Expressiveness of Recursion, Replication and
Scope Mechanisms in Process Calculi

Catuscia Palamidessi
INRIA Futurs and LIX, Ecole Polytechnique
catuscia@lix.polytechnique.fr

Frank D. Valencia
CNRS and LIX, Ecole Polytechnique
fvalenci@lix.polytechnnique.fr

Process calculi such as CCS [Mil89], the m-calculus [MPW92] and Ambi-
ents [CGO0] are among the most influential formal methods for modelling and
analyzing the behaviour of concurrent systems; i.e. systems consisting of mul-
tiple computing agents, usually called processes, that interact with each other.
A common feature of these calculi is that they treat processes much like the
A-calculus treats computable functions. They provide a language in which the
structure of terms represents the structure of processes together with an oper-
ational semantics to represent computational steps.

For example, a typical process term is the parallel composition P | Q, which
is built from the terms P and @ with the constructor | and it represents
the process that results from the parallel execution of the processes P and Q.
Another typical term is the restriction (vx)P which represents a process P
with a private resource z—e.g., a location, a link, or a name. An operational
semantics may dictate that if P can reduce to (or evolve into) P’ written P —
P’, then we can also have the reductions P | @ — P’ | Q and (vz)P —
(va)P'.

Infinite behaviour is ubiquitous in concurrent systems (e.g., browsers, search
engines, reservation systems). Hence, it ought to be represented by process
terms. Two standard term representations of them are recursive process expres-
sions and replication.

Recursive process expressions are reminiscent of the recursive expressions
used in other areas of computer science, such as for example Functional Pro-
gramming. They may come in the form pX.P where P may have occurrences of
X. The process uX.P behaves as P with the (free) occurrences of X replaced
by uX.P. Another presentation of recursion is by using parametric processes of
the form A(y,...,y,) each assumed to have a unique, possibly recursive, defi-

nition A(x1,...,x,) 4 P where the x;’s are pairwise distinct, and the intuition
is that A(yi,...,yn) behaves as its P with each y; replacing z;.

Replication, syntactically simpler than recursion, takes the form !P and it
is reminiscent of Girard’s bang operator; an operator used to express unlim-
ited number of copies of a given resource in linear-logic. Intuitively, !P means
P | P | ---; an unbounded number of copies of the process P.

Now, it is not uncommon that a given process calculus, originally presented
with one form of defining infinite behavior, is later presented with the other.
For example, the m-calculus was originally presented with recursive expressions
and later with replication. The Ambient calculus was originally presented with
replication and later with recursion. This is reasonable as a variant may simplify
the presentation of the calculus or be tailored to specific applications.

From the above intuitive description it should be easy to see that uX.(P | X)
expresses the unbounded parallel behaviour of !P. It is less clear, however,
whether replication can be used to express the unbounded behaviour of uX.P.
In particular, processes that allow for unboundedly many nested scopes for a
name, as, for example, in uX.(vz)(P | X) which behaves as (vz)(P | (vz)(P | (vz)(P | ---))).
In fact, the ability of expressing recursive behaviours via replication depends on
the particular process calculus under consideration.

In this paper, we shall focus on the case of CCS, the w-calculus, the Ambient
calculus, timed concurrent constraint programming (tccp, [NPV02a]) and some
calculi for Cryptographic Protocols.

One of the most interesting results that we will recall in our survey is the
gap in expressive power between recursion and replication in calculi like CCS
[BGZ03] and tccp [NPVO02b]. This may look surprising to those acquainted
with the m-calculus where this gap does not arise (indeed, in the m-calculus
recursion is a derived operation). Our interpretation of this difference is that
the link mobility of the w-calculus is a powerful mechanism which makes up for
the weakness of replication.

Another surprising result is that if we redefine the recursion rule in CCS
so to handle the scope statically, then the above nesting of scope cannot be
produced, and recursion loses its additional expressive power [GSV04].

The bottomline message of our survey is that the ability of expressing re-
cursive behaviours via replication in a given process calculus depends on the
mechanisms of the calculus to compensate for the restriction of replication as
well as on how the scope is managed.

References

[BGZ03] N. Busi, M. Gabbrielli, and G. Zavattaro. Replication vs. recursive
definition in Channel Based Calculi. In Proc. of ICALP 03, LNCS.
Springer-Verlag, 2003.

[CGO0] Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical
Computer Science (TCS), 240(1):177-213, 2000.

[GSV04] Pablo Giambiagi, Gerardo Schneider, and Frank D. Valencia. On the
expressiveness of infinite behavior and name scoping in process cal-

[Mil89]

[MPW92]

[NPV02a]

[NPV02b]

culi. In Tgor Walukiewicz, editor, Proceedings of the 7th International
Conference on the Foundations of Software Science and Computation
Structures (FOSSACS 2004), volume 2987 of Lecture Notes in Com-
puter Science, pages 226—240. Springer, 2004.

R. Milner. Communication and Concurrency. International Series in
Computer Science. Prentice Hall, 1989.

Robin Milner, Joachim Parrow, and David Walker. A calculus of mo-
bile processes, I and II. Information and Computation, 100(1):1-40
& 41-77,1992. A preliminary version appeared as Technical Reports
ECF-LF(CS-89-85 and -86, University of Edinburgh, 1989.

M. Nielsen, C. Palamidessi, and F. Valencia. @ Temporal con-
current constraint programming: Denotation, logic and ap-
plications. Nordic Journal of Computing, 9:145-188, 2002.
http://www lix.polytechnique.fr/ catuscia/papers/Ntcc/njc02.ps.

Mogens Nielsen, Catuscia Palamidessi, and Frank D. Valencia.
On the expressive power of temporal concurrent constraint pro-
gramming languages. In Proceedings of the Fourth ACM SIG-
PLAN Conference on Principles and Practice of Declarative Pro-
gramming, pages 156-167, New York, October 6-8 2002. ACM Press.
http://www lix.polytechnique.fr/ catuscia/papers/ppdp02.ps.

