, z2))
1. That is, the optimal strategy far; is just the identity TEW
function (a “direct” strategy, to use the terminology of [27 = 5 max (9(w, z1) + g(w, x2))

Now suppose that’;,’s leakage with respect tg does
not exceedCs’s, on some priorr, which we can assume <1 [9(w,z1) <1 or g(w,z2) <1]
to havefull support (meaning thatr[z] > 0 for everyz).  ThusV,(m,C1) > Vy(m,Cs) and Ly(m,Cr) > Lg(m,Co)
Using the linear programming formulation of vulnerability which is a contradiction. [ ]
from Section IV-C, this means that, must have a strategy ~ Theorem 6.9If L (m,,C1) < Ly(my,C2) for all gain
Sy such thattr(D,C2S5,G) = 1. Sinced" «w[z] = 1, this  functionsg, thenCy <g Co.

max Z m[x]g(w, x) [Lemma A.1]
AEX [~cy z€A

means that the diagonal elements(®fS,G must all be 1. Proof: Let C; andCs be channels fron’ to Z and)
Hence for everyr we have respectively, letr be a prior, and leg : W x X — [0, 1] be
a gain function. We show that, (7, C1) < L4(m, Ca).

1= (C25:G)[z, x| = Z(OQSQ)[:r,z]G[z,x]. We define a gain functiony : W x X — [0,1] as

z g (w,z) = wz]lg(w,x). The idea is thatr is “hard-

Now notice that columnz of G is all zero, except for a coded” insideg’. By hypothesis we have, (., C1) <
single 1 at the unique* such thatC [z, z*] = 1. Hence Ly (mu, C2) which implies

w C 9
1= (OQSQ)[I,Z*] -0 [:c,z*] Zzez maXwew ZzGX 1[1‘ Z] Ed] 1( )
< Dyey MaXwew X pex Col2, Y] 79 (w, )

But we also know thatC;S; is a channel matrix, which
means that all its other entries in ramwhave to be 0. Hence
C2Sy = (1, in other words,Cy's optimal strategysS, is
exactlythe C5 that we are seeking! ]
The following lemma is used in Theorem 6.8; its proof is
straightforward and is omitted due to space constraints.
Lemma A.l:Let C be a deterministic channej,: W x

which implies L, (7, Cy) < Ly(m, Ca). [ |
Theorem 6.10For all channels”, Cy, Co, if C; <g Cs
then CcCy <g CCOs.
Proof. Let C' be a channel fromY¥ to ), Cy,C> be
channels fromy to Z, Z’ respectively and le6 be a gain
function (in matrix form). We first show that

X — [0,1] a gain function andr a prior. Then Vo (my, CCy) = ||§;|| Vao(my,C;) i€1,2
Vy(m,C) = Z max m[z]g(w, x) i.e. we “hard-code’C inside the gain function. Note that
Aex/~ne S zen GC is a valid gain function sinc€’ is stochastic. We have:
Theorem 6.81f C,C, are deterministicg is a single- Va(mu, CCY)
optimal gain function and’; <, Cs, thenC; T, Cs. B 1
Proof: Assume thatf Z, h, thus there exisky,zs € o Zgleav)\(/ 2;((001)[x’z] |X|G[w’x]
X such thatCy (z;) # Cy(z2) and h(x1) = h(zz). Note =< o€ 1
thatzy, 2, belong to different equivalent classes-of, (let =Y max >3 Cla,ylCaly, &) Gl 2]
Aq, A} be those classes) but to the same equivalent elass ez W iex yey ]
of ~¢,. We define a priorr asz[zi] = wlzs] = § and0
elsewhere. We have: - Z ey Z Cily, 2 |)(| Z Glw, 2]Clz, Y]
zEZ reX
V,(m, C Y
.(](ﬂ-a 1) | || ZwEWZOI Y, ]|y|GC['LU y]
= Z max Z w[z]g(w, x) [Lemma A.1]
A€X [~e, weW ea |y|
X 5 Vao(mu, C1)
= max w[z]g(w, x) + max Z w[z]g(w, x) x|
W wewzeA/l and similarly for Vg(m,,CCs). By hypothesis we

have thatVio(m,,C1) < Vge(mu,C2) which implies
Va(mu, CC) < Vg(m,,CCs), thus, by Theorem 6.9, we
=1 [g9(w,z;) =1 for somew] getCCy <g CCs. =

= glg%ﬂ[:vl]g(w, r1) + glg%ﬂ[:vz]g(w, T3)



