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Abstract—The growing popularity of location-based sys-
tems, allowing unknown/untrusted servers to easily collect and
process huge amounts of users’ information regarding their
location, has recently started raising serious concerns about
the privacy of this kind of sensitive information. In this paper
we study geo-indistinguishability, a formal notion of privacy
for location-based systems that protects the exact location of a
user, while still allowing approximate information – typically
needed to obtain a certain desired service – to be released.

Our privacy definition formalizes the intuitive notion of
protecting the user’s location within a radius r with a level
of privacy that depends on r. We present three equivalent
characterizations of this notion, one of which corresponds to a
generalized version of the well-known concept of differential
privacy. Furthermore, we present a perturbation technique
for achieving geo-indistinguishability by adding (controlled)
random noise to the user’s location, drawn from a planar
Laplace distribution. We demonstrate the applicability of our
technique through two case studies: First, we show how to
enhance applications for location-based services with privacy
guarantees by implementing our technique on the client side of
the application. Second, we show how to apply our technique
to sanitize location-based sensible information collected by the
US Census Bureau.

I. INTRODUCTION

The growing use of mobile devices equipped with GPS
chips has significantly increased the use of location-based
systems. This kind of systems employs geographical in-
formation (typically expressed as latitude and longitude
coordinates) identifying the position of an entity in order
to provide a service. Examples of location-based systems
include (1) LBSs (Location-Based Services) such as map-
ping applications, GPS navigation, and location-aware social
networks, as well as (2) location-data mining algorithms
used to determine, among others, points of interest, traffic
patterns, and disease geographical distributions.

While location-based systems have demonstrated to pro-
vide enormous benefits to individuals and society, their
popularity raises important privacy issues. For example, by
using an LBS, users may unknowingly allow companies to
compile detailed profiles of their daily activities including
places they visit, people they meet, and events they attend.
Similarly, location-data mining algorithms can be used, for
example, to determine the home location of individuals using
their GPS navigation information.

In this work we present a novel technique that allows one
to use LBSs while providing formal privacy guarantees to the

users confiding the underlying geographical information. As
a motivating example, consider a tourist in Paris who wishes
to get information about restaurants nearby his current
location, say, the Eiffel tower. Our mechanism works by
first adding controlled noise to the user’s location in order
to obtain an approximate version of it, and then sending only
the approximate location to the LBS. The kind of privacy
that we aim at providing is quasi-indistinguishability within
a certain area, which we will refer to, more briefly, as geo-
indistinguishability. Intuitively, what it means is that, from
the point of view of the attacher, the user could be anywhere
– or more precisely, almost equally likely to be anywhere –
within a certain radius r from the Eiffel tower. The value
of r should be specified by the user, as well as the level of
discrepancy ` that he can tolerate between the likelihood of
the various points in the area (which are candidate locations
for the adversary). These two values represent the privacy
guarantees for the user. Clearly there is a trade-off between
the desired level of privacy and the usefulness of the service
provided by the LBS. For instance if the user wants to
obtain only the restaurants in walking distance from the
Eiffel tower, he should set r to be no more than, say, 1
kilometer. Hence these parameters should not be chosen
arbitrarily. Also, they are related, in the sense that, the larger
is the required area of protection, the more discrepancy we
could tolerate between the likelihood of the various points, in
order to maintain the same degree of usefulness, while still
protecting the exact location. In general, with our method,
when we specify a pair (`, r) we obtain a mechanism that
provides geo-indistinguishability for all pairs (`′, r′) such
that `′/r′ = /̀r.

We show that the notion of geo-indistinguishability can
also be interpreted as the requirement that, within the
radius r, the approximate location communicated by the
user should not give too much hint to the adversary about
his real location, where the “too much” is quantified by `.
Finally, we show that geo-indistinguishability can be seen as
a generalization of the popular notion of differential privacy.
This latter characterization emphasizes the fact that – like
differential privacy – our notion is independent from the
side information of the user, such as any prior probabilistic
knowledge about the user’s actual location.

Coming back to our mechanism for generating the approx-
imate location, the inspiration comes from one of the main
approaches used in differential privacy, which consists in



drawing the noise from a Laplace distribution. This distribu-
tion, however, is linear, while we need a planar mechanism.
Now, the Laplace distribution can be extended naturally
on the continuous plane and it is easy to prove that such
an extension provides the privacy guarantees we require.
Thanks to a transformation to polar coordinates, we are also
able to devise a simple and efficient method to draw points.
However, as the common applications usually involve a
finite representation of the coordinates, we need to discretize
the distribution, and this operation raises serious concerns
regarding the possible breach of geo-indistinguishability.
Nevertheless, we prove that this property is still preserved,
modulo a minor degradation of the level of privacy.

We conclude our work by demonstrating the applicability
of our approach through two case studies, one based on LBS
and the other on location-data mining. In the former case,
we show that, by trading privacy for bandwidth usage, geo-
indistinguishability can be obtained without degrading the
utility of the information provided by LBS. In the latter case,
we show how to apply our technique to sanitize datasets
containing geographical information. In particular, we show
how to sanitize publicly available geographic information
released by the US Census Bureau. Our experiments reveal
that providing geo-undistinguishability to all users in the
dataset (i.e., US inhabitants) does not significantly decrease
the quality of the sanitized data (the degree of decrease
being inversely proportional to the parameters ` and r of
the privacy guarantee).

In [1] a distinction is made between real-time systems
(such as a location based service from a smartphone, which
has to happen in real time) vs offline systems (like pub-
lishing statistical information about many users). Our two
case studies show that our approach is suitable for both
kinds of systems. However, it is in the domain of real-time
systems that our notion of geo-indistinguishability and our
mechanism shine: the notion because standard differential
privacy is not applicable, and the mechanism because of
its simplicity to implement in a smartphone. Because of
this advantages we use the Paris-example as our motivating
scenario trough the paper.

Road Map: In Section 2 we discuss privacy guarantees
from the literature that could be potentially applied to
Geolocation Systems and point out their weaknesses and
strengths. In Section 3 we introduce the notion of geo-
indistinguishability and highlight its relation with differential
privacy. We then proceed to describe a mechanism that
provides geo-indistinguishability in Section 4. In Sections
5 and 6 we demonstrate the applicability of our approach
by case studies related to LBSs and Location-Data Mining,
respectively. Section 7 discusses related work and Section 8
presents future work and conclusions.

II. EXISTING NOTIONS OF LOCATION PRIVACY

In this section, we examine various notions of privacy
from the literature, as well as techniques to achieve them. We
use the example of a user accessing a location based service,
already discussed in the introduction, as our motivating
scenario. The user is visiting Paris, currently located near the
Eiffel Tower, and wishes to find nearby restaurants with good
reviews. To achieve this goal, he uses a handheld device
(eg. a smartphone) to query a public LBS provider (such as
Google Maps). However, the user expects his location to be
kept private: informally speaking, the information sent to the
provider should not allow him to accurately infer the user’s
location. Our goal is to provide a formal notion of privacy
that adequately captures the user’s expected privacy.

From the point of view of the mechanism for achieving
privacy, we require a technique that can be performed in
real-time by a handheld device such as a smartphone. We
also require that no trusted anonymization party is involved,
and optimally that no peer-to-peer communication with other
users is needed. Such communication could be challenging
if no other users are in proximity, and in most cases
would require some level of trust between users which is
challenging to achieve.

A. k-anonymity

The notion of k-anonymity is the most widely used defi-
nition of privacy for location-based systems in the literature.
Many systems in this category ([3], [4], [5]) aim at protecting
the user’s identity, requiring that the attacker cannot infer
which user is executing the query, among a set of k different
users. Such systems are outside the scope of our problem,
since we are interested in protecting the user’s location.

On the other hand, k-anonymity has also been used to
protect the user’s location (sometimes called l-diversity in
this context), requiring that it is indistinguishable among
a set of k points (often required to share some semantic
property). One way to achieve this is through the use of
dummy locations ([6], [7]). This technique involves generat-
ing k − 1 properly selected dummy points, and performing
k queries to the service provider, using the real and dummy
locations. Another method for achieving k-anonymity is
through cloacking ([8], [9], [10]). This involves creating
a cloacking region that includes k points sharing some
property of interest, and then querying the service provider
for this cloacking region.

The main drawback of k-anonymity-based approaches in
general is that a system cannot be proved to satisfy this
notion unless assumptions are made about the attacker’s aux-
iliary information. For example, dummy locations are only
useful if they look equally likely to be the real location from
the point of view of the attacker. Any auxiliary information
that allows to rule out any of those points, as having low
probability of being the real location, would immediately
violate the definition.



Counter-measures are often employed to avoid this issue:
for instance, [6] takes into account concepts such as ubiquity,
congestion and uniformity for generating dummy points, in
an effort to make them look realistic. Similarly, [10] takes
into account the user’s auxiliary information to construct
a cloacking region. Such counter-measures have their own
drawbacks: first, they complicate the employed techniques,
also requiring additional data to be taken into account,
making their application in real-time by a handheld device
challenging. Moreover, the attacker’s actual auxiliary infor-
mation might simply be inconsistent with the assumptions
being made.

As a result, notions that abstract from the attacker’s
auxiliary information, such as differential privacy, have been
growing in popularity in recent years, compared to k-
anonymity-based approaches.

B. Differential Privacy

Differential Privacy ([11]) is a notion of privacy from the
area of statistical databases. Its goal is to protect an indi-
vidual’s data while publishing aggregate information about
the database. Differential privacy requires that modifying a
single user’s data should have a negligible effect on the query
outcome. More precisely, it requires that the probability that
a query returns a value v when applied to a database D,
compared to the probability to report the same value when
applied to an adjacent database D′ – meaning that D,D′

differ in the value of a single individual – should be within a
bound of eε. A typical way to achieve this notion is to add
controlled random noise to the query output, for example
drawn from a Laplace distribution. An advantage of this
notion is that a mechanism can be shown to be differentially
private independently from any auxiliary information that the
attacker might possess.

Differential privacy has also been used in the context
of location privacy. In [12], it is shown that a synthetic
data generation technique can be used to publish statisti-
cal information about commuting patterns, while satisfying
differential privacy. In [13], a quadtree spatial decomposition
technique is used to ensure differential privacy in a database
with location pattern mining capabilities.

As shown by the aforemetioned works, differential pri-
vacy can be succesfully applied in cases where aggregate
information about several users is published. On the other
hand, the nature of this notion makes it poorly suitable for
applications in which a single individual is involved, such
as our motivating scenario. The secret in this case is the
location of a single user. Thus, differential privacy would
require that any change in that location should have negligi-
ble effect on the published output, making it impossible to
communicate any useful information to the service provider.

C. Tranformation-based approaches

A number of approches for location privacy are radically
different from the ones mentioned so far. Instead of cloaking
the user’s location, they aim at making it completely invisi-
ble to the service provider. This is achieved by tranforming
all data to a different space, usually employing cryptographic
techniques, so that they can be mapped back to spatial
information only by the user ([14], [15]). The data stored
in the provider, as well as the location send by the user are
encrypted. Then, using techniques from Private Information
Retrieval, the provider can return information about the
encrypted location, without ever discovering which actual
location it corresponds to.

A drawback of these techniques is that they are compu-
tationally demanding, making it difficult to implement them
in a handheld device. Moreover, they require the provider’s
data to be encrypted, making it impossible to use popular
providers, such as Google Maps, which have access to the
real data.

III. GEO-INDISTINGUISHABILITY

In this section, we define geo-indistinguishability, a for-
mal definition of privacy which expresses a user’s expected
privacy requirement when using a location-based system.
Our motivating scenario, already discussed in the previous
sections, involves a user visiting Paris, currently located at
a point x close to the Eiffel Tower, and wishing to discover
nearby restaurants with good reviews. To achieve this goal,
the user can query a service provider (for instance, an LBS
server); however, to maintain his privacy, the user does not
wish to disclose his exact location. Instead, he can provide
some approximate information that still allows him to obtain
a useful service, for instance, a randomly chosen point z
close to his location. The question then is, what kind of
privacy does the user expect to have in this scenario? On
the one hand, the user clearly does not wish to reveal x. On
the other hand, some approximate information is expected
to be revealed. For instance, the fact that the user is located
somewhere in Paris will be known by service provider,
without being considered a violation of privacy (in fact this
is desirable in order to obtain a useful service). But how can
we formalize such a notion of privacy?

It is clear from the example above that privacy in this
scenario depends on the accuracy with which the attacker
can detect the user’s location. To capture this property, the
notion of privacy within a radius is crucial. We fix a circle
of radius r centered at the user’s location, and we reason
about the user’s level of privacy within this radius. Roughly
speaking, we say that the user enjoys `-privacy within r if,
by observing z, the attacker’s ability to detect the user’s
location among all points within the radius r, does not
increase (compared to the case when z is unknown) by more
than a factor depending on `. The idea is that ` is the (inverse
of) user’s level of privacy for that radius: the smaller ` is,



the stronger privacy the user enjoys (as it gets harder for the
attacker to detect the user’s location among the points within
this circle). For the moment we keep this notion informal,
it will be made precise later in this section.

Going back to the privacy requirements, the user does not
wish to reveal his location x with high accuracy. Thus, the
first important requirement is that within a short radius r1

from x, for example 1 km, the user should enjoy `1-privacy
for some small `1. This means that the user is well-protected
within this area: knowing z does not allow the attacker to
infer the user’s location among the points within r1.

But what about points outside r1? Clearly, some privacy
is still expected: a system which allows the attacker to infer
with certainty that the user is located within r1 is usually
undesirable. Still, in order to allow the service provider to
obtain approximate information about x necessary to provide
its service, it is necessary to lower the privacy requirement
outside this radius. Thus, we can select a larger radius r2,
say 5 km, and require the user to enjoy `2-privacy within
r2, for some slightly greater `2 (note that we simultaneously
require privacy for both r1 and r2, only with different levels).
Continuing this reasoning we can define gradually larger
areas and drop the level of privacy each time, eventually
becoming low enough so that the provider can infer that with
high probability the user is somewhere in Paris (instead of,
say, New York), but not its exact location.

So we see that the user’s expected level of privacy is
distance-dependent. Close to the user’s location we require
strong privacy, while more distant points are allowed to be
distinguished. Going one step further in this reasoning, we
can require that privacy holds for any radius r, with a level
` that is proportional to the radius, which brings to our first,
still informal, definition of geo-indistinguishability:

A mechanism satisfies ε-geo-indistinguishability
iff for any radius r > 0, the user enjoys εr-privacy
within r.

The parameter ε can be thought as the level of privacy
at one unit of distance. This definition requires that the
user is protected within any radius r, but with a level
`(r) = εr that increases with the distance. Within a small
radius, for instance r = 1 km, `(r) is small, guaranteeing
that the attacker cannot infer the user’s location within the
7th arrondissement of Paris. On the other hand, privacy
decreases when we move away from the user’s location;
taking for instance r = 10.000 km, `(r) becomes very large,
allowing the provider to infer that with high probability the
user is located in Paris instead of London.

Note that, for the user, a simple way to specify his privacy
requirements is by a tuple (`, r), where r is the radius he
is mostly concerned with (eg. 1 km in the example above),
and ` is the privacy level he wishes for that radius. In this
case, it is sufficient to require ε-geo-indistinguishability for
ε = `/r; this will ensure a level of privacy ` within r, and
a proportionally selected level for all other radii.

So far we kept the discussion on an informal level by
avoiding to explicitly define what `-privacy within r means.
In the remaining of this section we formalize this notion in
three different ways; all of them turn out to be equivalent,
but they are all useful for understanding in depth the privacy
guarantees provided by geo-indistinguishability.

A. Probabilistic model

We introduce here the simple probabilistic model that is
used in the rest of the paper. We start with a set X of points
of interest, typically the user’s possible locations. Moreover,
let Z be a set of possible reported values, which in general
can be arbitrary, although for our needs we consider Z to
also contain spatial points. In our operational scenario, the
user is assumed to be located at some point x ∈ X . He then
selects a point z ∈ Z which is made available to the attacker
(for instance, it is reported to an untrusted service provider).

Probabilities come into place in two ways. First, the at-
tacker might have side information about the user’s location,
knowing, for example, that he is likely to be visiting the
Eiffel Tower, while unlikely to be swimming in the Seine
river. Let X be the random variable giving the user’s location
(ranging over X ); the attacker’s auxiliary information can be
modelled by a prior distribution PX for X , where PX(x)
is the probability assigned to the location x.

Second, the selection of a point in Z is itself probabilistic;
for instance, z can be obtained by adding random noise to
the actual location x (a technique used in Section IV). The
probabilistic function for selecting a reported value based
on the actual location is called a mechanism. Let Z be the
random variable giving the reported point; a mechanism K
for selecting z is a function assigning to each location x ∈
X a probability distribution for Z, where K(x)(S) is the
probability that the reported point belongs to the set S ⊆ Z ,
when the actual location is x.1

Together, PX and K induce a joint probability distribution
P for X,Z, as P (x, S) = PX(x)K(x)(S). Note that, by
construction, P (x) = PX(x) and P (S|x) = K(x)(S). We
use the joint distribution P in all our definitions; still, we
want the definitions to be independent from the attacker’s
side information. Thus, we either explicitely quantify over
all priors PX , or we use probabilities of the form P (S|x)
which depend only on the mechanism and not on the prior.

B. First approach

We return to the issue of formalizing what `-privacy
within a radius r means. An intuitive way of doing so, is to
compare the probabilities of different points within r, after
seeing a reported point in S ⊆ Z (note that we always
consider sets of reported points, to allow for continuous

1For simplicity we assume X to be discrete, but allow Z to be continuous
since we use continuous distributions in Section IV. Thus we need to talk
about the probability of sets of points, implicitly assuming all mentioned
sets to be measurable.



distributions). Let x, x′ ∈ X , such that d(x, x′) ≤ r,
where d(·, ·) denotes the Euclidean distance between points.
Ideally, we would like to require that P (x|S)/P (x′|S) ≤ e`,
meaning that for a small `, the attacker assigns similar
probabilities to the user being located in x or x′ after
observing S.

However, we would like our definition to hold for any
auxiliary information that the attacker might have, meaning
for all priors PX . Intuitively, we cannot expect the above
condition to hold for all priors, since a point x (eg. the
Eiffel Tower) with higher probability than x′ (eg. a point in
the Seine) will still have higher probability after observing
S. In other words, if P (x)/P (x′) is large, we cannot expect
the corresponding fraction after observing S to be small.
What we can expect, however, is that the two fractions,
before and after the observation, are similar, meaning that
S has limited effect to the probabilities assigned by the
attacker. This brings us to our first formal definition of geo-
indistinguishability:

Geo-indistinguishability-I: A mechanism satisfies ε-geo-
indistinguishability iff for all priors PX and all observations
S ⊆ Z:2

P (x|S)

P (x′|S)
≤ eεr P (x)

P (x′)
∀r > 0 ∀x, x′ : d(x, x′) ≤ r

C. Second approach

A second approach for defining privacy within a radius
r, is to focus on a single point and compare the probability
of this point before and after the observation. Ideally, we
would like to require that P (x|S)/P (x) ≤ e`, meaning that
for a small `, the probability of x should not be affected
by the observation S. However, this requirement is clearly
too strong since some information is allowed to be leaked: a
point in Paris might have negligible prior probability, since
the user could be located anywhere in the world, while after
the observation its probability is substantially increased.

Remember, however, that we are interested in privacy
within the radius r. Let Br(x) be the set of points at
distance at most r from x. Since we are interested in the
attacker’s capability of locating the user withing this radius,
we condition all probabilities on the event Br(x). In other
words, we reason about how accurately the attacker could
detect a particular point x, if he already knew that the point
was within Br(x). This brings us to our second definition
of geo-indistinguishability:

2Note that for the sake of readability, we express the definitions in
terms of fractions. To avoid issues with zero probabilities, we can write
all definitions in flat form, i.e. P (x|S)P (x′) ≤ eεrP (x′|S)P (x).

Geo-indistinguishability-II: A mechanism satisfies ε-geo-
indistinguishability iff for all priors PX and all observations
S ⊆ Z:

P (x|S,Br(x))

P (x|Br(x))
≤ eεr ∀r > 0 ∀x ∈ X

D. Third approach

So far, we have considered the probability that the attacker
assigns to points before and after observing S, since compar-
ing these probabilities is a natural way to quantify how much
S helps the attacker. We now change our standpoint and
consider instead the probabilities of observations, instead of
points. Intuitively, if two locations x, x′ produce a reported
value in S with similar probabilities, then S reveals little
information about whether the actual location is x or x′.
Thus, it is natural to require that P (S|x)/P (S|x′) ≤ e` for
points that lie within the radius r. This brings us to our
final definition of geo-indistinguishability:
Geo-indistinguishability-III: A mechanism satisfies ε-geo-
indistinguishability iff for all observations S ⊆ Z:

P (S|x)

P (S|x′)
≤ eεr ∀r > 0 ∀x, x′ : d(x, x′) ≤ r

This definition requires that points within distance 1
produce observations with similar probabilities. The farther
away two points are, the more different we allow the proba-
bilities of producing S to be. This is very similar to the def-
inition of differential privacy, which requires two databases
that differ on a value of a single user to produce the same
answer with similar probabilities. Differential privacy aims
at completely protecting the value of the user, since the
value has limited effect on the probabilities of observations.
In our scenario, however, such a requirement would be
too strong. Since the only information is the location of a
single user, differential privacy would require all locations
to produce reported points with similar probability, thus it
would be impossible for the service provider to extract any
information about the user location. Nevertheless, in our case
we do not want to completely hide the user’s location, since
some approximate information needs to be revealed in order
to obtain the required service. Thus, the definition requires a
level of privacy that depends on the distance between points.

Still, the connection between geo-indistinguishability and
differential privacy is strong. In fact, the above definition
can be rewritten as:

P (S|x) ≤ eεd(x,x′)P (S|x′) ∀x, x′ ∈ X ∀S ⊆ Z

This is an instance of a generalized definition of differen-
tial privacy ([16]), taking into account an arbitrary met-
ric between databases, where standard differential privacy
corresponds to the so-called Hamming distance. Thus, ε-
geo-indistinguishability can be though as differential privacy
under the Euclidean metric.



Note that, although the generalized definition appears in
the literature ([16], [17], [18]), it is usually treated as an
intermediate step for achieving standard differential privacy,
and little work has been done using metrics other than
the Hamming distance for the privacy definition itself (the
closest work in this direction being [18]). In particular, to
our knowledge this is the first work considering differential
privacy under the Euclidean metric, which is a natural choice
for spatial data.

Finally, we can show that the three definitions of geo-
indistinguishability given in this section are simply different
ways of expressing the same privacy requirement.

Theorem 3.1: Geo-indistinguishability-I, II, III coincide.
A note on the unit of measurement: Since the notion

of distance between points is crucial for the definition of
geo-indistinguishability, a natural question is: how is the
definition affected by the unit in which distance is measured?
If d is the Euclidean metric expressed in meters, switching
to some other unit means replacing d by d′ = k ·d, in which
all distances are scaled by a factor k (eg. k = 1/1000 for
kilometers). However, the privacy guarantees of a mecha-
nism are clearly not affected by such a change.

The point is that, since r is a physical quantity expressed
in some unit of measurement, ε needs to be expressed in the
inverse unit, so that ` = ε r is a pure number. Thus, ε needs
to be updated when changing the unit of measurement. For
simplicity in the rest of this paper we will omit the unit of
measurement when it is not important for the context, and
we assume that, if the unit for r is some u, then the one for
ε is 1/u.

E. Protecting multiple locations

So far, we have assumed that the user has a single point
that he wishes to communicate to a service provider in
a private way (typically his current location). In practice,
however, it is common for a user to have multiple points
of interest, for instance a set of past locations or a set of
locations he frequently visits. In this case, the user might
wish to communicate to the provider some information that
depends on all points, for instance the set of points itself,
their centroid, etc. As in the case of a single point, privacy
is still a requirement; the provider is allowed to obtain only
approximate information about the points, their exact value
should be kept private. In this section, we discuss how ε-
geo-indistinguishability extends to the case where the secret
is a tuple of points x = (x1, . . . , xn).

Similarly to the case of a single point, the notion of
distance is crucial for our definition. We define the distance
between two tuples of points x = (x1, . . . , xn),x′ =
(x′1, . . . , x

′
n) as:

d∞(x,x′) = max
i
d(xi, x

′
i)

Intuitively, the choice of metric follows the idea of reasoning
within a radius r: when d∞(x,x′) ≤ r, it means that all

xi, x
′
i are within distance r from each other.

All definitions of this section can be then directly applied
to the case of multiple points, by using d∞ as the underlying
metric. Enjoying `-privacy within a radius r means that the
observation can help the attacker infer x among all tuples
at distance r (i.e. tuples having all points at distance r from
the corresponding points of x), by a factor of at most el. All
three definitions of geo-indistinguishability remain the same,
the only change being the set of secrets and the distance
between them.

Extending a mechanism to multiple points: A natural
question then to ask is whether we can create a mechanism
for tuples of points, by independently applying an existing
mechanism to each individual point, and report a tuple of
values. Let Ki, 1 ≤ i ≤ n be mechanisms for individ-
ual points. Starting from a tuple x = (x1, . . . , xn), we
independently apply Ki to xi obtaining a reported points
zi, and then report the tuple z = (z1, . . . , zn). Thus,
the probability that the combined mehcanism K reports z,
starting from x, is the product of the probabilities to obtain
each point zi, starting from the corresponding point xi, i.e.
K(x)(z) =

∏
iKi(xi)(zi).3

The next question is what level of privacy does K sat-
isfy. For simplicity, consider a tuple of only two points
(x1, x2), to which the same mechanism K0, satisfying ε-
geo-indistinguishability, is applied. At first look, one might
expect the combined mechanism K to also satisfy ε-geo-
indistinguishability, however this is not the case. The prob-
lem is that the two points might be correlated, thus an
observation about x1 will reveal information about x2 and
vice versa. Consider, for instance, the extreme case in which
x1 = x2. Having two observations about the same point
reduces the level of privacy, thus we cannot expect the
combined mechanism to satisfy geo-indistinguishability for
the same ε. On the other hand, K can be shown to satisfy a
reduced level of privacy:

Theorem 3.2: If Ki satisfies εi-geo-indistinguishability
for 1 ≤ i ≤ n, then the combined mechanism K satisfies
ε-geo-indistinguishability for ε =

∑
i εi.

Note that this issue is similar to the problem of composing
queries in standard differential privacy. When the outcome
of multiple queries is randomized by adding independent
noise to each answer, the resulting mechanism satisfies
differential privacy with a parameter ε which is the sum
of the parameters of the individual mechanisms. The reason
is exactly that the asnwers are correlated, since they come
from the same database.

The technique of independently applying a mechanism
to each point is useful when the number of points remains
small, since privacy decreases with the number of points (a
mechanism applied to n points satisfies nε-geo-indistingui-

3For simplicity we consider probabilities of points here; a formal
treatment of continuous mechanism would require to consider sets.



shability). Still, this is sufficient for some applications, such
as the case study of Section V. Note also that this technique
is by no means optimal: similarly to standard differential
privacy ([19], [20]), better results can be achieved by adding
noise to the whole tuple x, instead of each individual points.
Developing such techniques for geo-indistinguishability is
left as future work.

The case of uncorrelated points: In the previous para-
graph we saw that independently applying a mechanism to
multiple points can potentially decrease the level of privacy,
due to the fact that the points can be correlated. On the other
hand, we are sometimes interested in applying a mechanism
to uncorrelated points, that is points that are either selected
independently from each other, or for which we can assume
that the attacker has no information about their correlation.
This can be captured by requiring that the probability to
select xi is independent from xj and vice versa, that is
P (x) =

∏
i P (xi) (note that P (xi) is still arbitrary). Under

this restriction, an observation about xj does not intuitively
reveal any information about xi. Assuming that Ki sat-
isfies εi-geo-indistinguishability, it can be shown that the
combined mechanism K satisfies the same level of privacy
wrt the individual point xi, that is P (z|xi) ≤ eεirP (z|x′i)
for all xi, x′i such that d(xi, x

′
i) ≤ r. Note that the εi-

geo-indistinguishability might not be satisfied for the tuple
x (instead, we need to take ε =

∑
i εi for the tuple, as

shown in the previous section). Stil, assuming the lack of
correlation, εi-geo-indistinguishability will be satisfied for
each individual point xi.

F. Comparison with standard differential privacy

As discussed in Section III-D, geo-indistinguishability is
an instance of a generalized version of differential privacy,
using the Euclidean metric to measure the distance between
secrets. Thus, it is natural to examine how this notion com-
pares to the one of standard differential privacy. As discussed
in Section II, an advantage of geo-indistinguishability is that
it can be applied to scenarios involving a single user, for
which differential privacy is poorly suited. The comparison
becomes more interesting in the case where secrets are
tuples of n points, each corresponding to a different user.
Note that we try to keep the discussion at a high level,
focussing mainly on the privacy guarantees of each notion,
and abstracting from the exact application.

Consider two mechanisms, K1 satisfying ε1-geo-
indistinguishability and K2 satisfying ε2-differential privacy.
Note that simply comparing ε1, ε2 is meaningless, since
they refer to different definitions. To do a fair comparison,
let x = (x1, x2, . . . , xn), x′ = (x′1, x2, . . . , xn), be two
tuples differing only in the location of the first user (i.e.
seen as databases, they are adjacent). We then consider the
level of privacy that each mechanism provides for those
tuples, which corresponds to how well the secret of the
first user is protected. The privacy levels `1, `2 of K1,K2

respectively, for those tuples, is:

`1 = ε1d∞(x,x′) = ε1d(x1, x
′
1) `2 = ε2

in the sense that, for both mechanisms, the ratio
Ki(x)(S)/Ki(x′)(S) is bounded by e`i for all observations
S. Thus, comparing the two mechanisms boils down to
comparing `1, `2, for various points x1, x

′
1.

An important observation is that `2 is independent from
the actual points x1, x

′
1. This means that standard differential

privacy protects all values in the same way; any secret value
of a user is equally indistinguishable from any other. This
is not the case for `1, however, which depends on the actual
points x1, x

′
1, and more precisely on their distance. So, the

level of protection depends on the secrets; the closer two
points are the harder it is for the attacker to distinguish them.

Thus, for points far away from each other, `1 will be
greater than `2, so differential privacy offers better protec-
tion, while geo-indistinguishability becomes better in points
close to each other, for which `1 is smaller than `2. This
behaviour becomes more important in cases where ε2 is not
very small, which is often unavoidable in order to provide
acceptable utility (see, for instance, Section VI). Intuitivelly,
when ε2 is large, then offering the same protection `2 = ε2
for all points becomes a drawback. A privacy level that
depends on the distance ensures that nearby points (which,
in the case of location-based systems, need to be highly
indistinguishable), will be adequately protected.

Finally, when comparing notions of privacy, one needs
to also examine the loss of utility caused by the added
noise. This highly depends on the application: differential
privacy is suitable for publishing aggregate queries with low
sensitivity, meaning that changes in a single individual have
a relatively small effect on the outcome. On the other hand,
location information often has high sensitivity. A trivial
example is the case where we want to publish the complete
tuple of points. But sensitivity can be high even for aggregate
information: consider the case of publishing the centroid of 5
users located anywhere in the world. Modifying a single user
can hugely affect their centroid, thus achieving differential
privacy would require so much noise that the result would
be useless. For geo-indistinguishability, on the other hand,
one needs to consider the distance between points when
computing the sensitivity. In the case of the centroid, a small
(in terms of distance) change in the tuple has a small effect
on the result, thus geo-indistinguishability can be achieved
with much less noise.

A note on auxiliary information: An important ad-
vantage of differential privacy, compared to other privacy
notions, is that it provides privacy guarantees independently
from the attacker’s auxiliary information. This does not
mean that auxiliary information is useless to the attacker:
consider for instance an “average height” query; information
such as “all users have the same height” or “Alice is 5
cm taller than the average”, together with the mechanism’s



output z (i.e. the randomized average), helps narrowing
down the probable values of Alice’s height. What differential
privacy actually guarantees is that, under any auxiliary infor-
mation (expressed in terms of a priori probability on Alice’s
value), learning z does not reveal much more information
about this value (where “much more” is measured by ε).

Being an instance of differential privacy under the Eu-
clidean metric, geo-indistinguishability has a similar be-
havior wrt auxiliary information. Namely, it guarantees (as
shown by the formulation of Section III-C) that under any
auxiliary information (expressed by the a priori on the actual
location), learning z does not reveal much more information
about x (where “much more” is measured by εr).

In the case of geo-indistinguishability, we have an ad-
ditional privacy guarantee: since P (z|x) ≤ P (z|x,Br(x)),
a geo-indistinguishable mechanism guarantees that learning
z does not reveal much more information about the user’s
location x than learning that the user is within the circle
Br(x). This property does not seem to have a counterpart
in differential privacy.

IV. A MECHANISM FOR GEO-INDISTINGUISHABILITY

In this section we present a method to generate noise in
a way that satisfies geo-indistinguishability. We model the
location domain as the Euclidean plane equipped with the
standard notion of Euclidean distance. This model can be
considered a good approximation of the Earth surface when
the area of interest is not “too large”.

For applications with digital interface the domain of
interest is discrete, since the representation of the coordi-
nates of the points is necessarily finite. However, it does
not seem easy to devise an efficient mechanism for geo-
indistinguishability that generates noise directly on a discrete
plane (we will come back to this point in Section IV-B). We
therefore consider a different approach:
(a) First, we define a geo-indistinguishable, continuous

mechanism for the ideal case of the continuous plane.
(b) Then, we discretized the mechanism by remapping each

point generated according to (a) to the closest point in
the discrete domain.

Furthemore, we may want to consider only a limited area.
For instance if we are in a island, we may wish to report
only locations in the land, not in the sea. Thus we may want
to apply a third step:
(c) If desirable, we may truncate the mechanism, so to

report only points within the limits of the area of interest.

A. A geo-indistinguishable continuous mechanism

In this section we explore how to define a geo-
indistinguishable mechanism on the continuous plane. This
will constitute the basis of our method.

The idea is that whenever the actual location is x0 ∈
R2, we report, instead, a point x ∈ R2 generated randomly
according to the noise function. The property that we need

to guarantee is that the probabilities of reporting a point
in a certain (infinitesimal) area around x when the actual
locations are x0 and x′0 respectively, should differ at most
by a multiplicative factor e−ε d(x0,x

′
0).

Intuitively, this property is achieved if the noise function
is such that the probability of generating a point in the area
around x decreases exponentially with the distance from
the actual location x0. In a linear space this is exactly
the behavior of the Laplace distribution, whose probability
density function (pdf) is:

1

2 b
e−
|x−µ|
b (1)

where µ is the expected value, in this case set to be the
actual location, and b is a parameter. This function has been
used in the literature to define an oblivious mechanism for
adding noise to queries on statistical databases, with µ set
to be the actual answer, and it has been proved that such
mechanism provides 1/b-differential privacy [21]. Figure 1
illustrates the idea.

Figure 1. The distributions defined by two linear laplacians, centered in 1
and in 2 respectively, with 1/b = ln 2. The ratio between the two curves
is at most e

1
b = 2 everywhere.

Of course we cannot use the standard Laplace distribution
for our purposes, because it is defined on the line, while we
need a distribution defined on the plane. Furthermore we
need to use the (Euclidean) planar distance d(x, µ) instead of
the liner distance |x−µ|. Intuitively, however, just replacing
|x− µ| by d(x, µ) in (1) results into a natural extension of
the Laplace distribution from one to two dimensions4. We
call planar laplacian such extension.

The probability density function: Given the parameter
ε ∈ R+, and the actual location x0 ∈ R2, the pdf of our
noise mechanism, on any other point x ∈ R2, is:

Dε(x0)(x) =
ε2

2π
e−ε d(x0,x) (2)

where ε2/2π is a normalization factor. Using a transformation
in polar coordinates it is possible to show that the integral

4In the literature there are various proposals for the extension of the
Laplace distribution to higher dimensions. These are called multivariate
laplacians. In general multivariate means that it involves k ≥ 1 random
variables. The particular cases of k = 1 and k = 2 are called univariate and
bivariate respectively. Our definition corresponds to a particular instance
of the extension investigated in [22], [23]. The same instance has been
adopted also in [24].



Figure 2. The pdf’s of two planar laplacians, centered in (−2,−4) and in
(5, 3) respectively, with ε = 1/5. The distance between the centers is 7

√
2,

and the ratio between the curves is at most e7/5
√
2 ≈ 7.24 everywhere.

of this function over the whole R2 gives 1, which means
that it is indeed the pdf of a probability distribution.

We call this function planar laplacian centered in x0. The
corresponding distribution is illustrated by Figure 2. Note
that the projection of a planar laplacian on any vertical plane
passing by the center gives a graph proportional to the one
of a linear laplacian (Figure 1).

In Appendix B we show that the mechanism defined by
a planar laplacian satisfies ε-geo-indistinguishability.

Drawing a random point: We illustrate now how to
draw a random point from the pdf defined in (2).

First of all, we note that the pdf of the planar laplacian
depends only on the distance from x0. It will be convenient,
therefore, to transform the reference system into a system of
polar coordinates with origin in x0. Intuitively, in this way
the pdf will depend only on one variable, thus simplifying
the drawing procedure.

So, given the pdf in (2), we consider the transformation
into a system of polar coordinates (r, θ) where r is the radius
and θ is the angle. A point x in cartesian coordinates will
be represented as a point (r, θ) in the new system, where
r is the distance of x from x0, and θ is the angle that the
line xx0 forms with respect to the axis x of the cartesian
system. Following the standard transformation method, the
pdf of the polar laplacian centered in the origin (x0) is:

Dε(r, θ) =
ε2

2π
r e−ε r (3)

We note now that the polar laplacian defined above enjoys
a property that is very convenient for drawing in an efficient
way: the two random variables that represent the radius and
the angle are independent. Namely, the pdf can be expressed
as the product of the two marginals. In fact, let us denote
these two random variables by R (the radius) and Θ (the

angle). The two marginals are:

Dε,R(r) =
∫ 2π

0
Dε(r, θ) dθ = ε2 r e−ε r

Dε,Θ(θ) =
∫∞

0
Dε(r, θ) dr = 1

2π

Hence we have Dε(r, θ) = Dε,R(r) Dε,Θ(θ).
Note that Dε,R(r) corresponds to the pdf of the gamma

distribution with shape 2 and scale 1/ε. Figure 3 shows the
graph of this function for various values of ε.

Figure 3. Pdf of the gamma distr. (Dε,R(r)) for various values of ε.

It may come as a surprise that this graph differs signif-
icantly from those in Figures 1 and 2, and in particular,
that it does not have its maximum in the origin. Remember,
however, that the graph in Figure 3 represents a pdf in
polar coordinates. More precisely, Dε,R(r) represents the
probability that the random point is located in the circular
crown centered in the origin and delimited by r and r+ dr.
The area of this crown is proportional to r, hence when r is
close to 0 also the probability is close to 0. As r increases
the probability increases, until the factor e−ε r takes over.
For r approaching infinity, the factor e−ε r approaches 0,
and dominates over r, hence the probability approaches 0
again.

Thanks to the fact that R and Θ are independent, in order
to draw a point (r, θ) from Dε(r, θ) it is sufficient to draw
separately r and θ from Dε,R(r) and Dε,Θ(θ) respectively.

Since Dε,Θ(θ) is constant, drawing θ is easy: it is suf-
ficient to generate θ as a random number in the interval
[0, 2π) with uniform distribution.

We now show how to draw r. Following standard lines,
we consider the cumulative function Cε(r) of Dε,R(r):

Cε(r) =

∫ r

0

ε2ρ e−ερdρ = 1− (1 + ε r) e−ε r

Intuitively, Cε(r) (see Figure 4) represents the probability
that the radius of the random point falls between 0 and
r. Finally, we generate a random number z with uniform
probability in the interval [0, 1), and we set r = C−1

ε (z).
Given a “universal” cartesian reference system and the

actual location x0 = (s, t) in this system, if we could work
in the “ideal” continuous plane, then we would just need to
generate the noise (r, θ) as specified above, and then reports
the point x = (s+ r cos θ, t+ r sin θ). In practice however
there is always some discretization involved, because (a)



Figure 4. Plot of Cε(r) for various values of ε.

Drawing a point (r, θ) from the polar laplacian
1. draw θ uniformly in [0, 2π)
2. draw z uniformly in [0, 1) and set r = C−1

ε (z)

Figure 5. Method to generate the noise

computers have finite precision, and (b) (more important)
the coordinates of the “universal reference system” will have
a finite representation, typically using only a few decimal
digits. The discretization of our method, and its properties,
constitute the subject of next section.

B. Discretization

In real-life situations usually we represent a location
by means of discrete coordinates. For instance, latitude
and longitude up to some decimal of precision. Thus we
study here how to define an approximation of the Laplace
distribution on a grid G of discrete cartesian coordinates.
Again, the property that we need to preserve is that the
probability of generating a point x in the grid decreases
exponentially with the distance from the actual location x0.

Before we start illustrating our method, we wish to explain
why we did not adopt the following approach, which seems
the most natural: In the univariate case, the discrete approx-
imation of the Laplace distribution is the double geometric
probability distribution λe−ε |x−x0|, where x ∈ N and λ
is a normalization factor. This probability function can be
visualized as a symmetric series of “steps” exponentially
decreasing with the (discrete) distance from x0. The obvious
extension to the bivariate (discrete) case would then be the
probability distribution K(x0)(x) = λ′e−ε d(x0,x) where λ′

is a suitable normalization factor.
Unfortunately, there does not seem to be an efficient way

to draw points according to the above distribution. For
this reason we propose a different approach, that can be
summarized as follows. Given the actual location x0, we
report the point x in G obtained in the following way:
(a) first, we draw a point (r, θ) from the polar laplacian

centered in x0 (see (3)), as described in Figure 5,
(b) then, we remap (r, θ) to the closest point x on G.

We will denote by K : G → P(G) the above mecha-
nism. In summary, K(x0)(x) represents the probability of
reporting the point x when the actual point is x0.

It is not obvious that the discretization preserves geo-
indistinguishability, due to the following problem: In prin-
ciple, each point x in G should gather the probability of the
set of points for which x is the closest point in G, namely

R(x) = {y ∈ R2 | ∀x′ ∈ G. d(y, x′) ≤ d(y, x′)}

However, due to the finite precision of the machine, the
noise generated according to (a) is already discretized in
accordance with the polar system. LetW denote the discrete
set of points actually generated in (a). Each of those points
(r, θ) is drawn with the probability of the area between r,
r + δr, θ and θ + δθ, where δr and δθ denote the precision
of the machine in representing the radius and the angle
respectively. Hence, step (b) generates a point x in G with
the probability of the set

RW(x) = R(x) ∩W

This introduces some irregularity in the mechanism, because
the scaly region associated to RW(x) has a different shape
and area depending on the position of x relatively to x0.

Figure 6 illustrates the situation. The cartesian grid con-
stituted by blue horizontal and vertical lines represents G.
The polar grid constituted by black circles and radial lines
represent W . The two dashed rectangles around the points
x0 and x1 represent R(x0) and R(x1). The regions R0 and
R1 colored in grey and magenta correspond to RW(x0) and
RW(x1) respectively. Note that R0 and R1 have different
shapes and areas, for instance R0 is larger than R1.

Figure 6. Remapping the points in polar coordinates to points in the grid

In the next paragraph we show that, despite of the
above problem, the discretization does preserve geo-
indistinguishability, under some moderate restrictions.

Geo-indistinguishability of the discretized mechanism:
We now analyze the privacy guarantees provided by our
discretized mechanism. We will show that the discretization
essentially preserves geo-indistinguishability, although there
is some degradation of the parameter ε. More precisely we
will show that, after the discretization, our mechanism still
satisfies ε′-geo-indistinguishability, within a range rmax, for
a suitable ε′ that depends on ε, on the length of the step units



of G, and on the precision of the machine. For the sake of
generality we do not require the step units along the two
dimensions of G to be equal. We will call them grid units,
and will denote by u and v the smaller and the larger unit,
respectively.

We recall that δθ and by δr denote the precision of the
machine in representing θ and r, respectively.

The following theorem, whose proof is in Appendix C,
states the property of geo-indistinguishability provided by
our mechanism.

Theorem 4.1: Let rmax = u/q δθ, where q > 5, and
assume δr ≤ u/q. Given ε ∈ R+, let ε′ be defined as

ε′ = ε+
1

u
ln
q − 2 + 3 eε v

√
2

q − 5

Then K provides ε′-geo-indistinguishability in any area of
diameter rmax, namely:

K(x0)(x) ≤ eε
′ d(x0,x

′
0)K(x′0)(x)

whenever d(x0, x), d(x′0, x) ≤ rmax.
Figure 7 shows the value of ε′ as a function of ε, for

various grid units u, v and various values of q. (The graph
does not depend on the unit of measurement of δr and u,
but they have to be the same, and that of ε′ and ε has to be
the inverse, as usual.) As we can see, the degradation of the
privacy level is not too serious, especially for large values
of q (i.e. q ≥ 105). Note that with double precision δθ is
about 7 10−16, hence choosing q = 105 means to set rmax

to more than 1010 times u.

Figure 7. ε′ as a function of ε for various precisions and grid units.

Note that in Theorem 4.1 the restriction to the area of
diameter rmax is crucial. Namely, ε′-geo-indistinguishability
does not hold for arbitrary distances for any finite ε′.
Intuitively, this is because the step units ofW (see Figure 6)
become larger with the distance r from x0. The step units
of G, on the other hand, remain the same. When the steps
in W become larger than those of G, some x’s have an
empty RW(x). Therefore for when x is far away from x0 its
probability may or may not be 0, depending on the position
of x0 in G, which means that geo-indistinguishability cannot
be satisfied.

On the other hand, the restriction about rmax is not a
strong limitation, because the distribution decreases expo-
nentially with r, and rmax is usually large, hence the points
with distance r > rmax have anyway negligible probability.
Also the assumption that u ≥ 5 δr is not restrictive for the
kind of applications we are targeting, where u is several
orders of magnitude larger than δr.

C. Truncation

In real-life applications usually we are interested in lo-
cations within a certain region. The laplacian mechanisms
described in previous sections, however, feature the capabil-
ity to generate points everywhere in the plane. If the user
knows that the actual location is situated within a certain
region, it seems desirable that the reported location lies
within the same region as well, or at least not too far apart.
To this purpose we propose a variant of the discrete laplacian
described in previous section, which generates points only
within a specified region.

We assume that the specified regionA of acceptable report
points is a circle centered in o, and diameter diam(A).
Our mechanism works like the discretized laplacian of
previous section, with the difference that, whenever the point
generated in step (a) lies outside A, we remap it to the
closest point in A ∩ G (which necessarily will be on the
perimeter of A, modulo discretization).

Let us denote by KT the truncated variant of the mech-
anism K described in previous section. The type is: KT :
A → P(A∩G) and the drawing is described by the following
procedure. Given the actual location x0 ∈ A:
(a) first, draw a point (r, θ) from the polar laplacian centered

on x0, as explained in previous section,
(b′) then, remap (r, θ) to the closest point x on A ∩ G.

Intuitively, KT behaves like K except when the region
R(x) is on the border of A. In this case, the probability
on x is given not only by the probability of the points in
RW(x), but also by the probability of the part of the cone
determined by o and R(x) which lies outside A.

We are now going to show that this new method satisfies
geo-indistinguishability on all A, provided that rmax is not
smaller than diam(A). The proof is in Appendix D.

Theorem 4.2: If rmax ≥ diam(A), then KT provides ε′-
geo-indistinguishability, namely

KT (x0)(x) ≤ eε
′ d(x0,x

′
0)KT (x′0)(x) for every x0, x

′
0 ∈ A

where rmax and ε′ are defined as in Theorem 4.1.

V. ENHANCING LOCATION-BASED SERVICES
WITH PRIVACY

The growing use of mobile devices equipped with GPS
chips in combination with the increasing availability of
wireless and GSM connection has significantly increased
the use of LBSs. A resent study in the US shows that 46%
of the adult population of the country owns a smart-phone
and, furthermore, that 74% of those owners use LBSs [25].
Examples of LBSs include mapping applications (eg, Google
Maps and Bing Maps), Points of Interest (POI) retrieval
(eg, AroundMe and Localscope), coupon/discount providers
(eg, GroupOn and Yowza), GPS navigation (eg, TomTom
and Google Maps), and Location-Aware social networks (eg,
Foursquare and OkCupid).



Users invoking a LBS typically submit their location in
order to obtain a certain benefit, eg, information about POI
in the area around them. Although LBSs have proved to offer
important benefits for a variety of applications, the privacy
exposure of users’ location information is undeniable and,
unfortunately, often overlooked. LBS providers can collect
accurate location information about users and, potentially,
process it enabling them to infer sensitive information such
as users’ home location, work location, sexual preferences,
political views, and religious inclinations.

In this section we show how to enhance LBS applications
with privacy guarantees while still providing a high quality
service to their users.

A. Geo-indistinguishability for POI retrieval LBSs

Let us start by describing how geo-indistinguishability can
be used to specify a subtle notion of privacy for LBS applica-
tions. For that purpose, we first delineate the architecture of
LBS applications that we consider in this work. We assume
a simple client-server architecture where users communicate
via a trusted mobile application (the client – typically
installed in a smart-phone) with an unknown/untrusted LBS
provider (the server – typically running on the cloud). Hence,
our approach does not rely on trusted third-party servers
(in contrast with several solutions proposed in the literature,
see Section II). Additionally, since this work focusses on
the potential harm incurred to users by conferring their
location to a LBS, we assume that users only communicate
location information to the provider (although typically
more information, such as user ID and network address, is
transmitted). Figure 8 illustrates the LBS setting that we
consider in this work.

Figure 8. LBS architecture

For illustration purposes, in this section we will focuss
on LBSs applications providing POI information. However,
most of the discussion and techniques presented in the
following, hold for a broader family of LBS applications
(some of which we mention explicitly below).

Coming back to our running example, we now study
how geo-indistinguishability can help to provide privacy
guarantees to the user visiting Paris. More precisely, let us
assume that the user is sitting at Café Les Deux Magots
and wishes to obtain information about nearby restaurants
without revealing to a potential attacker (the LBS provider in
this case) his exact location. However, as discussed before, in
order to obtain accurate information from the LBS provider,
the user is willing to reveal some approximate information.

This privacy guarantee can be captured by our notion
of ε-geo indistinguishability. Letting the user specify his
desired level of privacy, say ` = ln(4) within r = 0.2 km
(and decreasing proportionally for larger distances), ln(4)/0.2-
geo-indistinguishability guarantees the user that by using the
LBS application (and thus revealing his approximate loca-
tion), the LBS provider cannot infer his real location (at least
not with probability 4 times higher than without revealing
his location) among all locations within 200 meters.

B. Privately Retrieving POI information from a LBS

We now proceed to describe how to enhance LBS ap-
plications with geo-indistinguishability guarantees. In the
following we distinguish between mildly-location-sensitive
and highly-location-sensitive LBS applications.

The former category corresponds to LBS applications of-
fering a service that does not heavily rely on the precision of
the location information provided by the user. Examples of
such applications are weather forecast applications (forecast
information for an approximate location is typically as good
as forecast information for an exact location), location-aware
advertising/offers (eg, shops offering discounts typically care
about users being nearby – rather than their exact location),
and a number of LBS applications for POI retrieval (eg,
retrieving nearby cheap gas stations or nearby tourist sites
when visiting a city). Enhancing this kind of LBSs with geo-
indistinguishability privacy guarantees is relatively straight-
forward. It requires to implement the location perturbation
mechanism presented in Section IV on the client party of the
LBS application and then report the generated approximate
location (instead of the real location) to the LBS server party.
We note that this simple modification does not require a
significant computation overlay on the client side nor extra
bandwidth usage.

For highly-location-sensitive LBS applications, on the
other hand, the quality of the service provided by LBSs
highly depends on the precision of the location information
submitted by the user. Our running example lies within this
category. For the user sitting at Café Les Deux Magots,
information about restaurants nearby Champs Élysées is
considerably less valuable than information about restaurants
around his location. Enhancing this kind of LBS applications
with privacy guarantees is considerably more challenging.
In the following we describe how to enhance this kind
of LBS applications with privacy guarantees while still
providing a high quality service. Our approach requires three
modifications to the standard LBS architecture:

1) The mechanism described in Section IV should be
implemented on the client application in order to report
to the LBS server party the user’s approximate location
z rather than his real location x.

2) Due to the fact that the information retrieved from
the server is about POI nearby z, the area of POI
information retrieval should be increased. In this way, if



Figure 9. Retrieval information situation for private LBS

the user wishes to obtain information about POI within,
say, 300 meters of x, the client application should
request information about POI within, say, 1 km of z.
This situation is depicted in Figure 9 for our running
example. The user’s current location x is at café Les
Deux Magots and the reported approximate location
z submitted by the client application is at about 600
meters from x. We will refer to the circle centered at x
with 300 meters radius as area of interest (of the user)
and to the circle centered at z with 1 km radius as area
of retrieval.

3) Finally, the client application should filter the retrieved
POI information (depicted by the pins within the area
of retrieval in Figure 9) in order to provide to the user
with the desired information (depicted by pins within
the user’s area of interest in Figure 9).

The resulting client-server communication is shown in
Figure 10.

Figure 10. LBS architecture

Clearly, for our approach it is crucial that the area of
interest is fully contained in the area of retrieval (otherwise
the information expected by the user might not be fully
retrieved from the server). However, the latter depends on
a randomly generated location, hence such condition cannot
be guaranteed (at least not with probability 1). Note that
the client application could dynamically adjust the area of
retrieval in order to ensure that it always contains the area
of interest. However, this approach would jeopardize the
privacy guarantees: on the one hand, the size of the area of
retrieval would leak information about the user’s real loca-
tion and, on the other hand, the LBS provider would know
with certainty that the user is located within the retrieval
area. Therefore, in order to provide geo-indistinguishability
in this setting, the area of retrieval should be defined

independently from the randomly generated location.
Our approach consists on statically defining the area of

retrieval as a function of the security parameters (` and
r) and of the area of interest. Our goal is to define an
area of retrieval as small as possible (in order to avoid
retrieving unnecessary information and, consequently, un-
necessary bandwidth usage) in a way that the area of interest
is contained in it with probability as high as possible. Since
such goal highly depends on the accuracy of the mechanism
generating the approximate location (ie, on how close the
generated location and the real location are to each other)
before presenting our solution we need to introduce the
notion of accuracy for data sanitation mechanisms.

C. Accuracy for location perturbation mechanisms

As it is standard for privacy enhancing mechanisms based
on data perturbation (eg, the Laplacian mechanism providing
standard differential privacy [21]), the aim of our mechanism
is to provide accurate (location) information in a private way
(ie, while satisfying geo-indistingushability).

In order to evaluate the accuracy of our mechanism, we
will use a well-known concept from the literature (adapted
to our location setting) that aims at assessing the accuracy
of the (approximate) information generated by a mechanism,
(α, δ)-usefulness [19]:

A location perturbation mechanism K is (α, δ)-useful if
for every location x, with probability at least 1 − δ, the
reported location z = K(x) satisfies

d(x, z) ≤ α.

Therefore, a (α,δ)-useful mechanism generates approxi-
mate locations z within distance α of the exact location x
with probability at least 1− δ. Figure 11 illustrates how our
mechanism behaves with respect to (α,δ)-usefulness when
providing ε-geo-indistinguishability for r = 0.2 (as in our
running example) and several values of `.

Figure 11. (α, δ)-usefulness for r = 0.2 and various values of `.

It follows from the information in Figure 11, that a
mechanism providing the privacy guarantees specified in our
running example (ε-geo-indistinguishability, with `= ln(4)
and r = 0.2) generates an approximate location z falling
within 1 km of the user’s location x with probability 0.99,
falling within 690 meters with probability 0.95, falling



within 560 meters with probability 0.9, and falling within
390 meters with probability 0.75.

We now have all the necessary ingredients to define an
area of retrieval containing the area of interest with a given
probability. Note that an area of retrieval with radius, say,
rA contains the area of interest with radius say, rI , with
probability at least 1− δ if the mechanism used to generate
the reported location is (α,δ)-useful, for an α ≤ rA − rI .

Therefore, by setting rA to 1 km in our running example
and since our mechanism is (0.69, 0.05)-useful, it is guaran-
teed that the retrieval area contains the area of interest with
probability at least 0.95.

D. Further challenges: using a LBS multiple times

After describing how to provide geo-indistinguishability
guarantees to users querying a LBS application a single time,
we now discuss how to extend our solution to the case in
which users wish to perform multiple queries.

In this scenario, the mechanism should protect multiple
locations rather than one. But, what does it mean to enjoy
privacy for multiple locations? As discussed in Section III-E,
geo-indistinguishability can be naturally extended to this
scenario. In short, the idea of being `-private within r
remains the same but for all locations simultaneously. In this
way the locations, say, x1, x2 of a user employing the LBS
twice remain indistinguishable from all pair of locations at
(point-wise) distance at most r (ie, from all pairs x′1, x′2
such that d(x1, x

′
1) ≤ r and d(x2, x

′
2) ≤ r).

A simple way of obtaining geo-indistinguishaility guar-
antees when performing multiple queries is to employ the
our technique for protecting single locations to indepen-
dently generate approximate locations for each of the user’s
locations. In this way, a user performing n queries via a
mechanism providing ε-geo-indistinguishability enjoys nε-
geo-indistinguishability (see Theorem 3.2).

This solution might result satisfactory when the number of
queries to perform remains fairly low, but, due to the privacy
degradation, impractical otherwise. It is worth noting that
the canonical technique for achieving standard differential
privacy (based on adding noise according to the Laplace
distribution) suffers of the same privacy degradation prob-
lem (query composition degrades privacy linearly on the
number of queries). Several articles in the literature focus
on this problem (see [20] for instance). We believe that the
principles and techniques used to deal with this problem for
standard differential privacy could be adapted to our scenario
(either directly or motivationally). A fruitful direction to
explore, in our particular scenario, is to employ the location
history of the user together with the corresponding locations
reported to the LBS provider (ie, (x, z) pairs) to “adjust”
the way approximate locations are generated (eg, report z
whenever the user’s location x′ is nearby a location x that
the mechanism has previously reported as z). This challenge
constitutes our main focus for future work.

VI. SANITIZING DATASETS: US CENSUS CASE STUDY

In this section we present a sanitation algorithm for
datasets containing geographical information. Roughly
speaking, the algorithm iteratively sanitizes each of the
geographic sensitive values in the dataset by means of the
perturbation technique presented in Section IV.

A. The LODES dataset

We consider a realistic case study involving publicly
available data developed by the U.S Census Bureau’s Lon-
gitudinal Employer-Household Dynamics Program (LEHD).
These data, called LEHD Origin-Destination Employment
Statistics (LODES), are used by OnTheMap, a web-based
interactive application developed by the US Census Bureau.
The application enables, among other features, visualization
of geographical information involving the residence and
working location of US residents.

The LODES dataset includes information of the form
(hBlock, wBlock), where each pair represents a worker, the
attribute hBlock is the census block in which the worker
lives, and wBlock is the census block where the worker
works. From this dataset it is possible to derive, by mapping
home and work census blocks into their corresponding geo-
graphic centroids, a dataset with geographic information of
the form (hCoord , wCoord), where each of the coordinate
pairs corresponds to a census block pair.

Due to privacy constraints and legal issues, data involving
the residence location of individuals cannot be released
without previous sanitation; thus, the LODES dataset is a
sanitized version of the real data. However, for illustration
purposes and wlog, in the remaining of this section we will
treat the LODES dataset as if it were the real data. The
Census Bureau uses a synthetic data generation algorithm
[26], [12] to sanitize the LODES dataset. Roughly speaking,
the algorithm interprets the dataset as an histogram where
each (hBlock, wBlock) pair is represented by a histogram
bucket, the synthetic data generation algorithm sanitizes data
by modifying the counts of the histogram. For that purpose,
a statistical model is built from the LODES dataset and then
a sanitized counterpart is obtained by sampling points from
the model.

In the following we present a sanitizing algorithm for
datasets with geographical information (eg, the LODES
dataset) that provides formal privacy guarantees. In partic-
ular, our algorithm provides geo-indistinguishability guar-
antees under the assumption that the home census blocks
values in the dataset are uncorrelated (see the discussion
about uncorrelated points in Section III-E). Although this
assumption weakens the privacy guarantees provided by geo-
indistringuishability, we believe that due to the anonymizing
techniques applied by the Census Bureau to the released
data involving census participants’ information and to the
large number of (hCoord, work coord) pairs within small



areas contained in the dataset, a practical attack based on
correlation of points results highly improbable.

B. The Sanitizing Algorithm
The algorithm, illustrated in Figure 12, takes as input (1)

a dataset D to sanitize, (2) the privacy parameters ` and r
(see Section III), and (3) the precision parameters u, δr and
δθ (see Section IV-B). The output of the algorithm is the
sanitized counterpart of D. The algorithm is guaranteed to
provide `

r -geo-indistinguishability to the home coordinates
of all individuals in the dataset (see discussion on protecting
multiple locations in Section III-E).

In order to sanitize D, our algorithm first determines the
level of protection ε′ needed in order to guarantee ε = /̀r
protection (see Theorem 4.1), and the acceptable region A
(see Section IV-C). We assume that A contains all the home
locations in D and has a diameter not larger than rmax =
u/δθ. Then for each (ch, cw) ∈ D, a radius ρ and an angle
θ are drawn following the method in Figure 5. The noise
(ρ, θ) is then used to generate a sanitized home coordinate
c′h on the reference system (see Section IV-B). Next, a test
verification is performed in order to guarantee that c′h lies
in A and, in case it does not, c′h is remapped to the closest
point in A (see Section IV-C). Finally, the new sanitized pair
(c′h, cw) is added to the output dataset D′.

Sanitizing Algorithm
Input: D : hCoord× wCoord / / dataset to sanitize

`, r / / privacy parameters
u, δr , δθ / / precision parameters

Output: Sanitized version D′ of input D
1. D′ = ∅; / / initializing output dataset
2. ε′ = safe ε(`, r, u, δr); / / Theorem 4.1
3. A = acceptRegion(u, δθ); / / acceptable report points
4. for each (ch, cw) ∈ D do
5. Draw radius ρ ∼ gamma(2, 1/ε′);
6. Draw angle θ ∼ Uniform(2π);
7. c′h = destinationPt(ch, ρ, θ); / / sanitized point
8. if c′h 6∈A then c′h=closestP t(A, ch, ρ, θ); / / truncate
9. D′ = D′ ∪ {(c′h, cw)}; / / adding sanitized point
10. end-for
11. return D′;

Figure 12. Our sanitizing algorithm, based on data perturbation

We note that, in contrast to the approach used by the
Census Bureau based on histogram’s count perturbation, our
algorithm modifies the geographical data itself (residence
coordinates in this case). Therefore, our algorithm works
at a more refined level than the synthetic data generation
algorithm used by the Census Bureau; a less refined dataset
can be easily obtained however – by just remapping each
(hCoord, wCoord) pair produced by our algorithm to its
corresponding census block representation.

C. Experiments
In order to evaluate the accuracy of the sanitized dataset

generated by our algorithm (and thus of our algorithm as a

data sanitizer) we have conducted a series of experiments
focusing on the “home-work commute distance” analysis
provided by the OnTheMap application. This analysis pro-
vides, for a given area (specified as, say, state or county
code), a histogram classifying the individuals in the dataset
residing in the given area according to the distance between
their residence location and their work location. The gener-
ated histogram contains four buckets representing different
ranges of distance: (1) from zero to ten miles, (2) from ten
to twenty five miles, (3) from twenty five to fifty miles, and
(4) more than fifty miles.

We have chosen the San Francisco (SF) County as resi-
dence area for our experimental analysis. Additionally, we
restrict the work location of individuals residing in the
San Francisco county to the state of California. The total
number of individuals satisfying these conditions amounts to
374.390. All experiments have been carried on using version
6.0 of the LODES dataset. In addition, the mapping from
census blocks to their corresponding centroids has been done
using the 2011 TIGER census block shapefile information
provided by the Census Bureau.

We now proceed to compare the LODES dataset – seen as
a histogram – with several sanitised versions of it generated
by our algorithm. Figure 13 depicts how the geographical
information degrades when fixing r to 1.22 miles (so to
ensure geo-indistinguishability within 10% of the land area
of the SF County) and varying `. The precision parameters
were chosen as follows: u = 10−3 miles, A’s diameter was
set to 104 miles, and the standard double precision values
for δr and δθ (for the corresponding ranges).
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Figure 13. Home-work commute distance for r= 1.22 and various `.

We have also conducted experiments varying r and
fixing `. For instance, if we want to provide geo-
indistinguishability for 5%, 10%, and 25% of the land area
of the SF county (approx. 46.87 mi2), we can set r=0.86,
1.22, and 1.93 miles, respectively. Then by taking ` = ln(2)
we get an histogram very similar to the previous one. This
is not surprising as the noise generated by our algorithm
depends only on the ratios /̀r, which are similar for the
values above.

As shown in Figure 13, our algorithm has little effect



on the bucket counts corresponding to mid/long distance
commutes: over twenty five miles the counts of the sanitized
dataset are almost identical to those of the input dataset –
even for the higher degrees of privacy. For short commutes
on the other hand, the increase in privacy degrades the
accuracy of the sanitized dataset: several of the commutes
that fall in the 0-to-10-miles bucket in the original data fall
instead in the 10-to-25-miles bucket in the sanitized data.

After analysing the accuracy of the sanitized datasets
produced by our algorithm for several levels of privacy,
we proceed to compare our approach with the one followed
by the Census Bureau to sanitize the LODES dataset. Such
comparison is unfortunately not straightforward, on the one
hand, the approaches provide different privacy guarantees
(see discussion below) and, on the other hand, the Census
Bureau is not able to provide us with a (sanitized) dataset
sample produced by their algorithm (which would allow us
to compare both approaches in terms of accuracy) as this
might compromise the protection of the real data.

The algorithm used by the Census Bureau satisfies a
notion of privacy that called (ε, δ)-probabilistic differen-
tial privacy, which is a relaxation of standard differential
privacy that provides ε-differential privacy with probability
at least 1 − δ [12]. In particular, their algorithm satisfies
(8.6, 0.00001)-probabilistic differential privacy. This level
of privacy could be compared to geo-indistinguishability
for ` = 8.6 and r = 3.86, which corresponds to providing
protection in an area of the size of the SF County. Figure
14 presents the results of our algorithm for such level of
privacy and also for higher levels.
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Figure 14. Home-work commute distance for r= 3.86, corresponding to
the San Francisco county land area, and various (high) values of `..

It becomes clear that, by allowing high values for `
(` = 8.6 = ln(5432), ` = 4.3 = ln(74), and ` = 2.15 =
ln(9)) it is possible to provide privacy in large areas without
significantly diminishing the quality of the sanitized dataset.

VII. RELATED WORK

Much of the related work has been already discussed in
Section II, here we only mention the works that were not
reported there. We refer to [1] for an excellent survey on
privacy methods for geolocation.

LISA [27] provides location privacy by preventing an
attacker from relating any particular point of interest (POI)
to the user’s location. That way, the attacker cannot infer
which POI the user will visit next. The privacy metric used
in this work is m-unobservability. The method achieves m-
unobservability if, with high probability, the attacker cannot
relate the estimated location to at least m different POIs in
the proximity.

SpaceTwist [28] reports a fake location (called the “an-
chor”) and queries the geolocation system server incremen-
tally for the nearest neighbors of this fake location until the
k-nearest neighbors of the real location are obtained.

There are also some works whose main goal is to provide
accurate results for data mining algorithms while preserving
location privacy of the user. Gidofalvi et al. [29] use grid-
based anonymization, although the privacy guarantees are
mainly experimental. The method of Ho and Ruan [13]
use quadtree spatial decomposition, and the concept of
differential privacy [11] to develop a privacy preserving
location pattern mining algorithm.

VIII. CONCLUSION AND FUTURE WORK

In this paper we have presented a framework for achieving
privacy in location-based applications, taking into account
the desired level of protection as well as the side-information
that the attacker might have. The core of our proposal is a
new notion of privacy, that we call geo-indistinguishability,
and a method, based on a bivariate version of the Laplace
function, to perturbate the actual location. We have put
a strong emphasis in the formal treatment of the privacy
guarantees, both in giving a rigorous definition of geo-
indistinguishability, and in providing a mathematical proof
that our method satisfies such property. We also have shown
how geo-indistinguishability relates to the popular notion of
differential privacy. Finally, we have illustrated the applica-
bility of our method with two case studies: interaction with a
POI-retrieval service, and sanitization of the LODES dataset.

In the future we aim at extending our method to cope with
more complex applications, possibly involving the sanitiza-
tion of several (potentially related) locations. One important
aspect to consider when generating noise on several data
is the fact that their correlation may degrade the level of
protection. We aim at devising techniques to control the
possible loss of privacy and to allow the composability of
our method.

TO-DO LIST

• For future work include discussion about sensible no-
tions of utility for Location-Based Systems

• For future work mention the possibility of generating
noise for multime locations at once (useful for the case
of correlated points)

• check for consistency when refereing to side informa-
tion (side knowledge , auxiliary knowledge, etc)



• The beginning of Section 2 should be shrinked or
completely removed.

• When possible use “location” rather than “point”
• “small” vs “low” in section 3
• Remember to spell check the document before submit-

ting
• Note on the metric (we discuss the euclidean, but we

could also use manhattan distance)
• Maybe merge histograms in section 6 into a single

figure in case we need to gain space
• Make sure that our running example is consistent

throughput the paper
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APPENDIX

In this appendix we provide the technical details that have
been omitted from the main body of the paper.

A. Results from Section III

Proof of Theorem 3.1: The equivalence of Geo-
indistinguishability-I and III can be shown by applying
Bayes’ law. We show here the equivalence between Geo-
indistinguishability-II and III.

Assume that K satisfies geo-indistinguishability-III. We
first show that for all r > 0:

P (S|Br(x))

=
∑
x′∈X

P (S, x′|Br(x))

=
∑

x′∈Br(x)

P (S, x′|Br(x))

=
∑

x′∈Br(x)

PX(x′|Br(x))K(x′)(S)

≥
∑

x′∈Br(x)

PX(x′|Br(x))e−ε rK(x)(S) d(x, x′) ≤ r

= e−ε rK(x)(S)

Then

P (x|S,Br(x)) =
P (S|x)

P (S|Br(x))
P (x|Br(x)) ≤ eε rP (x|Br(x))

For the opposite direction, let x, x′ ∈ X , let r = d(x, x′)
and define a prior distribution PXt(x) as PXt(x) = t,
PXt(x

′) = 1 − t and PXt(x) = 0 for x 6= x, x′. Using
that prior for t ∈ (0, 1) we have for all S:

K(x)(S) = P (S|x)

= P (S|x,Br(x)) x ∈ Br(x)

=
P (x|S,Br(x))

P (x|Br(x))
P (S|Br(x))

≤ eε rP (S|Br(x))

≤ eε r
∑
x∈X

P (S, x|Br(x))

≤ eε r(tP (S|x) + (1− t)P (S|x′))
≤ eε r(tK(x)(S) + (1− t)K(x′)(S))

Note that we need t ∈ (0, 1) so that PXt(x), PXt(x
′) are

positive and the conditional probabilities can be defined.
Finally, taking the limt→0 on both sides of the above
inequality we get K(x)(S) ≤ eε rK(x′)(S).

Proof of Theorem 3.2: Let x = (x1, . . . , xn),x′ =
(x′1, . . . , x

′
n) such that d∞(x,x′) ≤ r. This implies that

d(xi, x
′
i) ≤ r, 1 ≤ i ≤ n. We have:

P (z|x) =
∏
i P (zi|xi)

≤
∏
i e
εirP (zi|x′i)

= er
∑
i εi

∏
i P (zi|x′i)

= eεrP (z|x′)

B. The planar laplacian satisfies geo-indistinguishability

Given the definition of Dε(x0)(x) in (2), by triangular
inequality we have

Dε(x0)(x) ≤ eε d(x0,x
′
0)Dε(x

′
0)(x)



Figure 15. Bounding the probability of x in the discrete Laplacian.

Using well-known properties of integrals, we derive∫
S

Dε(x0)(x)ds ≤
∫
S

eε d(x0,x
′
0)Dε(x

′
0)(x)ds

and ∫
S

Dε(x0)(x)ds ≤ eε d(x0,x
′
0)

∫
S

Dε(x
′
0)(x)ds

Now, taking into account the definition of K:

K(x0)(S) =

∫
S

Dε(x0)(x)ds

we derive

K(x0)(S) ≤ eε d(x0,x
′
0)K(x′0)(S)

C. The discretization preserves geo-indistinguishability

Proof of Theorem 4.1: We proceed by determining an
upper bound and a lover bound on K(x0)(x) for generic
x0 and x. Let S = R(x). Ideally, the points remapped in
x would be exactly those in S. However, due to the finite
precision of the machine, the points remapped in x are those
of RW(x). Hence the probability of x is that of S plus
or minus the small rectlangles5 W of size δr × r δθ at the
border of S, see Figure 15. Let us denote by SW the total
area of these small rectangles W . Since the total perimeter
of S is 2us + 2ut ≤ 4u, we have that SW ≤ 4u δr. The
probability density on this area is at most (ε

2
/2π)e−ε(r−u/

√
2),

where r = d(x0, x). Summarizing:∫
S

Dε(x0)(x1)ds−P (r) ≤ K(x0)(x) ≤
∫
S

Dε(x0)(x1)ds+P (r)

(4)
where P (r) = 4u δr(ε

2
/2π)e−ε(r−u/

√
2). Observe now that

Dε(x0)(x1)

Dε(x′0)(x1)
= e−ε(d(x0,x1)−d(x′0,x1))

By triangular inequality we obtain

Dε(x0)(x1) ≤ eε d(x0,x
′
0)Dε(x

′
0)(x1)

from which we derive∫
S

Dε(x0)(x1)ds ≤ eε d(x0,x
′
0)

∫
S

Dε(x
′
0)(x1)ds

5W is actually a fragment of a circular crown, but when δθ is very small,
it approximates a rectangle.

from which, using (4), we obtain

K(x0)(x) ≤ eε d(x0,x
′
0)(K(x′0)(x) + P (r′)) + P (r) (5)

where r′ = d(x′0, x). Finally, for d(x′0, x) ≤ rmax we have:

eε d(x0,x
′
0)(K(x′0)(x)+P (r′))+P (r) ≤ eε

′ d(x0,x
′
0)K(x′0)(x),

which, together with (5), concludes the proof.

D. The truncation preserves geo-indistinguishability

Proof of Theorem 4.2: The proof proceeds like the one
for Theorem 4.1, except when R(x) is on the border of A.
In this latter case, the probability on x is given not only by
the probability on R(x) \ SW , but also by the probability
of the part C of the cone determined by o, R(x), and lying
outside A (see Figure ??). Following a similar reasoning as
in the proof of Theorem 4.1 we get∫

S∪C
Dε(x0)(x1)ds− P ′(r) ≤ KT (x0)(x)

and

KT (x0)(x) ≤
∫
S∪C

Dε(x0)(x1)ds+ P ′(r)

where P ′(r) = 2u δr(ε
2
/2π)e−ε(r−u/

√
2). The rest follows as

in the proof of Theorem 4.1.


