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Camerino, Italy

F. Corradini

Dipartimento di Matematica e Informatica, Università degli Studi di Camerino,
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1 Introduction

In recent years, the asynchronous communication paradigm has become more
and more popular in the process calculi community. Reasons include the facts
that it is easy to implement in a distributed system and that it naturally
represents the basic communication mechanism of most Internet and Web
applications.

One of the most popular asynchronous calculi is probably the asynchronous
π-calculus [17,4]. This is a proper subset of the π-calculus [20], the main dif-
ferences being the absence of the output prefix and of the choice operator. It is
in particular the (absence of) output prefix which is relevant for synchrony. In
fact, this construct allows us to express directly that when a process performs
an output it suspends until the partner performs the complementary input.

Naturally, the relation between the expressive power of the two calculi has
attracted the attention of many researchers. Since the π-calculus contains the
asynchronous π-calculus, it is obviously at least as expressive. As for the other
direction, the third author has shown a separation result, based on the fact
that the choice operator, in combination with synchronous communication,
allows us to solve certain problems of distributed agreement that cannot be
solved with the asynchronous π-calculus [24].

If we consider the choiceless π-calculus, however, things are quite different.
The result in [24] does not say anything concerning the presence/absence of
output prefix alone. As a matter of fact, Honda and Tokoro [17], and indepen-
dently Boudol [4], have proposed (different) encodings of the output prefix in
the asynchronous π-calculus, thus justifying the claim that synchronous com-
munication can be “implemented” via asynchronous communication. In both
cases the idea is to represent a synchronization via a sequence of asynchronous
steps executing a “mutual inclusion” protocol, which involves an exchange of
acknowledgment messages. Both encodings are compositional w.r.t. input and
output prefixes and homomorphic w.r.t. all other operators. Denoting by [[ ]]
both the encoding proposed by Boudol and that one proposed by Honda and
Tokoro, the former maps input and output prefixes according to the rules in
Table 2, while the latter maps them according to the rules in Table 1. We give
the intuition behind the rules in Table 2, the ones in Table 1 can be explained
similarly.

Suppose that we wish to build a system behaving like (x̄z.S | x(y).R). In the
asynchronous calculus the sending process would be written (x̄z | S), but we
have to prevent the subprocess S from being active until the message x̄z has
been actually received. Then an idea is to guard the process S by the reception
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[[x(y).P ]] = (νv)(x̄v | v(y).[[P ]])

[[x̄z.P ]] = x(v).(v̄z | [[P ]])

where v is a fresh name.

Table 1
Input-Output Rules of Honda and Tokoro’s Encoding.

[[x(y).P ]] = x(u).(νv)(ūv | v(y).[[P ]])

[[x̄z.P ]] = (νu)(x̄u | u(v).(v̄z | [[P ]]))

where u, v 6∈ fn(P ).

Table 2
Input-Output Rules of Boudol’s Encoding.

of an acknowledgment, that is an explicit continuation, writing the sender as:

S ′ = (x̄z | u(v).S)

assuming that v is not free in S.

Symmetrically, the receiver would send the acknowledgment just after having
received z along x, that is:

R′ = x(y).(ūv |R)

assuming that u is not free in R.

Unfortunately, we cannot apply this simple transformation independently from
the context, since in this synchronization protocol there is no particular rela-
tion linking the communication channel x with the synchronization channel
u. This last name should be known only by the sender and the receiver, while
here it can be used also by the environment to interfere with the communica-
tion between S ′ and R′ (for instance, S ′ may accept a message on u from the
environment).
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To achieve an interference-free synchronization, we have to use a more elabo-
rate protocol, in which the sender and the receiver first exchange private links
before performing the actual communication. The key observation is that, due
to the restriction operator, in a sender like

(νu)(x̄u | u(v).(v̄z | S))

the subprocess u(v).(v̄z | S) can not proceed unless the message x̄u has been
received by some other process and such process has sent the acknowledgment
ūv. Moreover, the channel name u, being a private name of the sender, can
only be used between the sender and the receiver.

Later, in [23] Nestmann has shown that even separate choice can be encoded in
the asynchronous π-calculus. This is a stronger result than the ones by Honda-
Tokoro and Boudol, as separate choice refers to a construct of guarded choice
where the guards can be either input or output prefixes (but not together).

The above encodings significantly contributed to the popularity of the asyn-
chronous π-calculus, but only some weak correctness results were provided
for them: Boudol proved, for his encoding, the soundness w.r.t. the Morris’
preorder [4]. Nestmann proved that his encoding was both deadlock-free and
divergence-free [23].

In this paper we consider a semantics that, in our view, is rather “natural” as
a basis for comparing expressiveness of languages: De Nicola and Hennessy’s
testing semantics [14,15,1,2,12]. Our choice is motivated by the fact that, in
this semantics, two processes are considered equivalent when they give the
same results under the same experiments. Experiments that, according to the
concurrent framework, consist of interactions with a given test-process.

Our main result is that none of the above encodings preserves De Nicola
and Hennessy’s testing semantics. More precisely, if P and Q are π-calculus
processes, [[·]] is one of the mappings mentioned above, andR is the equivalence
generated by the testing semantics, then

P RQ if and only if [[P ]]R [[Q]] (1)

does not hold in general.

In order to better explain our contribution, let us briefly recall some concepts
behind De Nicola and Hennessy’s testing semantics. Let us assume a set of test
environments, namely processes with the ability to perform a special action
to report success. A process P is embedded into a test environment o via
parallel composition. Then, we say that P may o if there exists a successful
computation of P and o, P must o if every computation of P and o is successful
and P fair o (proposed in [6,22,2]) if each state of every computation of P
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and o leads to success after finitely many interactions. Each criterion induces

a preorder relation over processes: for any process P and Q, P vOsat Q if and
only if for each test o ∈ O, P sat o implies Q sat o, where sat stands for may,
must or fair.

The first two authors started to investigate the properties of Boudol’s encod-
ing w.r.t. various testing theories in [8]. They were particularly interested in
establishing conditions on [[·]] and on R so that (1) would hold. They realized
however that the only-if part of (1) cannot hold for testing theories for the
reason that the encoded processes are a strict subset of the asynchronous π-
calculus. Thus testing a process [[P ]] with a test which is not the coding of any
process in the π-calculus means testing [[P ]] over a set of tests which is “more
powerful” than that of P. In fact, a test which is not the result of an encoding
in general does not follow the “rules of the game” w.r.t. the communication
protocol, and can interact with it in odd ways.

In [8] the first two authors proposed a refinement of the testing theories by con-
sidering only encoded tests on the right hand side, and proved that Boudol’s
encoding [[·]] satisfies the following:

(i) P vO
may Q iff [[P ]] v[[O]]

may [[Q]];

(ii) P vO
fair Q iff [[P ]] v[[O]]

fair [[Q]].

In fact, the authors of [8] proved the following stronger result

P sat o iff [[P ]] sat [[o]]

where sat is either may or fair.

In this paper we investigate the must preorder. We focus on the condition that
would imply the must version of Properties (i) and (ii), that is:

P must o iff [[P ]] must [[o]]

We call this condition preservation of must testing.

We consider general encodings [[·]] of the (choiceless) π-calculus into the asyn-
chronous π-calculus. We prove that, under some general conditions, namely
compositionality w.r.t. prefixes and existence of a diverging encoded term, [[·]]
cannot preserve must testing. Note that all the encodings mentioned above,
by Boudol, by Honda and Tokoro, and by Nestmann, satisfy these conditions.

The source of the problem is that an (atomic) synchronous communication
between a sender and a receiver can be simulated in the asynchronous world
but there is no way to guarantee that the sender and the receiver will be
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resumed (after communication) at the same time. More precisely, it could
be the case that when the sender is ready to proceed the receiver is still
engaged in some parts of the protocol, or vice versa. Therefore, there are
unfair computations in which one partner is never resumed, and a test based
on the interaction, after the communication, with that partner, would not
succeed. This is of course not a problem in the synchronous world where the
communication partners resume simultaneously.

The fact that our result holds for a general class of encodings points out, to
our opinion, an inherent shortcoming of asynchronous communication with
respect to synchronous communication. One can also argue that the result
points out an inherent shortcoming of the must testing. Must testing is indeed
based on the observation of an action indicating the success of the test. If this
action follows a communication action, when communication is asynchronous
the observation of the success can be delayed forever, even though the test has
been successful. This problem can be ruled out, though, by imposing some sort
of fairness. We will discuss this idea in Section 8. It is worth noting that our
result would not be valid under such a fairness assumption. One indication in
this sense is the result in [8], which proves the correctness of Boudol’s encoding
wrt fair must testing. However fair must testing does not coincide exactly with
must testing under a fairness assumption (see [11]) hence the correctness wrt
the latter notion is not implied by the result in [8].

The rest of the paper is organized as follows. Section 2 presents the π-calculus
and the asynchronous π-calculus. Section 3 formally defines the must testing.
Section 4 recalls some basic definitions about encodings. Section 5 proves our
main result and Section 6 investigates some consequences of it. All of the
proofs omitted in the body of the paper are in the appendix.

A preliminary version of this paper appeared in the proceedings of EXPRESS
2005 [10].
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2 The π-calculus and the asynchronous π-calculus

In this section we briefly recall the basic notions about the (choiceless) π-
calculus and the asynchronous π-calculus.

2.1 The pi-calculus

Let N (ranged over by x, y, z, . . . ) be a set of names. The set Ps (ranged over
by P, Q, R, . . . ) of π-calculus processes is generated by the following grammar:

P ::= 0 x(y).P τ.P x̄y.P P | P (νx)P ! P

The input prefix y(x).P , and the restriction (νx)P , act as name binders for
the name x in P . The free names fn(P ) and the bound names bn(P ) of P are
defined as usual. The set of names of P is defined as n(P ) = fn(P ) ∪ bn(P ).
P is closed if fn(P ) = ∅.

The operational semantics of processes is given via a labelled transition system,
whose states are the process themselves. The labels (ranged over by µ, γ, . . .)
“correspond” to prefixes, input xy, output x̄y and tau τ , and to the bounded
output x̄(y) (which models scope extrusion). If µ = xy or µ = x̄y or µ = x̄(y)
we define sub(µ) = x and obj(µ) = y. The functions fn, bn and n are extended
to cope with labels as follows:

bn(xy) = ∅ bn(x̄(y)) = {y} bn(x̄y) = ∅ bn(τ) = ∅

fn(xy) = {x, y} fn(x̄(y)) = {x} fn(x̄y) = {x, y} fn(τ) = ∅

The transition relation is given in Table 3. The symbol ≡ used in Rule Cong
stands for the structural congruence. This is the smallest congruence over the
set Ps induced by the axioms in Table 4.

Definition 2.1 (Weak transitions) Let P and Q be Ps processes. Then:

- P
ε

=⇒ Q if and only if there exist P0, P1, . . . , Pn ∈ Ps, n ≥ 0, such that

P = P0
τ−→ P1

τ−→ . . .
τ−→ Pn = Q ;

- P
µ

=⇒ Q if and only if there exist P1, P2 ∈ Ps such that

P
ε

=⇒ P1
µ−→ P2

ε
=⇒ Q .

Notation 2.1 Sometimes we write P
µ−→ (respectively P

µ
=⇒) to mean that

there exists P ′ such that P
µ−→ P ′ (respectively P

µ
=⇒ P ′) and we write
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Input x(y).P xz−→ P{z/y} where x, y, z ∈ N

Output/Tau α.P
α−→ P where α = x̄y or α = τ

Open
P

x̄y−→ P ′

(νy)P
x̄(y)−→ P ′

x 6= y Res
P

µ−→ P ′

(νy)P
µ−→ (νy)P ′

y 6∈ n(µ)

Par
P

µ−→ P ′

P |Q µ−→ P ′ |Q
bn(µ) ∩ fn(Q) = ∅

Com
P

xy−→ P ′, Q
x̄y−→ Q′

P |Q τ−→ P ′ |Q′
Close

P
xy−→ P ′, Q

x̄(y)−→ Q′

P |Q τ−→ (νy)(P ′ |Q′)

Bang
P

µ−→ P ′

!P
µ−→ P ′ | !P

Cong
P ≡ P ′ P ′ µ−→ Q′ Q′ ≡ Q

P
µ−→ Q

Table 3
Early operational semantics for Ps terms.

a1) P ≡ Q iff Q can be obtained from P by α-conversion

a2) (Ps/≡, | , 0) is a commutative monoid

a3) ((νx)P |Q) ≡ (νx)(P |Q), if x 6∈ fn(Q)

a4) (νx)P ≡ P, if x 6∈ fn(P )

a5) (νx)(νy)P ≡ (νy)(νx)P

Table 4
The structural congruence.

P
ε

=⇒ µ−→ to mean that there are P ′ and Q such that P
ε

=⇒ P ′ and P ′ µ−→ Q.
We say that P diverges, notation P ↑, if there exists an infinite sequence of τ
transitions starting from P , i.e. P

τ−→ P1
τ−→ . . . Pi

τ−→ Pi+1
τ−→ . . . for some

P1, . . . Pi, Pi+1, . . .. In the opposite case, i.e. such an infinite sequence does not
exist, we say that P converges, notation P ↓.
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2.2 The asynchronous π-calculus

The set Pa of the asynchronous π-calculus processes is generated by the fol-
lowing grammar:

P ::= 0 x(y).P τ.P x̄y P | P (νx)P ! P

The operational semantics of Pa is given by the rules in Table 3, with the rule
Output/Tau replaced by the rules Output and Tau in Table 5. The axioms
defining the structural congruence are the same as the ones in Table 4.

Output x̄y
x̄y−→ 0 Tau τ.P

τ−→ P

Table 5
The rules for Output and Tau in Pa.

The definitions and notation given in the synchronous setting are assumed
in the asynchronous one as well. Note that the asynchronous π-calculus is a
sub-set of the π-calculus. Indeed, the output-action process x̄y can be thought
as the special case of output prefix x̄y.0.

3 Must preorder

In this section we briefly summarize the basic definitions behind the testing
machinery for the π-calculi. In the following, P will denote either Ps or Pa.

Definition 3.1 (Observers)

- Let N ′ = N ∪ {ω} be the set of names, where we assume that ω 6∈ N . By
convention we let fn(ω) = {ω}, bn(ω) = ∅ and sub(ω) = ω. The action ω is
used to report success.

- The set O (ranged over by o, o′, o′′, . . .) of observers is defined like P , where
the grammar is extended with the production P ::= ω.P .

- The operational semantics of P terms is extended to O by adding the rule
ω.o

ω−→ o .

In the following we will use 〈P 〉 to denote some restricted version of P , i.e.
any process of the form (νx1)(νx2) . . . (νxn)P , for some x1, . . . , xn ∈ fn(P ).
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Definition 3.2 (Maximal computations) Given P ∈ P and o ∈ O, a maxi-
mal computation from P | o is either an infinite sequence of the form

P | o = P0 | o0
τ−→ 〈P1 | o1〉

τ−→ 〈P2 | o2〉
τ−→ . . .

or a finite sequence of the form

P | o = P0 | o0
τ−→ 〈P1 | o1〉

τ−→ . . .
τ−→ 〈Pn | on〉 6

τ−→ .

We are now ready to present the definition of must testing semantics.

Definition 3.3 (Must semantics) Given a process P ∈ P and an observer
o ∈ O, define P must o if and only if for every maximal computation

P | o = P0 | o0
τ−→ 〈P1 | o1〉

τ−→ . . . 〈Pn | on〉 [
τ−→ . . .]

there exists i ≥ 0 such that Pi | oi
ω−→.

Note that P must ω.o, for every P ∈ P and o ∈ O.

4 Encodings of the π-calculus into the asynchronous π-calculus

In this section we recall some notions about encodings. In general an encod-
ing is simply a syntactic transformation between languages. We will focus on
encodings of the π-calculus into the asynchronous π-calculus, and we will use
the notation [[·]] : Ps → Pa to represent one such transformation. In general a
“good” encoding satisfies some additional properties, but there is no agreement
on a general notion of “good” encoding. Perhaps indeed there should not be a
unique notion, but several, depending on the purpose. Anyway, in this paper
we focus on the most common requirements, which are the compositionality
w.r.t. certain operators, and the correctness w.r.t. a given semantics.

To describe compositionality we use contexts C[ ], which are terms in Pa with
one or more “holes” [ ]. Given P1, . . . , Pn ∈ Pa and a context C[ ] with n holes,
C[P1, . . . , Pn] denotes the term in Pa obtained by replacing the occurrences of
[ ] by P1, . . . , Pn respectively.

Definition 4.1 (Compositionality w.r.t. an operator) Let op be an n-ary op-
erator of Ps. We say that an encoding [[·]] is compositional w.r.t. op if and only
if there exists a context Cop[ ] in Pa such that

[[op(P1, . . . , Pn)]] = Cop[[[P1]], . . . , [[Pn]]].
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Note that a particular case of compositionality is the homomorphism, in which
an operator of the source language is mapped into an operator of the target
language, i.e. Cop[ ] = op′. Usually the homomorphism is required only for cer-
tain operators (typically, in distributed languages, it is required for the parallel
construct) while for the others we simply require a compositional translation.
However our main result (Theorem 5.1) states the non-existence of encodings
under very general conditions, namely no homomorphism is required, only
compositionality w.r.t. prefixes.

Concerning semantic correctness, we consider preservation of must testing:

Definition 4.2 (Soundness, completeness and must-preservation) Let [[·]] be
an encoding from Ps to Pa, We say that [[·]] is:

- sound w.r.t. must iff ∀ P ∈ Ps, ∀ o ∈ O, [[P ]] must [[o]] implies P must o;
- complete w.r.t.must iff ∀P ∈ Ps, ∀ o ∈ O, P must o implies [[P ]] must [[o]];
- must -preserving iff [[·]] is sound and complete w.r.t.must.

In the following, we will take into account an extended notion of encoding,
lifted on the observers. We assume that, given an encoding [[·]] from Ps to Pa,
its lifted version is an encoding from Os to Oa behaving as [[·]], i.e. prefixes
contexts do not contain ω. We will keep of using the notation [[·]] to represent
one such transformation.

5 Non existence of a must-preserving, input-output prefix compo-
sitional encoding

This section is the core of the paper. We prove a general negative result for
a large class of encodings of the π-calculus into the asynchronous π-calculus,
which includes the ones of Boudol, of Honda and Tokoro, and of Nestmann.
Our main result states that any encoding [[·]], that is compositional w.r.t. input
and output prefixes and produces at least one divergent term, cannot be must-
preserving. This negative result is a consequence of (a) the non atomicity of the
sequences of steps which are necessary to mimic synchronous communication,
and (b) testing semantics’s sensitivity to divergence. We remark that we need
very few hypotheses to obtain this impossibility result. In particular, we do not
require homomorphism, neither w.r.t. parallel operator, nor w.r.t. any other
operator.

First, we present the intuition behind this result, showing what happens when
[[·]] is Boudol’s encoding, Consider the Ps process P defined as P = āz. !τ.0,
and the observer o = a(y).ω.0. Then the only one maximal computation that
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P | o can perform is

P | o = āz. !τ.0 | a(y).ω.0
τ−→ !τ.0 | ω.0

τ−→ . . .
τ−→ 0 | 0 | . . . | !τ.0 | ω.0

τ−→ . . .

Of course P must o. Now, consider [[P | o]] = [[P ]] | [[o]] and note [[!τ.0]] =!τ.0.
Consider the following maximal computation:

[[P | o]] = [[āz. !τ.0]] | [[a(y).ω.0]] =

(νu)(āu | u(v).(v̄z | !τ.0)) | a(h).(νk)(h̄k | k(y).[[ω.0]]) ≡

(νu)(νk)(āu | u(v).(v̄z | !τ.0) | a(h).(h̄k | k(y).[[ω.0]]))
τ−→

(νu)(νk)(0 | u(v).(v̄z | !τ.0) | ūk | k(y).[[ω.0]])
τ−→

(νk)(k̄z | !τ.0 | k(y).[[ω.0]])
τ−→

(νk)(k̄z | 0 | !τ.0 | k(y).[[ω.0]])
τ−→

(νk)(k̄z | 0 | 0 | !τ.0 | k(y).[[ω.0]])
τ−→

. . . . . .
τ−→

(νk)(k̄z | 0 | 0 | . . . | 0 | !τ.0 | k(y).[[ω.0]])
τ−→

. . . . . .
τ−→ . . . . . .

Note that each intermediate state of the computation cannot perform any ω
action. Hence, [[P ]] 6must [[o]].

In the following we will generalize and formalize the idea behind the above
counterexample. We first introduce a new formalism, namely the asynchronous
π-calculus with focusing terms. This formalism is going to be very convenient
to prove our main result.

5.1 The asynchronous π-calculus with focusing contexts

We introduce particular kinds of contexts in the asynchronous π-calculus that
differ from those we have introduced in Section 4, C[ ], in that brackets do
not disappear once we “fill the holes” with process terms. The reason for
introducing these contexts is mainly technical: in the proof of Theorem 5.1,
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we need to “isolate” and “monitor” specific subprocesses along a computation.
For this reason we call these contexts “focusing contexts”. In order to avoid
confusion, we use braces in place of square brackets. Additionally, we decorate
the braces with indexes i, j, .. ∈ N, and we stipulate that different occurrences
of braces with the same index are to be filled with the same subprocess, while
those with different indexes can be filled with different subprocesses. The base
case of focusing context is a substitution context of the form { }iσ, where σ is
a (name) substitution, that is a function from N to N . Substitutions will be
denoted by σ, ϑ . . . The domain of a substitution σ is Dom(σ) = {x| xσ 6= x};
the range of a substitution σ is Ran(σ) = {y| ∃x ∈ Dom(σ) xσ = y}.

Definition 5.1 A focusing context C{ }i for a fixed natural number i is a
term generated by the following grammar:

C{}i := { }iσ 0 x̄y x(y).C{}i τ.C{}i (νx)C{}i C{}i |C{}i !C{}i

where x, y ∈ N .

Note that i is a parameter of the grammar and every “hole” in C{}i is indexed
by i.

For a focusing context C{ }i and a Pa process P , define C{P}i as the term
obtained by replacing each occurrence { }iσ in C{ }i by {P}iσ.

Definition 5.2 Let P be a Pa process and i be a natural number. We denote
by L(P, i) (ranged over by B, B′, . . . ) the language

{C{P}i | P ∈ Pa and C{ }i is a focusing context}.

We give in Table 6 the operational semantics for the language L(P, i); it is
defined on the basis of the one for the asynchronous π-calculus, the only dif-
ference being that terms are in L(P, i) instead than in Pa. Consequently we
need to define the notions of application of a substitution and of structural
congruence on L(P, i). These are given in Definition 5.3 and in Table 7, re-
spectively. Note that these definitions are based on the fact that L(P, i) can
be equivalently defined by induction by replacing, in Definition 5.1, { }iσ by
{P}iσ.

Informally, a L(P, i) term behaves as a P term, assuming as a deadlock term
every {P}i occurrence that is out of the scope of an input or a τ prefix. In
fact, note that in Table 6 there are not any rule for dealing with {P}i terms
and, consequently, these terms cannot perform any action. This should not be
a concern, because for the proof of Theorem 5.1, for every σ each occurrence
of {P}iσ is prefixed, i.e. in the scope of an input or a τ prefix.

13



Input x(y).B xz−→ B{z/y} where x, y, z ∈ N

Output x̄y
x̄y−→ 0 Tau τ.B

τ−→ B

Open
B

x̄y−→ B′

(νy)B
x̄(y)−→ B′

x 6= y Res
B

µ−→ B′

(νy)B
µ−→ (νy)B′

y 6∈ n(µ)

Par
B

µ−→ B′

B |B2
µ−→ B′ |B2

bn(µ) ∩ fn(B2) = ∅

Com
B1

xy−→ B′
1, B2

x̄y−→ B′
2

B1 |B2
τ−→ B′

1 |B′
2

Close
B1

xy−→ B′
1, B2

x̄(y)−→ B′
2

B1 |B2
τ−→ (νy)(B′

1 |B′
2)

Bang
B

µ−→ B′

!B
µ−→ B′ | !B

Cong
B ≡ B′ B′ µ−→ B′′ B′′ ≡ B′

B
µ−→ B′

Table 6
Early operational semantics for L(P, i) terms.

a1) B ≡ B′ iff B′ can be obtained from B by α-conversion

a2) (L(P, i)/≡, | , 0) is a commutative monoid

a3) ((νx)B |B′) ≡ (νx)(B |B′), if x 6∈ fn(B′)

a4) (νx)B ≡ B, if x 6∈ fn(B)

a5) (νx)(νy)B ≡ (νy)(νx)B

Table 7
The structural congruence.

In the following we assume that we always use α-conversion before applying a
substitution, to avoid collision of names. We also stipulate that the application
of a substitution has priority w.r.t. all the other operators of the language.

Notation 5.1 σϑ represents the substitution obtained by composing the sub-
stitutions σ and ϑ.
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Definition 5.3 shows that L(P, i) is closed under substitution. 1 It follows that
the Input rule in Table 6 is well-defined.

Definition 5.3 Given a substitution σ and a term B ∈ L(P, i), where all the
bound variables are different from the ones in the domain and range of σ, we
define Bσ by induction as follows:

- ({P}iϑ)σ = {P}iϑσ;
- (0)σ = 0;
- (x̄y)σ = x̄σ yσ;
- (x(y).B)σ = xσ y.Bσ;
- (τ.B)σ = τ.Bσ;
- ((νx)B)σ = (νx)Bσ;
- (B |B′)σ = Bσ |B′σ;
- (!B)σ =!Bσ.

Definition 5.4 Let B ∈ L(P, i). An occurrence of {P}i in B is prefixed if it
is in the scope of an input or a τ prefix. We write Pref(B) if each occurrence
of {P}i in B is prefixed.

Next we introduce the sort of terms that we are using in the proof.

Definition 5.5 Let P and Q be Pa terms and i, j be natural numbers such
that i 6= j. We denote by L(P, i, Q, j) (ranged over by D, D′, . . . ) the language

{〈B |B′〉 |B ∈ L(P, i) and B′ ∈ L(Q, j)}

where 〈B | B′〉 denotes some restricted version of B | B′, i.e. any term of the
form (νx1)(νx2) . . . (νxn)(B |B′), for some x1, . . . , xn ∈ fn(B |B′).

Given D ∈ L(P, i, Q, j), we write Pref(D) if each occurrence of {P}i and of
{Q}j in D are prefixed.

We now introduce the concept of swapping: given a term D ∈ L(P, i, Q, j),
Swap(D, P, Q, i, j) is obtained by replacing each occurrence of {P}iσ with
{Q}iσ, and each occurrence of {Q}jϑ with {P}jϑ. For simplicity, when P , i, Q,
j are clear from the context, we’ll write Swap(D) instead of Swap(D,P,Q,i,j).

Definition 5.6 For a term D ∈ L(P, i, Q, j) we define Swap(D) by induction

1 A substitution σ behaves homomorphically w.r.t. all operators, except in the case
of substitution composition.
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as follows:

Swap((νx)D) = (νx)Swap(D) Swap(B|B′) = Swap(B)|Swap(B′)

Swap(0) = 0 Swap(x̄y) = x̄y

Swap({P}iσ) = {Q}iσ Swap({Q}jϑ) = {P}jϑ

Swap(x(y).B) = x(y).Swap(B) Swap(τ.B) = τ.Swap(B)

Swap((νx)B) = (νx)Swap(B) Swap(!B) =!Swap(B)

where B, B′ denote terms in L(P, i) ∪ L(Q, j)

Given D ∈ L(P, i, Q, j), it is easy to see that Swap(D) ∈ L(Q, i, P, j).

We denote by Unbrace(G) the Pa process obtained by removing all the braces
from G (both for G ∈ L(P, i) and for G ∈ L(P, i, Q, j)) and by applying the
substitutions: for example, Unbrace({P}iσ | {Q}jϑ) = Pσ | Qϑ (where Pσ,
Qϑ represent the result of the application of the substitutions σ, ϑ to P, Q
respectively).

We are interested in terms where all occurrences of braces are prefixed. We
have the following property (proven in the appendix).

Lemma 5.1 For every D ∈ L(P, i, Q, j),

i) every occurrence of {P}i is prefixed in D iff every occurrence of {Q}i is
prefixed in Swap(D);

ii) every occurrence of {Q}j is prefixed in D iff every occurrence of {P}j is
prefixed in Swap(D).

Next proposition, whose proof is in the appendix, states some useful opera-
tional relations between the asynchronous π-calculus with focusing contexts
and the asynchronous π-calculus.

Proposition 5.1 Let D ∈ L(P, i, Q, j). Then:

i) D
µ−→ D′ implies D′ ∈ L(P, i, Q, j) and Unbrace(D)

µ−→ Unbrace(D′);

ii) Pref(D) and Unbrace(D)
µ−→ R imply that ∃D′ ∈ L(P, i, Q, j) such that

D
µ−→ D′ and R ≡ Unbrace(D′);

iii) D
τ−→ D′ imply Swap(D)

τ−→ Swap(D′).

The following lemma shows an interesting property of the asynchronous π-
calculus with focusing contexts. It states that two prefixed occurrences of
parallel subprocesses P and Q of a process R cannot occur both unprefixed
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after one τ transition step from R (even if the transition is an handshake
synchronization).

Lemma 5.2 Let D ∈ L(P, i, Q, j) such that Pref(D) and D contains at least
one occurrence of {P}i and one occurrence of {Q}j. Assume D

τ−→ D′. Then
either all occurrences of {P}i are prefixed or all occurrences of {Q}j are pre-
fixed in D′.

Proof: It is sufficient to remark we cannot consume two prefixes with one
single transition, because the only rules that allow two processes to make a
step at the same time are the communication rules (Com and Close), but in
the asynchronous π-calculus only one of these processes can be a prefix. 2

5.2 Proof of the main result

Some preliminary lemmas are necessary before giving our main result. We
recall that P ↑ means that there exists an infinite sequence of τ transitions
from P , i.e. P

τ−→ P1
τ−→ . . . Pi

τ−→ Pi+1
τ−→ . . . for some P1, . . . Pi, Pi+1, . . ..

In the opposite case, i.e. such an infinite sequence does not exist, we say that
P converges, notation P ↓.

Lemma 5.3 Let P be a Pa process. Then:

i) P ↑ implies Pσ↑, and
ii) P

ω−→ implies Pσ
ω−→.

Proof: Statement (i) follows from the fact that σ does not rename τ . State-
ment (ii) follows from the fact that σ is defined on N and ω 6∈ N . 2

Lemma 5.4 Let [[·]] be a must -preserving encoding. If there exists P ∈ Ps

such that [[P ]]↑, then [[ω.0]]
ω−→.

Proof: Let P ∈ Ps such that [[P ]]↑. Since P must ω.0 and the encoding [[·]] is
must -preserving, then [[P ]] must [[ω.0]]. Since [[P ]] ↑, we have [[ω.0]]

ω−→. 2

Lemma 5.5 Let [[·]] be an encoding that satisfies:

1. compositionality w.r.t. input and output prefixes,
2. must -preservation,
3. ∃P ∈ Ps such that [[P ]]↑.

Then each [ ] in Cx(y)[ ] and Cx̄y[ ] is prefixed, i.e. it occurs after an input or a
τ prefix.
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Proof: By definition we have 0 6must x(y).ω.0. Since [[·]] is must -preserving,
we have [[0]] 6must [[x(y).ω.0]]. Hence, [[0]] 6must Cx(y)[[[ω.0]]]. By Lemma 5.4

[[ω.0]]
ω−→. Hence [[ω.0]] is prefixed in Cx(y)[ ]. A similar proof holds for Cx̄y[ ].

2

We are now ready to prove our main result that states the non-existence of a
must -preserving encoding from the π-calculus to the asynchronous π-calculus.

Theorem 5.1 Let [[·]] be an encoding that satisfies:

1. compositionality w.r.t. input and output prefixes,
2. ∃P ∈ Ps such that [[P ]]↑.

Then [[·]] is not must -preserving.

Proof: Assume, by contradiction, that [[·]] is must -preserving. Let P ∈ Ps

s.t. [[P ]]↑. Since x(y).P must x̄y.ω.0 and [[·]] is must -preserving, we also have
[[x(y).P ]] must [[x̄y.ω.0]]. By definition [[x(y).P ]] = Cx(y)[[[P ]]] and [[x̄y.ω.0]] =
Cx̄y[[[ω.0]]], for contexts Cx(y)[ ] and Cx̄y[ ] in Pa. By Lemma 5.5, each [ ] in
Cx(y)[ ] and Cx̄y[ ] is prefixed.

In particular, also [[ω.0]] in Cx̄y[[[ω.0]]] is prefixed (ω cannot appear in Cx̄y[ ] and
Cx(y)[] because they are contexts in Pa, see Definition 4.1). Furthermore [[P ]] oc-
curs prefixed in Cx(y)[[[P ]]] 2 because otherwise we would have Cx(y)[[[P ]]]↑ while

Cx̄y[[[ω.0]]] 6 ω−→, in contradiction with the fact that Cx(y)[[[P ]]] must Cx̄y[[[ω.0]]].

Consider Cx(y)[[[P ]]] and Cx̄y[[[ω.0]]]. Since Cx(y)[[[P ]]] must Cx̄y[[[ω.0]]], for every
computation

Cx(y)[[[P ]]] | Cx̄y[[[ω.0]]] = A0
τ−→ A1

τ−→ . . .
τ−→ Ak

τ−→ . . . (2)

there exists h ≥ 0 such that Ah
ω−→ . Note that we also have that there

exists at least one such computation, because k cannot be 0. We consider the
first such h, i.e. ∀k ∈ [0..(h − 1)], Ak 6

ω−→. Then, ∀k ∈ [0..(h − 1)] the terms
of the form [[P ]]σ and those of the form [[ω.0]]ϑ are prefixed in Ak

3 (where
σ, ϑ are substitutions which come from communication of names during the
computation).

2 Note that [[P ]] in Cx(y)[[[P ]]] might appear also in Cx(y)[ ], that is, not necessarily
only within the context hole [ ].
3 Note that any terms [[P ]]σ, being divergent, must occur prefixed by an input prefix
in Ak for every k ≥ 0 until ω becomes enabled. Otherwise, we would contradict the
hypothesis.
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Now consider D0 = Cx(y){[[P ]]}i| Cx̄y{[[ω.0]]}j. By Proposition 5.1-ii, for each
computation in (2) there is one of the form

Cx(y){[[P ]]}i | Cx̄y{[[ω.0]]}j = D0
τ−→ D1

τ−→ . . .
τ−→ Dk

τ−→ . . . (3)

with Ak = Unbrace(Dk).

Note that, since [[P ]]σ and [[ω.0]]ϑ are prefixed in Ak, the occurrences of {}i and
{}j in Dk are prefixed. This is also the reason why we can iterate Proposition
5.1-ii.

Now consider Dh. Since {}i and {}j in Dh−1 are prefixed and at least one
occurrence of {}j in Dh is not prefixed (this is because Ah = Unbrace(Dh)
and Ah

ω−→), by Lemma 5.2, it must be the case that each occurrence of {}i

(containing occurrences of [[P ]]) is prefixed in Dh.

Consider now the reverse situation, obtained by switching the prefixes of P
and of the test. We still have x̄y.P must x(y).ω.0. However, we will show that
[[x̄y.P ]] 6must [[x(y).ω.0]], thus contradicting the must -preservation hypothesis.

Let us consider the initial term [[x(y).ω.0]] | [[x̄y.P ]] = Cx(y)[[[ω.0]]]| Cx̄y[[[P ]]]
and the corresponding term in L([[ω.0]], i, [[P ]], j), Cx(y){[[ω.0]]}i| Cx̄y{[[P ]]}j =
Swap(D0). By Proposition 5.1-iii, for each computation in (3) there is one of
the form

Cx(y){[[ω.0]]}i | Cx̄y{[[P ]]}j = D′
0

τ−→ D′
1

τ−→ . . .
τ−→ D′

k
τ−→ . . . (4)

such that ∀k ∈ [0..h], D′
k = Swap(Dk). Now, observe that in D′

h there is
at least one non-prefixed occurrence of {}j while each occurrence of {}i is
prefixed. This is a consequence of Lemma 5.1 and of the fact that Dh has the
reverse property (reverse in the sense that the role of i and j are reversed).

Hence, ∀k ∈ [0..h], Unbrace(D′
k) cannot perform ω (because [[ω.0]] appears in

D′
k within prefixed contexts {}i) while Unbrace(D′

h) can perform an infinite
sequence of τ actions (because the unprefixed occurrence of { }i is filled by
[[P ]]). By Proposition 5.1-i, for each computation in (4) there is one of the form

Cx(y)[[[ω.0]]] | Cx̄y[[[P ]]] = A′
0

τ−→ A′
1

τ−→ . . .
τ−→ A′

k
τ−→ . . .

such that ∀k ∈ [0..h], A′
k = Unbrace(D′

k), A′
k 6

ω−→ and A′
h ↑ . 2

6 Other impossibility results

The existence of a divergent process in the target language of the encodings,
which is one of the hypotheses of Theorem 5.1, can be guaranteed by suitable
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assumptions on the encoding itself and the preservation of the must test-
ing. This section investigates conditions as weak as possible on the encodings
which, under the hypothesis of must-preservation, ensure the existence of
such divergent terms and therefore, together with the compositionality w.r.t.
the input and output prefixes, imply the non existence of a must-preserving
encoding.

The first result (Theorem 6.1) states that the existence of a divergent and a
convergent term in the source language whose encodings do not interact with
the context is a sufficient condition.

We first need the following lemma.

Lemma 6.1 Let [[·]] be a must-preserving encoding and assume that ∃R ∈ Ps

such that R↓ and fn([[R]]) = ∅. Then every maximal sequence of τ transitions
from [[τ.ω.0]] is successful, i.e. it reaches a state where the action ω is enabled.

Proof: Suppose, by contradiction, that there exists a maximal sequence of τ
transitions from [[τ.ω.0]]. Since fn([[R]]) = ∅, it follows that [[R]] 6must [[τ.ω.0]].
Since [[·]] is must -preserving, we have R 6must τ.ω.0. But from R↓ we derive
R must τ.ω.0. Contradiction. 2

We prove now Theorem 6.1.

Theorem 6.1 Let [[·]] be an encoding that satisfies:

1. compositionality w.r.t. input and output prefixes,
2. ∃Q ∈ Ps such that Q↑ and fn([[Q]]) = ∅,
3. ∃R ∈ Ps such that R↓ and fn([[R]]) = ∅.

Then [[·]] is not must -preserving.

Proof: Let Q ∈ Ps such that Q↑ and fn([[Q]]) = ∅. Then Q 6must τ.ω.0 and, by
must -preservation, [[Q]] 6must [[τ.ω.0]]. By hypothesis (3) and Lemma 6.1 every
maximal sequence of τ transitions from [[τ.ω.0]] is successful. Therefore, since
fn([[Q]]) = ∅, we necessarily have [[Q]]↑ and we can apply Theorem 5.1. 2

The following result (Theorem 6.2) states that for the impossibility result
it is also sufficient to have homomorphism w.r.t. τ prefix. Note that we do
not require homomorphism w.r.t. bang operator. The homomorphism w.r.t.
both τ prefix and bang operator would imply immediately the existence of a
divergent process in the target language.

We first need the following lemma.

Lemma 6.2 Let A∈P, o∈O, such that A↓. Then Amust o implies Amust τ.o.
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Proof: Assume A 6must τ.o. Then there exists a computation

A | τ.o = T0
τ−→ T1

τ−→ . . .
τ−→ Tn [

τ−→ . . .]

such that ∀i ≥ 0, Ti 6
ω−→ . Since A↓, the component τ.o cannot remain always

idle. Let k ≥ 0 be the index for which the transition Tk
τ−→ Tk+1 is due

to the transition τ.o
τ−→ o. Then there exist A0, A1, . . . , Ak ∈ P such that

A = A0
τ−→ A1

τ−→ ...
τ−→ Ak and ∀i ∈ [0..k] Ti = Ai |τ.o, while Tk+1 = Ak |o.

Hence there exists a computation

A | o = A0 | o
τ−→ A1 | o

τ−→ . . .
τ−→ Ak | o = Tk+1

τ−→ . . .
τ−→ Tn [

τ−→ . . .]

Now observe that Tk+1 6
ω−→ implies o 6 ω−→ and ∀i ∈ [0..k], Ai 6

ω−→ because
Ai ∈ P . Hence the above is an unsuccessful computation for A|o, and therefore
A 6must o. 2

We prove now Theorem 6.2.

Theorem 6.2 Let [[·]] be an encoding that satisfies:

1. compositionality w.r.t. input and output prefixes,
2. homomorphism w.r.t. τ prefix,

Then [[·]] is not must -preserving.

Proof: Suppose, by contradiction, that [[·]] is must -preserving. Then, since
!τ.0 6must τ.ω.0, we have [[!τ.0]] 6must [[τ.ω.0]]. By homomorphism w.r.t. τ prefix
we also have [[τ.ω.0]] = τ.[[ω.0]], and therefore [[!τ.0]] 6must τ.[[ω.0]]. By Theorem
5.1 we must have [[!τ.0]] ↓, hence by Lemma 6.2 we get [[!τ.0]] 6must [[ω.0]].
Therefore, since !τ.0must ω.0, we have that [[·]] cannot be must-preserving. 2

The next result is, to our opinion, the most surprising. It states that a prefix-
compositional encoding cannot be must-preserving if the encodings of τ.[ ] and
0 do not interact with the environment. We first need the following lemma.

Lemma 6.3 Let [[·]] be an encoding that satisfies:

1. compositionality w.r.t. prefixes,
2. fn([[τ.[ ]]]) = fn([[0]]) = ∅,
3. must -preservation.

Then ∀P ∈ Ps, [[P ]] must [[τ.ω.0]].

Proof: Since 0 must τ.ω.0, by must -preservation we have [[0]] must [[τ.ω.0]].
Since fn([[0]]) = ∅, we have that every maximal sequence of τ transitions
from [[τ.ω.0]] is successful. By compositionality w.r.t. τ prefix we have that
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[[τ.ω.0]] = Cτ [[[ω.0]]], and since fn([[τ.[ ]]]) = fn(Cτ [ ]) = ∅, we have that Cτ [ ]
does not interact with any [[P ]]. Furthermore, from Theorem 5.1, we know that
[[P ]]↓ for every P ∈ Ps. We can therefore conclude that every computation of
[[P ]] | Cτ [[[ω.0]]] is successful. 2

We can now prove Theorem 6.3.

Theorem 6.3 Let [[·]] be an encoding that satisfies:

1. compositionality w.r.t. input, output, and τ prefixes,
2. fn([[τ.[ ]]]) = fn([[0]]) = ∅.

Then [[·]] is not must -preserving.

Proof: Suppose, by contradiction, that [[·]] is must -preserving. Consider a
P ∈ Ps such that P ↑ (for instance P =!τ.0). Then P 6must τ.ω.0 while, by
Lemma 6.3, [[P ]] must [[τ.ω.0]]. 2

7 Related work

The expressiveness of several communication mechanisms has been studied in
many papers. The standard way in the literature is to define an encoding be-
tween the languages equipped with the two communication mechanisms, and
to verify the existence of full abstraction results w.r.t. the intended semantics.
If we consider in particular synchronous and asynchronous communication,
several languages and calculi offer operators to implement either the first or
the second mechanism. The most popular calculi are the π-calculus and its
variants, for the synchronous communication, and the asynchronous π-calculus
and its variants, for the asynchronous communication.

The π-calculus with mixed choice and the asynchronous π-calculus have been
compared in [24]. The paper shows that it is not possible to map the π-calculus
into the asynchronous π-calculus with a uniform encoding while preserving
a reasonable semantics. We remark that Boudol’s encoding is uniform and
that may and fair semantics are not reasonable, while must is. However, our
negative result w.r.t. must is not a consequence of the result in [24]. Indeed,
the latter one is relative to the presence of mixed choices, while we do not
consider choice in our source language. The separation result in [24] does not
hold for the two languages that we consider here.

The attempt to prove a full abstraction result for an encoding that introduces
a communication protocol (like the ones of Boudol, Honda and Tokoro, and
Nestmann) involves a general difficulty: the presence, in the target language, of
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terms which do not follow the rules of the protocol. Thus, for instance, those
encodings cannot be fully abstract w.r.t. barbed congruence. The following
example, provided by Honda and Yoshida [18], explains why. Consider the
processes P = x̄y.x̄y.0 and Q = x̄y.0|x̄y.0. They are clearly barbed congruent.
However their encodings [[P ]] and [[Q]] (where [[·]] is, for instance, the encoding
of Boudol, see Table 2) are not congruent because, if we consider R = x(y).0,
R | [[P ]] reduces to a process that does not have a x̄ barb, while this is not the
case for R | [[Q]]. Note that R is a process that does not “follow the rules” of
the protocol, because it does not send the acknowledgment on u to [[P ]] (see
Table 2), and this is why [[P ]] gets stuck.

In literature we find various approaches to the above problem. Typically, one
can restrict the contexts of the target language, or impose certain restrictions
on its semantics.

One of the papers which uses the restriction on contexts is [25]. The authors
consider the polyadic π-calculus and the asynchronous version of the monadic
π-calculus as source and target languages respectively, a Boudol-like encoding,
and asynchronous barbed congruence as the semantics to be preserved. They
consider a type-system that allows them to eliminate the contexts which do
not respect “the synchronization protocol” of the encoding, and prove a full
abstraction result w.r.t. arbitrary contexts in the source and typeble contexts
in the target. The first two authors explore in [8] similar issues w.r.t. testing
semantics. The main difference w.r.t. [25] is that in [8] the restriction on con-
texts is more drastic: in fact, because of the definition of testing semantics,
the only relevant contexts are parallel test processes. Moreover, [8] considers
only the tests that result from encoding processes of the source language. In
[8] it is proved that Boudol’s encoding is fully abstract w.r.t. may and fair
testing, but not w.r.t. must testing. It is worth noting that the restriction to
encoded contexts is sufficient to prove the full abstraction of Boudol’s encod-
ing w.r.t. Morris’ preorder [7], and it would be sufficient also to prove it w.r.t.
asynchronous barbed congruence (this can be easily checked by looking at the
proof of Lemma 17 in [25]). On the other hand, with the contexts of [25],
the completeness result, i.e. the “if part” of the full abstraction, is stronger
because it implies the congruence for a larger set of contexts.

Another work with similar issues is [16]. This paper focuses on the ν-calculus,
a subset of the asynchronous π-calculus, where only input prefixed terms can
be in the scope of the bang operator. Notice that this is not a real restriction,
since this kind of replicator is as expressive as the full bang operator [21]. Two
operational semantics are considered: the first one, called “synchronous”, is
essentially the standard reduction semantics of the asynchronous π-calculus.
The second one, called “asynchronous”, relies on a new input-prefix rule, which
allows any process to perform an input action, also when not present syn-
tactically, and make available the corresponding message again, afterwards.

23



The paper considers two encodings, one for each direction, of the ν-calculus
equipped with the synchronous and asynchronous semantics. Then it proves
that the first encoding is fully abstract w.r.t. weak bisimulation under some
restrictions on the asynchronous semantics. More precisely, it consider only
those traces of encoded processes that result from “encoding” traces of the
original process. The second encoding is fully abstract w.r.t. weak bisimula-
tion thanks to the fact that the encoding weakens the terms by putting them
in parallel with special processes called identity receptors.

In [17] the authors consider the two operational semantics of [16] for a variant
of the ν-calculus, obtained by replacing bang with recursion. In addition to
the results of [16], [17] proves also that weak bisimulation in the asynchronous
calculus is strictly weaker than weak bisimulation in the synchronous one, and
that it is possible to erase this gap by weakening the synchronous calculus, as
proposed in [16].

There are several other calculi which implement specific mechanism of commu-
nication. For instance, logical and physical localities, remote communication,
higher order communication, and so on. As an example we mention Klaim,
an asynchronous language with programming primitives for global computing,
obtained by combining features from process algebras and coordination lan-
guages. In [13] the authors study the expressive power of Klaim and some of its
sublanguages. As usual, this is done by defining encodings from one language
to another and by studying fully abstraction results of each encoding w.r.t.
barbed bisimilarity and barbed congruence. In particular, it is worth noting
that there exists an encoding of the asynchronous π-calculus into a variant
of Klaim. The latter is obtained by removing from Klaim the basic action
of readiness, the distinction between logical and physical localities and the
possibility of higher order and polyadic communication. The full abstraction
result for this encoding w.r.t. barbed equivalence is again obtained thanks to
the restriction to encoded contexts in the target language.

8 Conclusion and future work

In this paper we have investigated the encodability of output prefix in the
asynchronous version of the π-calculus w.r.t. must testing semantics. Our main
result is that, if the encoding meets some general requirements, namely com-
positionality w.r.t. prefixes and existence of a diverging encoded term, then it
cannot preserve the must testing. This negative result is a consequence of (a)
the non atomicity of the sequences of steps which are necessary in the asyn-
chronous π-calculus to mimic synchronous communication, and (b) testing
semantics’s sensitivity to divergence.
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It is worth noting that the condition of preservation of the must semantics
can be interpreted also as implying a restricted form of homomorphism on
the parallel operator. In fact, the property P must o could be defined as some
property M of P |o. Hence the condition P iff [[P ]]must [[o]] could be rewritten
as M( | o) iff M([[P ]] | [[o]]). However, we do not need full homomorphism for
the parallel operator, in the sense that it is not necessary for the occurrences
of the operator internal to P and to o.

As a future work, we plan to investigate the possibility of positive results under
some “fair” scheduling assumption. The idea of trying the fairness assumption
comes from the observation that the negative result for the must testing is
essentially due to divergent components and unfair scheduling strategies. Of
course, if we imposed fairness on all parts of the computations, then we would
have to impose it both on the source and on the target languages in order
for the encoding to preserve the semantics. This would weaken the intended
result. To avoid this problem, we plan to impose fairness only on asynchronous
computations and, more specifically, only on those actions which belong to
simulations.

We are also planning to investigate whether the results in this paper apply to
broadcasting vs point to point communication.

Acknowledgments

The authors would like to strongly thank anonymous referees for their valuable
feedback which helped to improve the work considerably.

References

[1] Boreale, M. & De Nicola, R., Testing Equivalence for Mobile Processes,
Information and Computation, 120, pp. 279-303 (1995).

[2] Boreale, M., De Nicola. R. & Pugliese, R., Basic Observables for Processes,
LNCS, 1256, pp. 482-492 (1997).

[3] Boreale, M., De Nicola, R. & Pugliese, R., Trace and Testing Equivalence
in Asynchronous Processes, Information and Computation, 172, pp. 139-164,
Academic Press (2002).

[4] Boudol, G., Asynchrony and the π-calculus, Technical Report 1702, INRIA,
Sophia-Antipolis (1992).

[5] De Boer, F.S., Klop, J.W. & Palamidessi, C., Asynchronous Communication in
Process Algebra, Proc. of LICS’92, pp. 137-147 (1992).

25



[6] Brinksma, E., Rensink, A. & Vogler, W., Fair Testing, Proc. of CONCUR’95,
LNCS, 962, pp. 313-327 (1995).

[7] Cacciagrano, D., Comunicazione Sincrona ed Asincrona in Sistemi Concorrenti
e Distribuiti, Master Thesys, University of L’Aquila (1999).

[8] Cacciagrano, D. & Corradini, F., On Synchronous and Asynchronous Commu-
nication Paradigms, Proc. of ICTCS ’01, LNCS, 2202, pp. 256-268 (2001).

[9] Cacciagrano, D., On Synchronous and Asynchronous Communication: Some
Expressiveness Results, PhD Thesys, University La Sapienza of Rome (2004).

[10] Cacciagrano, D., Corradini, F. & Palamidessi, C., Separation of Synchronous
and Asynchronous Communication Via Testing. Proc. of EXPRESS’05,
ENTCS, 154(3), pp. 95-108 (2006).

[11] Cacciagrano, D., Corradini, F. & Palamidessi, C., Fair Pi, Proc. of
EXPRESS’06, To appear (2006).

[12] Castellani, I. & Hennessy, M., Testing Theories for Asynchronous Languages,
Proc. of FSTTCS ’98, LNCS, 1530, pp. 90-101 (1998).

[13] De Nicola, R., Gorla, D. & Pugliese, R., On the expressive power of KLAIM-
based calculi, Proc. of EXPRESS ’04, ENTCS (2004).

[14] De Nicola, R. & Hennessy, M., Testing Equivalence for Processes, ENTCS, 34,
pp. 83-133 (1984).

[15] Hennessy, M., An Algebraic Theory of Processes, MIT Press, Cambridge (1988).

[16] Honda, H., Two Bisimilarities in ν-calculus, Keio CS report 92-002, Department
of Computer Science, Keio University (1992).

[17] Honda, K. & Tokoro, M., An Object calculus for Asynchronous Communication,
Proc. of ECOOP ’91, LNCS, 512, pp. 133-147 (1991).

[18] Honda, H. & Yoshida, N., Personal communication (2005).

[19] Milner, R., Communication and Concurrency, Prentice-Hall International
(1989).

[20] Milner, R., Parrow, J. & Walker, D., A Calculus of Mobile Processes, Part I
and II, Information and Computation, 100, pp. 1-78 (1992).

[21] Merro, M. & Sangiorgi, D., On asynchrony in name-passing calculi, Proc. of
ICALP ’98, LNCS, 1443 (1998).

[22] Natarajan, V. & Cleaveland, R., Divergence and Fair Testing, Proc. of ICALP
’95, LNCS, 944, pp. 648-659 (1995).

[23] Nestmann, U., What is a ‘Good’ Encoding of Guarded Choice?, Information
and Computation, 156, pp. 287-319 (2000).

26



[24] Palamidessi, C., Comparing the Expressive Power of the Synchronous and
Asynchronous π-calculus, Mathematical Structures in Computer Science, 13(5),
pp. 685-719 (2003).

[25] Quaglia, P, & Walker, D., On Synchronous and Asynchronous Mobile Processes,
Proc. of FOSSACS 2000, LNCS, 1784, pp. 283-296 (2000).

27



Appendix A

In this appendix we give the proofs omitted in Section 5. We start with the
proof of Lemma 5.1. We first introduce the following notation.

Notation 8.1 Given B∈L(P, i) and Q ∈ Pa, we denote by B{{Q}iσ/{P}iσ}
the L(Q, i) term obtained by replacing every occurrence of {P}iσ in B with
{Q}iσ.

Note: we may need to apply α-conversion to B in order to avoid variable-
capture.

Lemma 8.1 ∀B ∈ L(P, i), Pref(B) iff Pref(B{{Q}iσ/{P}iσ}).

Proof: We first prove the only if implication. We proceed by induction on
the structure of B.

- B = 0 and B = x̄y: these cases are trivial, since B does not contain any
occurrences of { }i.

- B = {P}iσ: this case is trivial, since Pref(B) does not hold.
- B = x(y).B′, where B′ ∈ L(P, i): B is such that Pref(B); B{{Q}iσ/{P}iσ}

= x(y).B′{{Q}iσ/{P}iσ} and, by definition, Pref(x(y).B′{{Q}iσ/{P}iσ}).
- B = τ.B′, where B′ ∈ L(P, i): this case can be proven similarly to the

previous one.
- B = (νx)B1, where B1 ∈ L(P, i): Pref(B) implies Pref(B1) and, by induc-

tion, Pref(B1{{Q}iσ/{P}iσ}), which implies Pref(B{{Q}iσ/{P}iσ}).
- Cases B = B1 | B2 and B =!B′, where B1, B2, B

′ ∈ L(P, i), can be proven
similarly.

To prove the if implication notice that (B{{Q}iσ/{P}iσ}){{P}iσ/{Q}iσ} =
B. 2

Lemma 5.1 For every D ∈ L(P, i, Q, j),

i) every occurrence of {P}i is prefixed in D iff every occurrence of {Q}i is
prefixed in Swap(D);

ii) every occurrence of {Q}j is prefixed in D iff every occurrence of {P}j is
prefixed in Swap(D).

Proof: By Definition 5.5, D = 〈B |B′〉, where B ∈ L(P, i) and B′ ∈ L(Q, j).
By Definition 5.6, Swap(D) = 〈Swap(B) | Swap(B′)〉. We can prove that
〈Swap(B) |Swap(B′)〉 = 〈B{{Q}iσ/{P}iσ} |B′{{P}jϑ/{Q}jϑ}〉. Now it suf-
fices to apply Lemma 8.1. 2
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We now prove Proposition 5.1. We first need the following lemma.

Lemma 8.2 Let B ∈ L(P, i). Then:

i) B
µ−→ B′ implies B′ ∈ L(P, i) and Unbrace(B)

µ−→ Unbrace(B′);

ii) Pref(B) and Unbrace(B)
µ−→ R imply that there exists B′ ∈ L(P, i) such

that B
µ−→ B′ and R ≡ Unbrace(B′).

iii) B
µ−→ B′ implies B{{Q}iσ/{P}iσ}

µ−→ B′{{Q}iσ/{P}iσ}.

Proof: This proposition can be proven by induction on the depth of the proof
of transitions. Note that L(P, i) is closed under substitution, and that the
structural congruence is preserved byUnbrace and the “process substitution”
{{Q}iσ/{P}iσ}. First we prove item (i).

- B = x̄y : trivial, since in this case Unbrace(B) = B.
- B = x(y).B′ xz−→ B′{z/y}: since B ∈ L(P, i), then B′ ∈ L(P, i). It fol-

lows that B′{z/y} ∈ L(P, i). And Unbrace(B) = x(y).Unbrace(B′)
xz−→

Unbrace(B′{z/y}).
- B = τ.B′ τ−→ B′: since B ∈ L(P, i), then B′ ∈ L(P, i). And Unbrace(B) =

τ.Unbrace(B′)
τ−→ Unbrace(B′).

- B = (νy)B1
x̄(y)−→ B′, where B1

x̄y−→ B′ and x 6= y: since B ∈ L(P, i), then

B1 ∈ L(P, i). By induction B′ ∈ L(P, i) and Unbrace(B1)
x̄y−→ Unbrace(B′).

Hence Unbrace(B)
x̄(y)−→ Unbrace(B′).

- B = (νy)B1
µ−→ (νy)B′, where B1

µ−→ B′ and y 6∈ n(µ): this case can be
proven similarly to the previous one.

- B = B1 | B2
µ−→ B′

1 | B2, where B1
µ−→ B′

1 and bn(µ) ∩ fn(B2) = ∅:
since B ∈ L(P, i), then B1, B2 ∈ L(P, i). By induction hypothesis B′

1 ∈
L(P, i) and Unbrace(B1)

µ−→ Unbrace(B′
1). We can deduce Unbrace(B)

µ−→
Unbrace(B′

1) | Unbrace(B2) = Unbrace(B′
1 |B2).

- The cases B = B1 | B2
τ−→ B′

1 | B′
2, where B1

xy−→ B′
1 and B2

x̄y−→ B′
2,

B = B1 | B2
τ−→ (νy)(B′

1 | B′
2), where B1

xy−→ B′
1 and B2

x̄(y)−→ B′
2, and

B =!B1
µ−→ B′

1 | !B1, can be proven similarly.

- B
µ−→ B′, where B ≡ B1, B1

µ−→ B2 and B2 ≡ B′: B ≡ B1 implies
B1 ∈ L(P, i). By induction hypothesis, B1

µ−→ B2 implies B2 ∈ L(P, i) and

Unbrace(B1)
µ−→ Unbrace(B2). Since B2 ≡ B′ and B2 ∈ L(P, i), then B′ ∈

L(P, i). Since Unbrace(B) ≡ Unbrace(B1) and Unbrace(B′) ≡ Unbrace(B2),

it follows that Unbrace(B)
µ−→ Unbrace(B′).

Now we prove item (ii). By induction on the depth of the proof of transitions.
By convenience, we split up the cases following the structure of B.

- B = 0: this case is not possible, since Unbrace(B) = 0 can not perform any
action.

- B = x̄y: this case is not possible, since B does not contain any {P}iσ.
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- B = {P}iσ: this case is not possible, since Pref(B) does not hold.
- B = x(y).B′: Unbrace(B)

xz−→ Unbrace(B′){z/y}=Unbrace(B′{z/y}) and
B

xz−→ B′{z/y}.
- B = τ.B′: this case can be proven similarly to the previous one.
- B = (νy)B1: Since Pref(B), then Pref(B1). We have two cases to consider

a. (νy)Unbrace(B1)
x̄(y)−→ A′, where Unbrace(B1)

x̄y−→ A′ and x 6= y: By induc-

tion there exists B′ ∈ L(P, i) such that B1
x̄y−→ B′ and A′ ≡ Unbrace(B′).

Hence (νy)B1
x̄(y)−→ B′ and A′ ≡ Unbrace(B′).

b. (νy)Unbrace(B1)
µ−→ (νy)A′, where Unbrace(B1)

µ−→ A′ and y 6∈ n(µ):
this case can be proven similarly to the previous one.

- B = B1 | B2: Since Pref(B, i), then Pref(B1) and Pref(B2). We have three
cases two consider.

a. Unbrace(B1 | B2)
µ−→ A′

1 | Unbrace(B2), where Unbrace(B1)
µ−→ A′

1 and
bn(µ) ∩ fn(Unbrace(B2)) = ∅: By induction there exists B′

1 ∈ L(P, i)

such that B1
µ−→ B′

1 and A′
1 ≡ Unbrace(B′

1). Hence B
µ−→ B′

1 | B2 and
Unbrace(B′

1 |B2) ≡ A′
1 | Unbrace(B2).

b. Unbrace(B1 | B2)
τ−→ A′

1 | A′
2, where we have Unbrace(B1)

xy−→ A′
1 and

Unbrace(B2)
x̄y−→ A′

2: By induction there exists B′
1, B

′
2 ∈ L(P, i) such that

B1
xy−→ B′

1, B2
x̄y−→ B′

2, A′
1 ≡ Unbrace(B′

1) and A′
2 ≡ Unbrace(B′

2). Hence
B1 |B2

τ−→ B′
1 |B′

2 and Unbrace(B′
1 |B′

2) ≡ A′
1 | A′

2.

c. Unbrace(B1 | B2)
τ−→ (νy)(A′

1 | A′
2), such that Unbrace(B1)

xy−→ A′
1 and

Unbrace(B2)
x̄(y)−→ A′

2: this case can be proven similarly to the previous
one.

- B =!B1: this case can be proven similarly.
- Unbrace(B)

µ−→ A, where Unbrace(B) ≡ Unbrace(B′) (hence B ≡ B′),

Unbrace(B′)
µ−→ A′, A′ ≡ A and Pref(B): It easy to prove that Pref(B) iff

Pref(B′) and, by induction, there exists B′′ ∈ L(P, i) such that B′ µ−→ B′′

and A′ ≡ Unbrace(B′′). Hence A ≡ Unbrace(B′′). Then B
µ−→ B′′ and

A ≡ Unbrace(B′′).

Now we prove item (iii). By induction on the depth of the proof of transitions.

- B = x̄y : trivial, since B does not contain any {P}iσ.
- B = x(y).B′ xz−→B′{z/y}: then we have the transition B{{Q}iσ/{P}iσ}=

x(y).B′{{Q}iσ/{P}iσ}
xz−→ B′{z/y}{{Q}iσ{z/y}/{P}iσ{z/y}};

- B = τ.B′ τ−→ B′: this case can be proven similarly;

- B = (νy)B1
x̄(y)−→ B′, where B1

x̄y−→ B′ and x 6= y: because B1
x̄y−→ B′

and, by induction, B1{{Q}iσ/{P}iσ}
x̄y−→ B′{{Q}iσ/{P}iσ}, it follows that

B{{Q}iσ/{P}iσ}
x̄(y)−→ B′{{Q}iσ/{P}iσ};

- B = (νy)B1
µ−→ (νy)B′, where B1

µ−→ B′ and y 6∈ n(µ): this case can be
proven similarly to the previous one.

- B = B1 |B2
µ−→ B′

1 |B2, where B1
µ−→ B′

1 and bn(µ)∩fn(B2)= ∅: suppose to
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apply α-conversion s.t. bn(µ) ∩fn(B2) = bn(µ) ∩ fn(B2{{Q}iσ/{P}iσ}) =

∅. By induction, we have that B1{{Q}iσ/{P}iσ}
µ−→ B′

1{{Q}iσ/{P}iσ}.
Hence B{{Q}iσ/{P}iσ}

µ−→(B′
1 |B2){{Q}iσ/{P}iσ};

- The cases B = B1 | B2
τ−→ B′

1 | B′
2, where B1

xy−→ B′
1 and B2

x̄y−→ B′
2,

B = B1 | B2
τ−→ (νy)(B′

1 | B′
2), where B1

xy−→ B′
1 and B2

x̄(y)−→ B′
2, and

B =!B1
µ−→ B′

1 | !B1, can be proven similarly.

- B
µ−→ B′, where B′ ≡ B1, B1

µ−→ B2 and B2 ≡ B′: B ≡ B1 implies
B{{Q}iσ/{P}iσ} ≡ B1{{Q}iσ/{P}iσ}. By induction B1{{Q}iσ/{P}iσ}

µ−→ B2{{Q}iσ/{P}iσ} . Since B2{{Q}iσ/{P}iσ} ≡ B′{{Q}iσ/{P}iσ}
then B{{Q}iσ/{P}iσ}

µ−→ B′{{Q}iσ/{P}iσ}.

2

Proposition 5.1 Let D ∈ L(P, i, Q, j). Then:

i) D
µ−→ D′ implies D′ ∈ L(P, i, Q, j) and Unbrace(D)

µ−→ Unbrace(D′);

ii) Pref(D) and Unbrace(D)
µ−→ R imply that there exists D′ ∈ L(P, i, Q, j)

such that D
µ−→ D′ and R ≡ Unbrace(D′);

iii) D
τ−→ D′ imply Swap(D)

τ−→ Swap(D′).

Proof: All the statements (i), (ii) and (iii) are obvious consequences of Lemma
8.2 and Definition 5.5. 2
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