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Abstract. We study a process calculus which combines both nondeter-
ministic and probabilistic behavior in the style of Segala and Lynch’s
probabilistic automata. We consider various strong and weak behavioral
equivalences, and we provide complete axiomatizations for finite state
processes, restricted to guarded definitions in case of the weak equiva-
lences. We conjecture that in the general case of unguarded recursion the
“natural” weak equivalences are undecidable.

This is the first work, to our knowledge, that provides a complete ax-
iomatization for weak equivalences in the presence of recursion and both
nondeterministic and probabilistic choice.

1 Introduction

The last decade has witnessed increasing interest in the area of formal
methods for the specification and analysis of probabilistic systems [16,
5,3,15,19,7]. In [20] van Glabbeek et al. classify probabilistic models
into reactive, gemerative and stratified. In reactive models, each labeled
transition is associated with a probability, and for each state the sum of
the probabilities with the same label is 1. Generative models differ from
reactive ones in that for each state the sum of the probabilities of all the
outgoing transitions is 1. Stratified models have more structure and for
each state either there is exactly one outgoing labeled transition or there
are only unlabeled transitions and the sum of their probabilities is 1.

In [16] Segala pointed out that neither reactive nor generative nor
stratified models capture real nondeterminism, an essential notion for
modeling scheduling freedom, implementation freedom, the external en-
vironment and incomplete information. He then introduced a model, the
probabilistic automata (PA), where both probability and nondeterminism
are taken into account. Probabilistic choice is expressed by the notion of
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transition, which, in PA, leads to a probabilistic distribution over pairs
(action, state) and deadlock. Nondeterministic choice, on the other hand,
is expressed by the possibility of choosing different transitions. Segala pro-
posed also a simplified version of PA called simple probabilistic automata
(SPA), which are like ordinary automata except that a labeled transition
leads to a probabilistic distribution over a set of states instead of a single
state.

Figure 1 exemplifies the probabilistic models discussed above. In mod-
els where both probability and nondeterminism are present, like those of
diagrams (4) and (5), a transition is usually represented as a bundle of
arrows linked by a small arc. [17] provides a detailed comparison between
the various models, and argues that PA subsume all other models above
except for the stratified ones.
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Fig. 1. Probabilistic models

In this paper we are interested in investigating axiom systems for a
process calculus based on PA, in the sense that the operational semantics
of each expression of the language is a probabilistic automaton®. Axiom
systems are important both at the theoretical level, as they help gaining
insight of the calculus and establishing its foundations, and at the practi-
cal level, as tools for systems specification and verification. Our calculus is

3 Except for the case of deadlock, which is treated slightly differently: following the
tradition of process calculi, in our case deadlock is a state, while in PA it is one of
the possible components of a transition.



basically a probabilistic version of the calculus used by Milner to express
finite-state behaviors [9, 11].

We shall consider the two strong and the weak behavioral equivalences
common in literature, plus one novel notion of weak equivalence having
the advantage of being sensitive to divergency. For recursion-free expres-
sions we provide complete axiomatizations of all the four equivalences.
For the strong equivalences we also give complete axiomatizations for all
expressions, while for the weak equivalences we achieve this result only
for guarded expressions.

The reason why we are interested in studying a model which expresses
both nondeterministic and probabilistic behavior, and an equivalence sen-
sitive to divergency, is that one of the long-term goals of this line of
research is to develop a theory which will allow us to reason about prob-
abilistic algorithms used in distributed computing. In that domain it is
important to ensure that an algorithm will work under any scheduler,
and under other unknown or uncontrollable factors. The nondeterminis-
tic component of the calculus allows coping with these conditions in a
uniform and elegant way. Furthermore, in many distributed computing
applications it is important to ensure livelock-freedom (progress), and
therefore we will need a semantics which does not simply ignore diver-
gencies.

We are interested, in particular, in developing a fully distributed im-
plementation of the (synchronous) m-calculus (7) using a probabilistic
asynchronous m-calculus (7p,) as an intermediate language. The reason
why we need a probabilistic calculus is that it has been shown impos-
sible to implement certain mechanisms of the pi-calculus without using
randomization [12]. We need also the nondeterministic dimension for the
usual reason: the implementation should be portable and in particular
make no assumption about the scheduler. Some preliminary initial re-
sults of this project appeared in [13], but the part on implementation was
very preliminary. We are now investigating a more realistic and efficient
implementation.

We consider it important that an implementation does not introduce
livelocks (or other kinds of unintended outcomes), hence the translation
from 7 to mp, should preserve livelock-freedom (see [14] for a discussion
on the subject), and the semantics should be sensitive to divergency.
For this reason, the second author choose (a probabilistic version of)
testing semantics in [13]. However, it turned out that probabilistic testing
semantics, at least the version invented in [13], was rather difficult to use.
The correctness proofs were ad-hoc, by hand, and rather complicated.



For the realistic (and necessarily more sophisticated) implementation, we
need proof methods feasible and (at least in part) automatic. For this
reason, we are investigating here a divergency-sensitive bisimulation-like
semantics. In the future, we plan to extend the achievements of this paper
to Tpq-

2 Related work

In [9] and [11] Milner gave complete axiomatizations for strong bisim-
ulation and observational equivalence, respectively, for a core CCS [10].
These two papers serve as our starting point: in several completeness
proofs that involve recursion we adopt Milner’s equational characteriza-
tion theorem and unique solution theorem. In Section 6.1 and Section 7.2
we extend [9] and [11] (for guarded expressions) respectively, to the set-
ting of probabilistic process algebra.

In [18] Stark and Smolka gave a probabilistic version of the results of
[9]. So, our paper extends [18] in that we consider also nondeterminism.
Note that when nondeterministic choice is added, Stark and Smolka’s
technique of proving soundness of axioms is no longer usable. (See the
discussion at the beginning of Appendix A.) The same remark applies
also to [1] which follows the approach of [18] but uses some axioms from
iteration algebra to characterize recursion. In contrast, our probabilistic
version of “bisimulation up to” technique works well when combined with
the usual transition induction.

In [6] Bandini and Segala axiomatized both strong and weak be-
havioral equivalences for process calculi corresponding to SPA and to
an alternated-model version of SPA. As their process algebra with non-
alternating semantics corresponds to SPA, our results in Section 8 can be
regarded as an extension of that work to PA.

For probabilistic process algebra of ACP-style, several complete ax-
iom systems have appeared in the literature. However, in each of the
systems either weak bisimulation is not investigated [4,2] or nondeter-
ministic choice is prohibited [4, 3].

Contribution of this work

The original contributions of this paper are:

— A complete axiomatization of a calculus which contains both non-
deterministic and probabilistic choice, and recursion. We axiomatize



both strong and weak behavioral equivalences. It is the first time, as
far as we know, that a complete axiomatization of weak behavioral
equivalences is presented for a language of this kind.

— The development and the axiomatization of a (probabilistic) weak
behavioral equivalence sensitive to livelock.

Plan of the paper

In the next section we briefly recall some basic concepts and definitions
about probabilistic distributions. In Section 3 we introduce the calcu-
lus, with its syntax and operational semantics. In Section 4 we define
the four behavioral equivalences we are interested in, and we extend the
technique of “up-to” bisimulation to the probabilistic case. This tech-
nique is used extensively for the proofs of completeness, especially in the
case of the weak equivalences. In Sections 5 and 6 we give complete ax-
iomatizations for the strong equivalences and for the weak equivalences
respectively, restricted to guarded expressions in the second case. Section
7 gives complete axiomatizations for the four equivalences in the case of
the finite fragment of the language. The interest of this section is that we
use different and much simpler proof techniques. Section 8 concludes and
illustrates our research plans.

3 Preliminaries

Let S be a set. A function n : S — [0,1] is called a discrete probabil-
ity distribution, or distribution for short, on S if the support of n, de-
fined as spt(n) = {x € S | n(z) > 0}, is finite or countably infinite and
Y zes N(x) = 1. If n is a distribution with finite support and V' C spt(n)
we use the set {(s; : 7(si))}s;cv to enumerate the probability associated
with each element of V. To manipulate the set we introduce the operator
& defined as follows.

{(si:pi)tier O {(s:p)} =
{(si :pi) Yienj U {s;j: (pj +p)} if s=s; for some j €I
{(si:pi) bier U{(s:p)} otherwise.

{(si: pi) bier W{(t; : pj) tjer.n =
({(si :pi)tier O {(t1 : p)}H) W{(t 1 pj)}je2m
Given some distributions 71, ..., 7, on S and some real numbers r1, ...,r, €
[0,1] with ., ,, i = 1, we define the convex combination rin +...+runn
of 11, ...,nn to be the distribution # such that n(s) = > ,c; , rini(s), for
each s € S.



4 Probabilistic process algebra

We use a countable set of variables, Var = {X,Y,...}, and a countable
set of atomic actions, Act = {a,b,...}. Given a special action 7, we let
u,v, ... range over the set Act, = Act U {7}, and let «, 3,... range over
the set Var U Act,. The class of expressions £ is defined by the following
syntax:
E,F u= @ piui.Ei | Z Ei | X | /J’XE
i€l.n i€l.m

Here @, , piu;-E; stands for a probabilistic choice operator, where
the p;’s represent positive probabilities, i.e., they satisfy p; € (0,1] and
Yici.nPi = 1. When n = 0 we abbreviate the probabilistic choice as
0; when n = 1 we abbreviate it as wi.E;. Sometimes we are inter-
ested in certain branches of the probabilistic choice; in this case we
write @;¢, , Pivi-F; as p1uy. By ®- - - @ ppty. By or (@iel..(nfl)piui'Ei) )
Pnq.Fyn where @iel__(n_l) piu;.E; abbreviates (with a slight abuse of no-
tation) p1u1.E1®- - -®pp_1Un—1.E,_1. The second construction ), ., . E;
stands for nondeterministic choice, and occasionally we may write it as
FEy + ... + Ep,. The notation px stands for a recursion which binds the
variable X. We shall use fv(E) for the set of free variables (i.e., not bound
by any px) in E. As usual we identify expressions which differ only by
a change of bound variables. We shall write E{F,..., F,,/X1,..., X, } or
E{F/X} for the result of simultaneously substituting F; for each occur-
rence of X; in F (1 < ¢ < n), renaming bound variables if necessary.

Definition 1. The variable X is weakly guarded (resp. guarded) in E
if every free occurrence of X in E occurs within some subexpression u.F
(resp. a.F'), otherwise X is weakly unguarded (resp. unguarded) in E.

The operational semantics of an expression E is defined as a prob-
abilistic automaton whose states are the expressions reachable from F
and the transition relation is defined by the axioms and inference rules
in Table 1, where £ — 7 describes a transition that leaves from E and
leads to a distribution n over (Var U Act;) x £. We shall use ¥(X) for
the special distribution {(X,0 : 1)}. It is evident that £ — J(X) iff X is
weakly unguarded in FE.

The behavior of each expression can be visualized by a transition
graph. For instance, the expression (3a @ £b) + (30 @ 2¢) + (3b @ 30
exhibits the behavior drawn in diagram (5) of Figure 1.

As in [6], we define the notion of combined transition as follows: E —
n if there exists a collection {7;,7;}ic1..n of distributions and probabilities



var X — 9(X) psum @, , Pivi- By = ¥y {(ui, Bt pi)}

rec EAxE/X} =1 hsum Ej—n

~———————— forsome j€1l.m
uwxE = Yier.mBi =0

Table 1. Strong transitions

such that ) .., . = 1, n = rim + ... + 7pny and E — 1, for each
1 € L.n.

We now introduce the notion of weak transitions. First we discuss
the intuition behind it. Given an expression F, if we unfold its transition
graph, we get a finitely branching tree. By cutting away all but one al-
ternative in case of several nondeterministic candidates, we are left with
a subtree with only probabilistic branches. A weak transition of F is a
finite subtree of this kind, called weak transition tree, such that in any
path from the root to a leaf there is at most one visible action. For ex-
ample, let E be the expression p X(%a @ %T.X ). It is represented by the
transition graph displayed in Diagram (1) of Figure 2. After one unfold-
ing, we get Diagram (2) which represents the weak transition £ = 7,
where 7 = {(a,0: 3),(1,E : 1)}.
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Fig. 2. A weak transition

Formally, weak transitions are defined by the rules in Table 2. Rule
weal says that a weak transition tree starts from a bundle of labelled
arrows derived from a strong transition. The meaning of Rule wea2 is
as follows. Given two expressions F, F' and their weak transition trees
tr(E),tr(F), if F is a leaf of tr(E) and there is no visible action in ¢tr(F'),



then we can extend tr(E) with ¢r(F) at node F. If Fj is a leaf of tr(F)
then the probability of reaching F; from E is pq;, where p and g; are
the probabilities of reaching F' from F, and F; from F, respectively. Rule
wea3 is similar to Rule wea2, with the difference that we can have visible
actions in ¢r(F'), but not in the path from F to F. Rule wea4 allows to
construct weak transitions to unguarded variables. Note that if £ = 9(X)
then X is unguarded in E.

E—n

E=n

E = {(ui,Bi : p))}iW{(u,F:p)} F={(r,Fj:q)}
E = {(ui, Ei : pi)}i W{(u, Fj : pg;)};

E={(ui,Bi:p)}iw{(r,F:p)} F={(v,Fi:q)};

E = {(ui, E; 1 pi)}s W {(vj, Fj : pgj)};

Eﬁ{(T,Ei:pi)}i VZE7,=>’I9(X)

E = 9(X)

weal

wea2

wea3

wead

Table 2. Weak transitions

For any expression E, we use §(E) for the unique distribution {(r, F :
1)}, called the wirtual distribution of E. For any expression E, we in-
troduce a special weak transition, called wvirtual transition, denoted by
E = §(E). We also define a weak combined transition: E =, 7 if there
exists a collection {7;, ; }ic1., of distributions and probabilities such that
YicinTi =1, m=rm + ...+ a7y, and for each i € 1..n, either £ = 1
or E = ;. We write E =, 7 if every component is a “normal” (i.e.,
non-virtual) weak transition, namely, F = n; for all 1 < n.

5 Behavioral equivalences

In this section we define the behavioral equivalences that we mentioned in
the Introduction, namely, strong bisimulation, strong probabilistic bisim-
ulation, divergency-sensitive equivalence and observational equivalence.
We also introduce a probabilistic version of “bisimulation up to” tech-
nique to show some interesting properties of the behavioral equivalences.

To define behavioral equivalences in probabilistic process algebra, it is
customary to consider equivalence of distributions with respect to equiv-
alence relations on processes.



5.1 Equivalence of distributions

If  is a distribution on S X T, s € S and V C T, we write (s, V) for
Y ey n(s,t). We lift an equivalence relation on £ to a relation between
distributions over (Var U Act;) x £ in the following way.

Definition 2. Given two distributions n1 and ng over (Var U Act;) x &,
we say that they are equivalent w.r.t. an equivalence relation R on &,

written 1 =R Mo, if

YV € E/R,Ya € Var U Act; : mi(a, V) = n2(a, V).

5.2 Behavioral equivalences

Strong bisimulation is defined by requiring equivalence of distributions at
every step. Because of the way equivalence of distributions is defined, we
need to restrict to bisimulations which are equivalence relations.

Definition 3. An equivalence relation R C € x& is a strong bisimulation
if E R F implies:
— whenever E — 1y, there exists ny such that F — 1y and n1 =g 2.

Two expressions E, F are strong bisimilar, written E ~ F, if there exists
a strong bisimulation R s.t. E R F.

If we allow a strong transition to be matched by a strong combined
transition, then we get a relation slightly weaker than strong bisimulation.
Definition 4. An equivalence relation R C £€XE is a strong probabilistic
bisimulation if E R F implies:

— whenever E — 11, there exists no such that F' —. ny and m1 =R 19-

We write E ~. F, if there exists a strong probabilistic bisimulation R s.t.
EREF.

We now consider the case of the weak bisimulation. The definition
of weak bisimulation for PA is not at all straightforward. In fact, the
“natural” weak version of Definition 3 would be the following one.

Definition (Tentative). An equivalence relation R C € x £ is a weak
bisimulation if £ R F implies:

— whenever E — 11, then there exists no such that either F' = n9 or
F =, and m1 =R 72,

E and F are weak bisimilar, written E < F, whenever there exists a weak
bisimulation R s.t. E R F.



Unfortunately the above definition is incorrect because it defines a
relation which is not transitive. That is, there exist £, F' and G with
E =< F and F < G but £ # G. For example, consider the following
expressions and relations:

def

EZ (3704 37.0) + (37.0 ® 3a)
def 1 1
d—f ET.CI, @D ET'G’

G= ra

Ri € {(E, F),(F, B), (E, E), (F, F), (a,a), (0,0)}

R2 < {(F,Q), (G, F),(F, F),(G,G), (a,a), (0,0)}

It can be checked that R; and R, are weak bisimulations according to
the tentative definition. However we have E % G. To see this, consider
the transition F — 7, where n = {(7,a : %), (a,0 : %)} There are only
three possible weak transitions from G : G = §(G), G = n; and G = 19
where 1 = {(7,a : 1)} and 79 = {(a,0 : 1)}. Now, among the three distri-
butions 71,72 and §(G), none is equivalent to 7. Therefore, E and G are
not bisimilar. Nevertheless, if we consider the weak combined transition:
G =.n' wheren = %m + %772, we observe that n =17'.

The above example suggests that for a “good” definition of weak
bisimulation it is necessary to use combined transitions. So we cannot
give a weak variant of Definition 3, but only of Definition 4, called weak
probabilistic bisimulation.

Definition 5. An equivalence relation R C € x £ is a weak probabilistic
bisimulation if E R F implies:

— whenever E — 01, there ezists o such that F =, ny and 11 =g 1no.

We write E =~ F whenever there exists a weak probabilistic bisimulation

R st ERF.

As usual, observational equivalence is defined in terms of weak prob-
abilistic bisimulation.

Definition 6. Two ezpressions E, F' are observationally equivalent, writ-
ten E~F, if

1. whenever E — 11, there exists no such that F' =, ny and n1 =x 1o
2. whenever F — 1o, there exists m1 such that E =.n1 and n1 =x 2.

10



Often observational equivalence is criticised for being insensitive to
divergency. We therefore introduce a variant which does not have this
shortcoming.

Definition 7. An equivalence relation R C £€XE& is a divergency-sensitive
equivalence if £ R F implies:

— whenever E — 1y, there exists no such that F =, ny and m1 =R 19-

We write E = F whenever there exists a divergency-sensitive equivalence
R st. ERF.

It is easy to see that = lies between ~. and ~. For example, we have
that px(7.X + a) and 7.0 are related by ~ but not by = (this shows also
that = is sensitive to divergency), while 7.a and 7.a + a are related by =
but not by ~..

One can check that all the relations defined above (except for <) are
indeed equivalence relations and we have the inclusion ordering: ~ C ~
C=C~C=.

5.3 Probabilistic “bisimulation up to” technique

In the classical process algebra, the conventional approach to show E ~ F,
for some expressions F, F', is to construct a binary relation R which in-
cludes the pair (E, F'), and then to check that R is a bisimulation. This
approach can still be used in probabilistic process algebra, but things
are more complicated because of the extra requirement that R must
be an equivalence relation. For example we cannot use some standard
set-theoretic operators to construct R, because, even if R, and Ro are
equivalences, R1Ro and R U Ro may not be equivalences.

To avoid the restrictive condition and at the same time to reduce the
size of the relation R, we introduce the probabilistic version of “bisim-
ulation up to” technique, whose usefulness will be exhibited in the next
subsection.

In the following definitions, for a binary relation R we denote the
relation (R U ~)* by R.. Similar for other notations such as R and
Re.

Definition 8. A binary relation R is a strong bisimulation up to ~ if
E R F implies:

1. whenever E — n1, there exists n2 such that F' — 12 and 11 = n2-
2. whenever F — no, there exists 11 such that E — 1 and n1 =R 12-

11



A strong bisimulation up to ~ is not necessarily an equivalence rela-
tion. It is just an ordinary binary relation included in ~, as shown by the
next proposition.

Proposition 1. If R is a strong bisimulation up to ~, then R C~.

One can also define a strong probabilistic bisimulation up to ~, re-
lation and show that it is included in ~.. For weak probabilistic bisim-
ulation, the “up to” relation can be defined as well, but we need to be
careful.

Definition 9. A binary relation R is a weak probabilistic bisimulation
up to = if E R F implies:

1. whenever E = 1y, there exists ny such that F =, 1y and 11 =r. 7o.
2. whenever F = 1y, there exists m1 such that E =.m and m1 =g 12

In the above definition, we are not able to replace the first double arrow
in each clause by a simple arrow. Otherwise, the resulting relation is not
included in =.

Proposition 2. If R is a weak probabilistic bisimulation up to =, then
R Cx.

Definition 10. A binary relation R is an observational equivalence up
to ~ if E R F implies:

1. whenever E = n1, there exists n2 such that F' =, n2 and m =g n2-
2. whenever F' = 19, there exists m1 such that E =, and n1 =R N2-

As expected, observational equivalence up to ~ is useful because of
the following property.

Proposition 3. If R is an observational equivalence up to ~, then R C~.

5.4 Some properties of behavioral equivalences

The “bisimulation up to” technique works well with Milner’s transition
induction technique [10], and by combining them we obtain the following
results.

Proposition 4 (Properties of ~ and ~,).

1. ~ is a congruence relation.
2. uxE ~ E{uxE/X}.

12



4. If E~ F{E/X} and X weakly guarded in F, then E ~ uxF.

Properties 1-4 are also valid for ~..
Proposition 5 (Properties of ~ and =).

1. ~ is a congruence relation.
2. If rE~7T.E+F and 7.F ~7.F + FE then 7.F ~ 7.F.
3. If E~F{E/X} and X is guarded in F then E ~ uxF.

Properties 1-3 hold for = as well.

Each property above is shown by exhibiting an equivalence up to the
corresponding bisimulation relation. For instance, in Clause 3 of Propo-
sition 5 we prove that the relation R = {(G{E/X},G{uxF/X}) | for
any G € £} is an observational equivalence up to ~ by transition induc-
tion (see Appendix A for more details). We find it necessary to use the
“bisimulaiton up to” technique particularly in the cases of Properties 1
and 3 of Proposition 5, since we are not able to directly construct an
equivalence relation and prove that it is an observational equivalence. In
all other cases the “up to” technique is optional.

6 Axiomatizations for all expressions

In this section we provide sound and complete inference systems for two
strong behavioral equivalences: ~ and ~.. The class of expressions to be
considered is £.

6.1 Axiomatizing strong bisimulation

First we present the axiom system .A,, which includes all axioms and rules
displayed in Table 3. We assume the usual rules for equality (reflexivity,
symmetry, transitivity and substitutivity), and the alpha-conversion of
bound variables.

The notation A, H E = F (and A, + E = F for a finite sequence
of equations) means that the equation E = F is derivable by applying
the axioms and rules from A,. The interest of A, is that it characterizes
exactly strong bisimulation, as shown by the following theorem.

Theorem 1 (Soundness and completeness of A,). E~ E' iff A, F
E=F.

13



S1 E40=F

S2 E+E=FE

S8 Y ici Ei =21 Eys) pis any permutation on T

S4 @, pivi-Bi = @;c; Poi)¥ei)-Eps) p is any permutation on I
S5 (D, piui.E;) @ pu.E ® qu.E = (P, piui.E;) ® (p+ Q)u.E

Rl pxE = E{uxE/X}
R21If E = F{E/X}, X weakly guarded in F, then E = px F
R3 ux(E+X) = pxE

Table 3. The axiom system A,

The soundness of A, is easy to prove: R1-3 correspond to clauses 2-4 of
Proposition 4; S1-4 are obvious, and S5 is a consequence of Definition 2.
For the completeness we give a detailed proof in Appendix B. The basic
points of the proof are: (1) if two expressions are bisimilar then we can
construct an equation set in a certain format (standard format) that they
both satisfy; (2) if two expressions satisfy the same standard equation
set, then they can be proved equal by A,. This schema is inspired by
[9, 18], but in our case the definition of standard format and the proof
itself are more complicated due to the presence of both probabilistic and
nondeterministic dimensions.

6.2 Axiomatizing strong probabilistic bisimulation

The difference between ~ and ~, is characterized by the following axiom:

C Z @pijuij-Eij = Z @Pz‘juz’j-Eij + @ @Tipijuz’j-Ez'j

i€l.n j t€l.n j i€l.n j

where ), ; 7 = 1. It is easy to show that the expressions on the left
and right sides are strong probabilistic bisimilar. We denote A, U {C} by
Arc.

Theorem 2 (Soundness and completeness of A, ). E ~. E' iff
A - E=E.

The soundness part follows immediately by the definition of —.. Con-
cerning completeness, the idea is as follows. Given E, E' s.t. E ~. F',
we first construct two standard equation sets which are provably satisfied
by E and E' respectively (this can always be done for any E, E’). Then
we use axiom C to saturate the right hand side of each equation set so

14



as to transform them into expressions B and B respectively, with the
following property:

(*) For any C1,Cy € BUB' with Ci ~¢ Cy, if C1 — 1y then there
exists some 12 s.t. Co = 12 and n1 =~ 1N2.

Thanks to this property, we can construct a single equation set (based

on B and 37), which is provably satisfied by both E and E’'. The rest of
the proof is like the one for Theorem 1.

7 Axiomatizations for guarded expressions

Now we proceed with the axiomatizations of the two weak behavioral
equivalences: = and ~. We are not able to give a complete axiomatization
for the whole set of expressions (and we conjecture that it is not possible,
see Conclusion), so we restrict to the subset of £ consisting of guarded
expressions only. An expression is guarded if for each of its subexpression
of the form px F, the variable X is guarded in F' (cf: Definition 1).

7.1 Axiomatizing divergency-sensitive equivalence

We first study the axiom system for =. As a starting point, let us con-
sider the system A,.. Clearly, S1-5 are still valid for =, as well as R1. R3
turns out to be not needed in the restricted language we are considering.
As for R2, we replace it with its (strongly) guarded version, which we
shall denote as R2' (see Table 4). As in the standard process algebra,
we need some 7-laws to abstract from invisible steps. For = we use the
probabilistic 7-laws T'1-3 shown in Table 4. Note that T3 is the proba-
bilistic extension of Milner’s third 7-law ([11] page 231), and T1 and T2
together are equivalent, in the nonprobabilistic case, to Milner’s second 7-
law. However, Milner’s first 7-law cannot be derived from T1-3, and it is
actually unsound for =. Below we let A,y ={R2', T1-3} UA,.\{R2-3}.

The rule R2 is shown to be sound in Proposition 5. The soundness
of T1-3, and therefore of Ayq, is evident. For the completeness proof,
it is convenient to use the following saturation property, which relates
operational semantics to term transformation, and which can be proved
by transition induction, using the probabilistic 7-laws and the axiom C.

Lemma 1 (Saturation).

1. If E =.n with n = {(us, E; : p;) }i, then Agg b E = E + @, piui.E;.
2. IfE = 9(X) then Ay - E = E + X.

15



R2' If E= F{E/X}, X guarded in F, then E = uxF

T1 @, pir-(Ei + X) = X + @, pir.(E; + X)

T2 (D, piui-E:) ®pr.(F + D, 4;8.F;) + (D, piwi. ) ® (D, pa; f;-Fy)
= (@, piui.Ei) ® pr.(F + @D, ¢;5-Fj)

T3 (D, pivwi-Ei) ® pu.(F + @D; ¢;7.F;) + (D, piui. Ei) @ (D, pgju.F;)

Table 4. Some laws for the axiom system 444

The completeness result can be proved in a similar way as Theorem
1. The main difference is that here the key role is played by equation sets
which are not only in standard format, but also saturated. The transfor-
mation of a standard equation set into a saturated one is obtained by
using Lemma, 1.

Theorem 3 (Soundness and completeness of Ayy). If E and E' are
guarded ezpressions then E = E' iff Agg - E = E'.

7.2 Axiomatizing observational equivalence

In this section we focus on the axiomatization of ~. In order to obtain
completeness, we can follow the same schema as for Theorem 1, with the
additional machinery required for dealing with observational equivalence,
like in [11]. The crucial point of the proof is to show that, if £ ~ F', then
we can construct an equation set in standard format which is satisfied
by E and F'. The construction of the equation is more complicated than
in [11] because of the subtlety introduced by the probabilistic dimension
(cf: Theorem 10 in Appendix C). Indeed, it turns out that the simple
probabilistic extension of Milner’s three 7-laws would not be sufficient,
and we need an additional rule for the completeness proof to go through.
We shall further comment on this rule at the end of Section 8).

The probabilistic extension of Milner’s 7-laws are axioms T'1-4, where
T1-3 are those introduced in previous section, and T4, defined in Table 5,
takes the same form as Milner’s first 7-law [11]. In the same table T5 is
the additional rule mentioned above. We let Ay, = AgqU{T4-5}.

Rule T5 is proved to be sound in Proposition 5. The soundness of
T4, and therefore of Ay, is straightforward. The completeness of Ay, is
shown in Appendix C.

go>s

Theorem 4 (Soundness and completeness of Ay). If E and F are
guarded expressions then E ~ F iff Ajo = E =F.

16



T4 u.t.E =u.E
T5If 7. E=7.F+ F and 7. F = 7.F + FE then 7.FE = 7.F.

Table 5. Two 7-laws for the axiom system A4,

8 Axiomatizations for finite expressions

In this section we consider the recursion-free fragment of £, that is the
class &; of all expressions which do not contain constructs of the form
px F. In other words all expressions in £; have the form: ), P j Pijuij-Eij+
>k Xk

We define four axiom systems for the four behavioral equivalences
studied in this paper. Basically A, Asc, Asa, Aj, are obtained from A,,
Are, Agd, Ago respectively, by cutting away all those axioms and rules
that involve recursions.

A, < (s1-5) Ay & AU{C}

Asg & A, U{T1-3} Aso & ApyU{T4-5}

Theorem 5 (Soundness and completeness). For any E, F € &;,

1. E~Fiff A,- E=F;
2. E~,F iff Ay, - E = F;
3. E~F iff Au- E=F;
4. Ex~F iff A, - E=F.

The soundness part is obvious. The completeness can be shown by
following the lines of previous sections. However, since there is no recur-
sion here, we have a much simpler proof which does not use the equa-
tional characterization theorem and the unique solution theorem. Roughly
speaking, all the clauses are proved by induction on the depth of the ex-
pressions. The completeness proof of Ay, is a bit tricky. In the classical
process algebra the proof can be carried out directly by using Hennessy
Lemma [10], which says that if F ~ F' then either 7.E' ~ F or E ~ F or
FE ~ 7.F. In the probabilistic case, however, Hennessy’s Lemma does not
hold. For example, let

E¥e and F¥a+ (%T.a ® %a).
We can check that: (1) 7.E £ F, (2) E # F, (3) E # 7.F. In (1) the
distribution {(7, E : 1)} cannot be simulated by any distribution from
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F. In (2) the distribution {(7,a : 3),(a,0 : )} cannot be simulated by
any distribution from E. In (3) the distribution {(7, F' : 1)} cannot be
simulated by any distribution from E.

Fortunately, to prove the completeness of Ay,, it is sufficient to use
the following weaker property.

Lemma 2 (Promotion). For any E,F € &, if E =~ F then Ay,
7.F =71.F.

The promotion lemma is inspired by [8], where a similar result is
proved for a language of mobile processes.

It is worth noticing that rule T5 is necessary to prove Lemma 2.
Consider the following two expressions: 7.a and 7.(a + (37.a ® 3a)). It is
easy to see that they are observational equivalent. However, we cannot
prove their equality if rule T5 is excluded from the inference system
Ayo. In fact, by using only the other rules and axioms it is impossible to
transform 7.(a 4+ (37.a ® 1a)) into an expression without a probabilistic
branch p7.a occurring in any subexpression, for some p with 0 < p < 1.
So it is not provably equal to 7.a, which has no probabilistic choice.

9 Concluding remarks

In this work we have proposed a probabilistic process calculus which cor-
responds to Segala’s probabilistic automata. We have presented strong
bisimulation, strong probabilistic bisimulation, divergency-sensitive equiv-
alence and observational equivalence. Sound and complete inference sys-
tems for the four behavioral equivalences are summarized in Table 7.

Note that we have axiomatized divergency-sensitive equivalence and
observational equivalence only for guarded expressions. For unguarded
expressions whose transition graphs include 7-loops, we conjecture that
the two behavioral equivalences are undecidable and therefore not finitely
axiomatizable. Note that in [7] the authors give a decision algorithm for
a weak probabilistic bisimulation in SPA, but our case is different be-
cause our weak probabilistic bisimulation is different, and also because
we consider PA instead of SPA.

In the future it might be interesting to see how to refine our process
algebra to allow for parallel composition. To do that it seems necessary to
add some syntactic constraints, because parallel composition is hard to
define for PA, as discussed in [16]. Another interesting research direction
is to develop some automated verification tool by exploiting the axioms
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and inference rules in Table 6, and then to do case-study for some prac-
tical examples in which probabilistic algorithms are shown to be quite
useful. Our long term goal, as explained in the introduction, is to develop
verification techniques for the asynchronous probabilistic 7-calculus and
to apply them to the verification of distributed algorithms.

S1 E+0=F

S2 E+E=FE

S8 > i EBi=),crEyxiy pis any permutation on I

S4 @iezpi“i-Ei = @ielpp(i)up(i).E,,(i) p is any permutation on I
S5 (@, piui.E;) ® pu.E® qu.E = (P, pivi.E;) ® (p+ q)u.E

C  Yic1.n ®ipijuij-Bij = 3¢y, ®ipijuij - Eij + @ier..n Bj ripijui; Eij

T1 @ipiT.(Ei + X) =X+ @ipiT.(Ei + X)

T2 (D, pivi.Ei) © pr.(F + €D, 4,8; .F;) + (D, pivi-E:) © (D; pa; B; - Fj)
= (@, piwi.Ei) ® pr.(F + D, 98 -F;)

T3 (D, pivi-Ei) ® pu.(F + D, ¢;7.F;) + (D, piui-Ei) ® (D, pgju-F;)
= (@D, piui-Ei) ® pu.(F + D, ¢;7.F;)

T4 u.r.E=u.FE

T If rE=7.E+ F and 7.F =7.F + FE then 7.E = 1.F.

R1 [j,X_E = E{[j,xE/X}

R2 If E = F{E/X}, X weakly guarded in F, then E = px F
R2' If E = F{E/X}, X guarded in F, then E = pxF

R3 px(E+X) = pxE

In C, there is a side condition ), ., , ri=1.

Table 6. All the axioms and rules
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Appendix
A Proofs from Section 5.4

In [18] Stark and Smolka use a special function f that associates a
probability to a nonprobabilistic transition so as to form a probabilis-
tic transition. For example, let E = %a @ %b, then f(E -2 0) = % and
f(E LN 0) = % The function f can be characterized as f = sup;~f; for
some functions fg, fi,... that take nonprobabilistic transitions to prob-
abilities and respect some ordering. Therefore in the soundness proofs
of some axioms, to show that f(E —— E') < p, it suffices to prove by
induction on i that f;(E —— E') < p for all i > 0. In the presence of non-
deterministic choice, however, this technique becomes unusable because
now the probability with which an expression performs an action and
evolves into another expression is not deterministic any more. For exam-
ple, let E = (3a@® 2b) + (2a ® 1c), then what is the value of f(E — 0)?
Should it be %, %, or some value between them? Now the meaning of
the function f is unclear because it depends on how the nondeterminism
is resolved. Nevertheless, our “bisimulation up to” technique works well
with Milner’s transition induction technique, as can be seen in the proof
of Proposition 5(3) below.

Lemma 3. If g =r, n2 and R1 C Ry then n1 =, 12.

Proof. Let V € £/R2. Since R is contained in Ro, we know that V is the
disjoint union of V1,...,V,, for some n > 1 and V; € /Ry with i < n. It
follows from 7, =g, 72 that

Vi < n,Va € Var U Act; : ni(a, Vi) = n2(a, V).
Therefore we have
m (OA, V) = Ziel..n m (Ot, 1/;) = Ziel..n 772((1’ ‘/Z) = 7’2((15 V)
O

Lemma 4. Let ) = 191 + .. + 10y and 7' = r1n} + ... + rpnl, with
Eiel..n ri=1.1Ifn =r 774 for each i < n, then n=r 7.
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Proof. For any V € £/R and a € Var U Act., we have

n(a,V) = Z rini(a, V) = Z Tiné(aa V)= nl(aa V).

i€l..n i€l.n

Therefore n = 7' by definition. |

Lemma 5. Suppose E ~ F. If E =, 1 then there exists ' s.t. F =, 7'
and n = 1.

Proof. By transition induction. O

We use a measure dx (F) to count the depth of guardedness of the
free variable X in expression F.

If dx(F) > 0 then X is guarded in E.

Lemma 6. Letdx(G) =n andn = {(u;, G; : p;) bier- Suppose G{E/X} =
7. For all i € I, it holds that

1. If n >0 and u; = 7 then G; = GI{E/X} and dx(G}) > n;
2. If n > 1 and u; # 7 then G; = Gi{E/X} and dx(G}) > n — 1.

Proof. By induction on the depth of the inference of G{E/X} = n.
There are three cases, depending on the last rule used in the inference.
A typical case is for Rule wea3. In this case n = {(uj, G; : pi)tier W
{(vj,Hj : g¢j)}jes and G{E/X} = n is derived from the shorter inferences
of G{E/X} = {(uz,Gz : pi)}ie[ Il {(T, Gy : po)} and Gy = {(’Uj,Hj :
g;) }jes- By induction hypothesis, for each ¢ € I U {0}, it holds that

1. If n > 0 and u; = 7 then G; = G;{E/X} and dx(G}) > n;
2. If n > 1 and u; # 7 then G; = GI{E/X} and dx(G}) > n — 1.

Particularly for Gy we have Gy = G{{E/X} and dx(Gj) > n > 0. By
induction hypothesis on the transition of Gy{E/X}, it follows that for
each j € J
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L. if vj = 7 then H; = H{E/X} and dx(H}) > dx(Gp) > n for each
Jed;

2. n>1and v; # 7 then H; = H{E/X} and dx (H}) > dx(Gj) =1 >
n — 1. O

Lemma 7. Suppose dx(G) > 1, n = {(ui, G; : pi) }ier and G{E/X} =

n. Then G; = GI{E/X} for each i € I. Moreover, G{F/X} = 1’ and

n=r- 1, where n' = {(u;, Gi{F/X} : p;) bier and
R={(G{E/X},G{F/X}) | for any G € &}.

Proof. A direct consequence of Lemma, 6. O

Lemma 8. Let dx(G) > 1. If G{E/X} = n then G{F/X} =.n' such
that n =g~ 1" where R = {(G{E/X},G{F/X}) | for any G € £}.

Proof. Let n = rim + ... + rpny and G{E/X} = n; for each i < n. By
Lemma, 7, for each ¢ < n, there exists n} s.t. G{F/X} = 7, and n; =g~ 7}.
Now let ' = rin} +...+rpn;,, thus G{F/X} = n'. By lemma 4 it follows
that n =g« 7. O

Proof of Proposition 5(3). We show that the relation

R ={(G{E/X},G{uxF/X}) | for any G € £}
is an observational equivalence up to ~. That is, we need to show the
following assertions:

1. if G{E/X} = n then there exists ' s.t. G{ux F/X} =.n' and n =x,

s
2. if G{uxF/X} = n' then there exists n s.t. G{E/X} =.nand n =g,

n's
We concentrate on the first clause as the second one is similar. The proof
is carried out by induction on the depth of the inference of G{E/X} = 1.
There are several cases depending on the structure of G. As an example,
here we consider the case that G = X.

We write G(E) for G{E/X} and G*(E) for G(G(E)). Since E ~
F(E), we have E ~ F?(E) since ~ is an congruence relation by Propo-
sition 5. If E = 7 then by Lemma 5 there exists 6, s.t. F2(E) =. 0,
and 1 =4 6;. Since X is guarded in F, ie., dx(F) > 0, then it follows
that dx(F?(X)) > 1. By Lemma 8, there exists 6, s.t. F2(uxF) = 0y
and 0; =g+ 6. From Proposition 4 we have uxF ~ F?(uxF), thus
pxF ~ F?(uxF). By Lemma 5 there exists ' s.t. uxF =, 1 and
62 =~ 7n'. From Lemma 3 and the transitivity of =g it follows that
N=Ry M- O
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B Proofs from Section 6

Definition 11. Let)? {X1,.; X} and W = {Wy, Wa, ...} be disjoint
sets of variables. Let H= {Hl, m} be expressions with free variables
in X U W. In the equation set S X = H we call X formal variables
and W free variables. We say S is standard if each H; takes the form
225 ErG) + 2 Whiig) where Efii gy = @r Pk bi,ik)-Xotik- We
call S weakly guarded if there is no H; s.t. H; — 9(X;). We say that
FE provably satisfies S zf there are ea:presswns E = {E1,..., Ep}, with
By = E and fo(E) CW, such that A, + E = H{E/X}.

We first recall the theorem of unique solution of equations originally
appeared in [9]. Adding probabilistic choice does not affect the validity
of this theorem.

Theorem 6 (Unique solution of equations I). If S is a weakly guarded

equation set with free variables in W, then there is an expression E which
provably satisfies S. Moreover, if F' provably satisfies S and has free vari-
ables in W, then A, - E=F.

Proof. Exactly as in [9].

Below we give an extension of Milner’s equational characterization
theorem by accommodating probabilistic choice.

Theorem 7 (Equational characterization I). For any expression F,

with free variables in W there exist some expressions E= {E1,...., Ep,},
with E1 = E and fu(E ) - W satisfying m equations
ArbBi= Y Bragt+ Y Wity (i < m)
j€l.n(i) jel.l(i

where Efi.j) = @re(t,...o(i.0) P65 %1 k) -Ea(i.i b):
Proof. By induction on the structure of E, similar to the proof in [9].

The following completeness proof is closely analogous to that of [18].
It is complicated somewhat by the presence of nondeterministic choice.
For example, to construct the formal equations, we need to consider a
more refined relation L;;;;; underneath the usual relation K;; while in
[9, 18] it is sufficient to just use Kj;.
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Proof of Theorem 1 (Completeness). Let E and E' have free vari-

ables in . By Theorem 7 there are provable equations such that £ = Fj,
E' = Ej and

A FE; = Z Eyi5) + Z Whi, ) (i <'m)
jel.n(i) FEL.1(5)
Ar F EZI’ = Z E}’(i’,j’) + Z Wh’(i’,j’) (Z’ S m')
jeln!(@) FEL()
with
Eroy= D pregmtsagr - Eoi

ke[lﬂ"!o(i’j)]

' — / ! '
Ef’(i’,j’) = @ pf’(i’,j’,k’)uf’(i’,j’,k’)'Eg’(i’,j’,k’)'
k'€[l,..,0' (#,5")]

Let I = {(i,i') | E; ~ E,}. By hypothesis we have E; ~ Ej, so
(1,1) € I. Moreover, for each (i,i’) € I, the following holds, by the
definition of strong bisimilarity:

1. There exists a total surjective relation K;; between {1,...,n(i)} and
{1,...,n' (")}, given by

Ky = {<]a.7,> | <f(27.7)7fl(z,7.7,)> € I}

Furthermore, for each (j,j') € K;» there exists a total surjective re-
lation L;ji;» between {1, ...,0(3,7)} and {1,...,0'(7', j')}, given by

Lijiry = {{k, K') | ug(ijny = U'ff(if,jf,kf) and (g(i,5,k),¢' (', ', k")) € T}.

2. Zjel..l(i) Wh(ij) = Zj’el..l’(i’) Wi (ir ) -

Now, let L;;y; (k) denote the image of k € {1,...,0(4, j)} under L;j;;;

and L;j},j,(k) the preimage of k¥’ € {1,...,0'(i,j")} under L;;y (k). We
write [k]ijiljl for the set Li_j}IjI(Liji’j’(k)) and [k‘l]ijiljl for Lijz”j’ (L;j%’j’ (k))

It follows from the definitions that

L If(i,41) € I, (i,i5) € I, (j, j1) € Ky and (j, j3) € Ky, then [k]yjer 1 =
[Klijit s
2. Ifq1 € [klgjery and ga € [K]gjorjr, then upi ) = Ug(ij,g2) a0d Eg(ijg) ~

Eg(i7jaq2) )
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Define v, = qu[k]zji’j’ Df(i,j,q) for any i, 5" such that (i,i') € T and
(4,7") € Kiy; define v, itk = Eq A pf,(Z ) for any 7,7 such that
(1,4") € I and (j,j") € K. It is easy to see that whenever (i,i') € I,
<j, _]I> S Kii’ and <k’,k’l) S LZ]'L’]’ then Vijk = ]’k’

We now consider the formal equations, one for each (i,i') € I

Xiir = Z Hy gy, 51 + Z Whii.j)
(3,3 YEK 150 jel.(i)

where

(pf(i,j,k)plf'(z" ND) )

Vijk

Hyggpwgn = D

(kK )ELuz’]’

Uf(i,5,k) X g(irj,k),g (57 k")

These equations are provably satisfied when each Xj;; is instantiated to
E;, since K; and L;j;;; are total and the right-hand side differs at most
by repeated summands from that of the already proved equation for FE;.
Note that each probabilistic branch py; j k) jk)-Eg(i k) 10 Ei becomes
the probabilistic summation of several branches like

@ (pf(iajak)plf’(i' J4") )

Uf(i,j.k
Vijk 1G.5.0)-Eg(i g )

q' €k 50

in Hyg gy it iy {1 Bif Xiir }i, where (i,i') € I and (j,j') € Kjy. But they
are provably equal because

PrGARPp (it a) \ _ PrGiik) !
ZQ'E[k']iji'j'( Vijk )= Vijk que[k’]iji’j’ Pyrir g a)
_ PrGgk ., . — ..
- Vijk I/lelkl - pf(’bn]vk)

and then the axiom S5 can be used. Symmetrically, the equations are
provably satisfied when each Xy is instantiated to EJ,; this depends on
the surjectivity of K and Jyj -

Finally, we note that each X;y is weakly guarded in the right-hand
sides of the formal equations. It follows from Theorem 6 that - E; = E,
for each (i,i') € I, and hence - E = E. ]

Proof of Theorem 2 (Completeness). Let E and E’ have free vari-
ables in W. By Theorem 7 there are provable equations such that £ = Fj,
E' = E} and

Are = E; = A; (ng)

26



Are - By = Al (i < m)

i/

where A; = Zjel..n(i) Ef(z',j) + Zjel..l(i) Wh(z',j) and

Erip= D pragmtsin Fain
k€[l,..,0(%,5)]
Similar for the form of A,.

Next we shall use axiom C to saturate the right hand side of each
equation with some summands so as to transform each A; (resp. A,) into
a provably equal expression B; (resp. Bj,) which satisfies the following
property:

(*) For any C1,Cs € BUB' with Cy ~¢ Co, if Cy — 11 then there
exists some n2 s.t. Co — m2 and N1 =~, N2.-

Initially we set B = A and B/ = A'. Let § = {(C1,Cq) | C1 ~¢
Cy and C1,Cy € AU E} Clearly the set S is finite because there are
finitely many expressions in Aud. Without loss of generality, we take a
pair (C1,Cs) from S such that C; = A}, € A and C; = 4; € A (we do
similar manipulations for other three cases, namely (i) Cy,Cy € A; (i)
C1,Cy € ;\17; (iii) Cy € Aand Cy € 717) If A, — n' then for some 7 we
have A; —. n and n =, n', by the definition of bisimilarity. If A4; — 7
(obviously we are in this case if n = 9¥(X)) we do nothing but go on
to pick another pair from S to do the analysis. Otherwise 7 is a convex
combination n = rin + ... + mn, and A; — 7; for each j < n. Hence
each 75 must be in the form {(Uf(l,],k)7Ef(’L,j,k) pf(z,],k))}k and Ef(z,]) is
a summand of A; (so it is also a summand of B;). By axiom C we have

Are = Bi = Bi+ D D7 s650450.00) - E1j.0)-
je€l.n k
Now we update B; to be to the expression on the right hand side of last
equation. To this point we have finished the analysis to the pair (Cy, Cs).
We need to pick a different pair from S to iterate the above procedure.
When all the pairs in S are exhausted, we end up with B and B’ which
are easy to be verified to satisfy property (*). Observe that only axiom
C is involved when updating B;, so we have the following results:

A F E; = B; (1 <m)
Ay E, = Bj (' <m')
From now on, by using the above equations as our starting point, the

subsequent arguments are nearly the same as those in the proof of The-
orem 1, so we omit them. O
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C Proofs from Section 7

Given a standard equation set S : X=H , which has free variables w, we
define the relations —-gC X x P((Var U Act,) x X) (the notation P(V)
represents all distributions on V) as X; —g n iff H; — 7. From —g we
can define the weak transition =g in the same way as in Section 4. We
write X; ~g X iff X; =5 n, with n = {(u;, X; : pj)}jes, kK € J and
ur = 7. We shall call S guarded if there is no X; s.t. X; ~g X;. We call
S saturated if for all X € X, X =g n implies X —g 7. The variable W is
guarded in S if it is not the case that X; —g 3(W) or X1 ~g—g 9(W).

For guarded expressions, the equational characterisation theorem and
the unique solution theorem given in last section can now be refined, as
done in [11].

Theorem 8 (Equational characterisation IT). Fvery guarded expres-
ston E with free variables 7% provably satisfies a standard guarded equa-
tion set S with free variables in W. Moreover, if W is guarded in E then
W is guarded in S.

Proof. By induction on the structure of E. Consider the case that F =
®ie 7 piu;.E;. For each 7 € I, let X; be the distinguished variable of the
equation set S; for F;. We can define S as {X = @,.; piu;- Xi} U, Sis
with the new variable X distinguished. All other cases are the same as in
[11]. O

Lemma 9. Let E provably satisfies the standard guarded equation set S.
Then there is a saturated, standard, and guarded equation set S' provably
satisfied by E.

Proof. By using Lemma 1, we show that if X; = n then Ay F E; =
Ei+ &, pju;.Ej when n = {(uj, X; : pj)};, and Agq - E; = E; + X when
n = 9(X). Repeat this procedure for all weak transitions of E;, at last we
get Agqg F E; = H/{E/X}. Hence we can take S’ to be the equation set

X =H'. O

Theorem 9 (Unique solution of equations II). If S is a guarded
equation set with free variables in W, then there is an expression E which
provably satisfies S. Moreover, if F' provably satisfies S and has free vari-
ables in W, then Agg - E = F.

Proof. Nearly the same as the proof of Theorem 6, just replacing the
recursion rule R2 with R2’. O
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Proof of Theorem 3 (Completeness). By Theorem 8 there are prov-
able equations such that £ = F, E' = E] and

Aga F E; = A; (i <m)

Agd [ E,/ = Al (ZI < ’m')

2!

For any C € AUA’ we assume by Lemma 9 that C' is saturated. Therefore
it is easy to show that C =, 5 implies C —. . Let C' € AUA'". We note
the interesting property that if C = C’ and C' — 7 then there exists 7’ s.t.
C' —».n' and n =~ n'. Thanks to this property the remaining arguments
are quite similar to that in Theorem 2, thus are omitted. O

Lemma 10. 1. If E =S, then 7.E =, 1;
2. If E . 9(X) then E = 9(X).

Proof. The first clause is easy to show. Let us consider the second one.
If 9(X) is a convex combination of 71,..,n, and E = n; for all 1 € 1..n,
then each 7; must assign probability 1 to (X, 0), thus 7; = 9(X). |

Lemma 11. If E S, n with n = {(u;, E; : p;)}; then Agg - 17.E =
T7.E 4+ @, piu;.E;

Proof. 1t follows from Lemma 10 and Lemma 1. O

Theorem 10. Let E provably satisfy S and F provably satisfy T, where
both S and T are standard, guarded equation sets, and let E ~ F. Then
there is a standard, guarded equation set U satisfied by both E and F.

Proof. Suppose that X = {X1,-0s Xm}, Y = {Y1,...,Y,} and W =
{W1, Wy, ...} are disjoint sets of variables. Let

S:X=H

T:Y:j

with fo(H) C X U W, fv(~) C Y UW, and that there are expressions
E = {E\,...En} and F = {F,...,F,} with B, = E, F| = F, and
fo(E) U fo(F ) C W, so that

Ago - E = H{E/X}
Ago - F = J{F|Y}.

Consider the least equivalence relation R C (X UY) x (X UY) such
that
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1. whenever (Z,Z') € R and Z — 1), then there exists 5’ s.t. Z' =, 7
and n =r 7';
2. (X1,Y1) € R and if X; — 7 then there exists 1’ s.t. Y1 = n' and
n=r7.
Clearly R is a weak probabilistic bisimulation on the transition system
over X U?, determined by —>d§f—>5 U —7. Now for two given distributions
n = {(UZ,XZ :pi)}ie[, 7)' = {(’Uj,Yj : q]')}jeJ, with n =R 7)', we introduce
the following notations:
K,y ={0G,j)|i€l, jeJ, u; =vjand (X;,Y;) € R}
vi=> Aps |V €1, uy =u;, and (X;, Xy) € R} foriel
vi=y {py | j' € J, vy =v;, and (Y;,Y;) € R} forjeJ

Since ) =g 7' it follows by definition that if (¢, ) € K, ,, for some 7,7/,
then v; = v;. Thus we can define the expression

def piq;
Gnml == @ . ’U,zZU
()€K, v

which will play the same role as the expression H(; jy (i ;) in the proof

of Theorem 1. On the other hand, if n = 7' = ¥(X) we simply define the

. def
expression G,y = X.

Based on the above R we choose a new set of variables Z such that
Z={Zj|X;e X, Y;eY and (X,,Y;) € R}.

Furthermore, for each Z;; € Z we construct three auxiliary finite sets of
expressions, denoted by A;;, B;; and Cj;, by the following procedure.

1. Initially the three sets are empty.

2. For each n with X; — 7, arbitrarily choose one (and only one — the
same principle applies in other cases too) n' (if it exists) satisfying
n =g 1’ and Y; =, 1, construct the expression G, ,» and update A;;
to be A;; U{G,,}; Similarly for each ' with Y; — %', arbitrarily
choose one 7 (if it exists) satisfying n =g 7’ and X; =, 7, construct
G,y and update A;; to be 4;; U {Gn,n’}'

3. For each n with X; — 7, arbitrarily choose one 7/ (if it exists) satis-
fying n =g 7', Y; = ' but not Y; =, 7', construct the expression
G,y and update B;; to be B;; U {Gyy}.

4. For each n' with Y; — 7/, arbitrarily choose one 7 (if it exists) satis-
fying n =r 7', X; = 1 but not X; =, 7, construct G, ,» and update
Cz'j to be Cz'j U {Gnm’}'
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Clearly the three sets constructed in this way are finite. Now we build a
new equation set

U:Z=1
where Uy, is the distinguished variable and
1) 2Xcea; G if B;; UCij =0
Y T.(ZGEAijUBijUCij G) otherwise.

We assert that E provably satisfies the equation set U. To see this,
we choose expressions

Y 7| 7.E; otherwise
and verify that Ay, - Gij = LU{é/Z}

In the case that B;;UC;; = 0, all those summands of L;;{G/Z} which
are not variables are of the forms:

@ pi?jui.Ei or @ pi?jui.T.Ei.

. Vg . vg
(Z,])EKn,nl (Z,])EKT],,]I

By T4 we can transform the second form into the first one. Then by some
arguments similar to those in Theorem 1, together with Lemma 1, we can
show that o o

Ago F Lij{G/Z} = H{E/X} = E;.
On the other hand, if B;; UCj; # 0, we let Cj; = {D1,...,Do} (Cij =0 is

a special case of the following argument) and D =37, | D{G/Z}. As
in last case we can show that

Ago F Lij{G/Z} = 7.(H{E/X} + D).

For any [ with 1 <[ < o, let D,{G/Z} = D\, pruk-Ey. It is easy to see
that E; =. 1 with n = {(ug, By, : p)}x. So by Lemma 11 it holds that

Ago - 7.E; = 7.E; + Di{G/ Z}.
As a result we can infer
Ago - 7.E; = 1.E; + D =1.E; + (E; + D).
by Lemma 1. Similarly,

Ago F T(Ez +D) = T(EZ +D) + E;.
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Consequently it follows from T5 that
Ago - 7.E; = 7.(E; + D) = 7.(H{E/X} + D) = L;{G/ Z}.

In the same way we can show that F' provably satisfies U. At last U is
guarded because S and T are guarded. O

To help understanding of the above theorem, we illustrate the con-
struction of the equation set U by a simple example. Consider the equa-
tion sets S and T as follows.

S: Xi1=aXs T: Y= %a.Yg @ %G,.Yg
Xy =a.Xo+ 2aXo®37.X3 Yo =aYs+1.Y3
Y3 = a.Y2

Note that if F1, Fs, E3 provably satisfy S, and F}, F, provably satisfy T,
then Fy ~ F| ~ uy(a.Z).

Let R be the equivalence relation that has a unique equivalence class
{X1,X5,X5,Y1,Y5}. Tt is easy to check that R is a weak bisimulation on
the transition system over X UY. Now we take new variables {Z;; | 1 <
i < 2,1 < j <3} and form the sets A;j, B;; and Cj; for each variable Z;;,
as displayed in Table 8, by using the procedure presented in the above
proof. We construct the equation set U, based on all expressions shown

(i, )] Aij | Bij | Gy
(]., 1) {%G.ZQQ (&2} %G.Z23} @ w
(]., 2) {a.Z23} @ {T.Z13}
(1’ 3) {a'Zm} 0 0
(2, 1) {%G.Zzz (&3] %U/.ZQE}} {%G.ZQQ [S2) ia.Zzg [S2) %T.Zu} @
(2, 2) {a.Zzg, %a.Z% (a2} %T.Zlg} @ {T.Z23}
(2,3) {a.Zzz} {%a.Zzz D %T.le} 0

Table 8. The construction of sets A;j, Bij, Cij

in Table 8.
U: Zn= %a.Zgg @ %G.Zgg
Z19 = 1.(a.Zog + T.Z13)
Z13 = a.Zy2
Zon =T1.(30.2Z2 ® La.Zo3 + 2a. 290 ® 20.Z03 ® L7.711)
Zoo = 1.(a.Zo3 + %a.Zgg & %T.Zlg + 7.7Z53)
Zos = 1.(a.Z22 + $0.Z20 ® 17.713)
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We can see that E; provably satisfies U by substituting F,7.F1,Fq,
T.EQ,T.EQ,T.EQ for le, Z12, Z13, Z21, Z22, Z23; similarly F1 provably sat-
isfies U by substituting Fy, 7.F5, F3, 7.Fy, 7.F5, 7.F3 for these variables.

At last the completeness part of Theorem 4 follows from Theorem 8,
10 and 9.

D Proofs from Section 8

The depth of a process, d(F), is defined as follows.

d(0) = 0
d(X) =1
d(3; Ei) = maz{d(E;)}i

Proof of Lemma 2. By induction on d = d(E) + d(F'). We consider
the nontrivial case that d > 0.

If X is a nondeterministic summand of E, then £ — 9(X). Since E =
F it holds that F =, 9(X). By Lemma 10 we have F = 9(X). It follows
from (the recursion-free version of) Lemma 1 that Ay - F = F 4+ X.

Let @ielpiui.Ei be any summand of E. Then we have £ — 1,
with n = {(u;, B; : pi)}icr- Since E = F, there exists 7/, with n/ =
{(v;, F; : qj)}jes st. F =, o' and n =x 7. For any k,l € I with
up = u and E, = Fj, it follows from T4 and induction hypothesis
that Ay, = ug.Ey = ug.7.Ey = w.7.E; = w.E;. By S5 we can derive
that As, = @jcrpivi-BEi = @ycp pyuy.E),, where the process on the
right hand side is “compact”, i.e., for any k',I' € I', if u}, = u}, and
By, = Ej then k' = I'. Similarly we can derive Ag, & ¢ qjv5-Fj =
Djrcs q_'y-,v;-,.FJ'-, with the process on the right hand side “compact”. From
7 =x 7 and the soundness of Agq, it is easy to prove that Ajf, +
Dicr Piui-Ey = Djre q;-,fu;-,.F;, since each probabilistic branch of one
process is provably equal to a unique branch of the other process. It follows
that Ay, = ;e piui-Ei = @ ;¢ gjv;.-Fj. By (a recursion-free version of)
Lemma 11 we infer Ay, = 7.F = T.F—}—@jej qjv;. Fj = T.F +@;c; piui-E;.

In summary Af, = 7.F = 7.F + E. Symmetrically Ay, - 7.E =
7.E + F. Therefore As, - 7.E = 7.F by T5. O

Proof of Theorem 5 (4). The soundness part is easy. The completeness
proof is similar to the proof of Lemma 2. Note that for any k,l € I with
up = u; and Ey ~ Ej, we derive Ay, F ui.Ey = w;.E; by using T4 and
the promotion lemma instead of using induction hypothesis. O
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