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Abstract. The concept of anonymity comes into play in a wide range of
situations, varying from voting and anonymous donations to postings on
bulletin boards and sending mails. The systems for ensuring anonymity
often use random mechanisms which can be described probabilistically,
while the agents’ interest in performing the anonymous action may be
totally unpredictable, irregular, and hence expressable only nondeter-
ministically.

Formal definitions of the concept of anonymity have been investigated
in the past either in a totally nondeterministic framework, or in a purely
probabilistic one. In this paper, we investigate a notion of anonymity
which combines both probability and nondeterminism, and which is suit-
able for describing the most general situation in which both the systems
and the user can have both probabilistic and nondeterministic behav-
ior. We also investigate the properties of the definition for the particular
cases of purely nondeterministic users and purely probabilistic users.
We formulate our notions of anonymity in terms of observables for pro-
cesses in the probabilistic w-calculus, whose semantics is based on Prob-
abilistic Automata.

We illustrate our ideas by using the example of the dining cryptogra-
phers.

1 Introduction

The concept of anonymity comes into play in those cases in which we want to
keep secret the identity of the agent participating to a certain event. There is a
wide range of situations in which this property may be needed or desirable; for
instance: delation, voting, anonymous donations, and posting on bulletin boards.

Anonymity is often formulated in a more general way as an information-
hiding property, namely the property that a part of information relative to a
certain event is maintained secret. One should be careful, though, to not confuse
anonymity with other properties that fit the same description, notably confiden-
tiality (aka secrecy). Let us emphasize the difference between the two concepts
with respect to sending messages: confidentiality refers to situations in which
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the content of the message is to be kept secret; in the case of anonymity, on the
contrary, it is the identity of the originator, or of the recipient, that has to be
kept secret. Analogously, in voting, anonymity means that the identity of the
voter associated with each vote must be hidden, and not the vote itself or the
candidate voted for. A discussion about the difference between anonymity and
other information-hiding properties can be found in [11].

An important characteristic of anonymity is that it is usually relative to
a particular point of view. In general an event can be observed from various
viewpoints - differing in the information they give access to, and therefore, the
anonymity property depends on the view from which the event is being looked
at (that is the exact information available to the observer). For example, in the
situation of electronic bulletin boards, a posting by one member of the group
is kept anonymous to the other members; however, it may be possible that the
administrator of the board has access to some privileged information and can
determine the member who posted the message(s), either directly or indirectly.

In general anonymity may be required for a subset of the agents only. In order
to completely define anonymity for a system it is therefore necessary to specify
which set(s) of members has to be kept anonymous. A further generalization
is the concept of group anonymity: the members are divided into a number of
sets, and it is revealed which of the groups is responsible for an event, but
the information as to which particular member has performed the event must be
hidden. In this paper, however, we do not consider the notion of group anonymity,
we leave it for further work.

Various formal definitions and frameworks for analyzing anonymity have been
developed in literature. They can be classified into approaches based on process-
calculi ([24,21]), epistemic logic ([26,11]), and “function views” ([13]). In this
paper, we focus on the approach based on process-calculi.

The framework and techniques of process calculi have been used extensively
in the area of security, to formally define security properties, and to verify cryp-
tographic protocols. See, for instance, [2, 15, 20, 23, 3]. The common denominator
is that the various entities involved in the system to verify are specified as con-
current processes and present typically a nondeterministic behavior. In [24, 21],
the nondeterminism plays a crucial role to define the concept of anonymity. More
precisely, this approach to anonymity is based on the so-called “principle of con-
fusion”: a system is anonymous if the set of the possible outcomes is saturated
with respect to the intended anonymous users, i.e. if one such user can cause a
certain observable trace in one possible computation, then there must be alter-
native computations in which each other anonymous user can give rise to the
same observable trace (modulo the identity of the anonymous users).

The principle of anonymity described above is very elegant and general, how-
ever it has a limitation: Many systems for anonymity use random mechanisms.
See, for example, Crowds ([19]) and Onion Routing ([27]). If the observer has
the means to repeat the experiment and perform statistical analysis, he may be
able to deduce certain quantitative information on the system. In particular, he
may be able to compute the probability of certain observables and from that



infer the probability of the relation between users and observables. Now, the
situation of perfect anonymity can be only achieved when one cannot differen-
ciate the agents by the observable. However this condition cannot be expressed
in the nondeterministic approach, since the latter is based on set-theoretic no-
tions, and it is therefore only able to detect the difference between possible and
impossible (which in the finite case correspond to positive and zero probability
respectively). Even the case in which one user has probability close to 1 will be
considered acceptable by the definition of anonymity based on nondeterminism,
provided that all the other users have positive probability.

Probabilistic information also allows to classify various notions of anonymity
according to their strength. See for instance the hierarchy proposed by Reiter and
Robin ([19]). In this paper we explore a notion of anonymity which corresponds
to the strongest one (perfect anonymity: from the observables we deduce no
information about the possible user).

A probabilistic notion of anonymity was developed (as a part of a general
epistemological approach) in [11]. The approach there is purely probabilistic, in
the sense that both the system and the users are assumed to act probabilistically.
In particular the emphasis is on the probabilistic behavior of the users.

In this work, we take the opposite point of view, namely we assume that
nothing may be known about the relative frequency by which the users perform
the anonymous action. More precisely, the users can in principle be totally un-
predictable and change intention every day, so that their behavior cannot be
described probabilistically, not even by repeating statistical observations. The
mechanisms of the systems, on the contrary, are like coin tossing, or random
selection of a nearby node, are supposed to exhibit a certain regularity and obey
a probabilistic distribution. Hence, we investigate a notion of anonymity which
combines both probability and nondeterminism, and which is suitable for de-
scribing the most general situation in which both the systems and the user can
have both probabilistic and nondeterministic behavior. We also investigate the
properties of the definition for the particular cases of purely nondeterministic
users and purely probabilistic users.

In order to define the notion of probability we need, of course, a model of
computation able to express both probabilistic and nondeterministic choices.
This kind of systems is by now well established in literature, see for instance
the probabilistic automata of [25], and have been provided with solid mathe-
matical foundations and sophisticated tools for verification. These models have
practically replaced nowadays the purely probabilistic models since it was rec-
ognized that nondeterministic behavior is not “probabilistic behavior with un-
known probabilities”, but rather a phenomenon on its own, which is needed
to describe situations in which an entity has a completely unpredictable and
irregular behavior.



2 The nondeterministic approach to anonymity

In this section we briefly recall the approach in [24,21]. In these works, the
actions of a system S are classified into three sets which determine the “point
of view” (see Figure 1):

Fig. 1. Classification of the actions in an anonymous system (cfr. [21]).

— A: the actions that are intended to be known anonymously by the observer,
— B: the actions that are intended to be known completely by the observer,
— C: the actions that are intended to be abstracted (hidden) to the observer.

Typically the set A consists of actions of the form a.i, where a is a fixed “ab-
stract” action (the same for all the elements of A), and 7 represents the identity
of an anonymous user. Hence:

A={ailiel}.

Where [ is the set of all the identities of the anonymous users.

Consider a dummy action d (different from all actions in S) and let f be the
function on the actions of A|J B defined by f(a) = d if a € A, and f(a) = «
otherwise. Then S is said to be (strongly) anonymous on the actions in A if

FTHFN\C)) ~p S\C,

where, following the CSP notation ([5]), S\C is the system resulting from hiding
C in S, f(S’) is the system obtained from S’ by applying the relabeling f to
each (visible) action, f~! is the relation inverse of f, and ~7 represents trace
equivalence?.

Intuitively, the above definition means that for any action sequence @ € A*,

if an observable trace ¢ containing & (not necessarily as a consecutive sequence)

3 The definition given here corresponds to that in [24]. In [21] the authors use a differ-
ent (but equivalent) definition: they require p(S\C) ~r S\C for every permutation
pin A.



is a possible outcome of S\C, then, any trace t’ obtained from ¢ by replacing &
with an arbitrary &’ € A* must also be a possible outcome of S\C.

We now illustrate the above definition on the example of the Dining Cryp-
tographers.

3 The Dining Cryptographers’ Problem

This problem, described by Chaum in [7], involves a situation in which three
cryptographers are dining together. At the end of the dinner, each of them is
secretly informed by a central agency (master) whether she should pay the bill,
or not. So, either the master will pay, or one of the cryptographers will be asked
to pay. The cryptographers (or some external observer) would like to find out
whether the payer is one of them or the master. However, if the payer is one of
them, they also wish to maintain anonymity over the identity of the payer. Of
course, we assume that the master herself will not reveal this information, and
also we want the solution to be distributed, i.e. communication can be achieved
only via message passing, and there is no central memory or central ‘coordinator’
which can be used to find out this information.

A possible solution to this problem, described in [7], is that each cryptogra-
pher tosses a coin, which is visible to herself and her neighbor to the right. Each
cryptographer observes the two coins that she can see and announces agree or
disagree. If a cryptographer is not paying, she will announce agree if the two
sides are the same and disagree if they are not. However, the paying cryptogra-
pher will say the opposite. It can be proved that if the number of disagrees is
even, then the master is paying; otherwise, one of the cryptographers is paying.
Furthermore, if one of the cryptographers is paying, then neither an external
observer nor the other two cryptographers can identify, from their individual
information, who exactly his paying.

The Dining Cryptographers’ Problem will be a running example through the
paper.

3.1 Nondeterministic Dining Cryptographers

In this approach the outcome of the coin tossing and the decision of the master
regarding the payment of bill are considered to be nondeterministic ([24, 21]).

The specification of the solution can be given in a process calculus style as
illustrated in Table 1. In the original works ([24,21]) the authors used CSP. For
the sake of uniformity we use here the m-calculus ([17]). We recall that + (3°) is
the nondeterministic sum and | (IT) is the parallel composition. 0 is the empty
process. 7 is the silent (or internal) action. @m and c(z) are, respectively, send
and receive actions on channel ¢, where m is the message being transmitted
and z is the formal parameter. v is an operator that, in the w-calculus, has
multiple purposes: it provides abstraction (hiding), enforces synchronization,
and generates new names. For more details on the w-calculus and its semantics,
we refer to Appendix A.1.



Fig. 2. Chaum’s system for the Dining Cryptographers ([7, 21]).

In the code in Table 1, & and & represent the sum and the subtraction
modulo 3. Messages p and n sent by the master are the requests to pay or to not
pay, respectively. pay; is the action of paying for cryptographer .

We remark that we do not need all the expressive power of the 7-calculus for
this program. More precisely, we do not need guarded choice (all the choices are
internal because they start with 7), and we do not need neither name-passing nor
scope extrusion, thus v is used just like the restriction operator of CCS ([16]).

Let us consider the point of view of an external observer. The actions that
are to be hidden (set C) are the communications of the decision of the master
and the results of the coins (77, ¢). These are already hidden in the definition of
the system DCP. The anonymous users are of course the cryptographers, and
the anonymous actions (set A) is constituted by the pay, actions, for i = 0, 1, 2.
The set B is constituted by the actions of the form out;agree and out;disagree,
for i =0,1,2.

Let f be the function f(pay,;) = pay and f(«) = « for all the other actions.
It is possible to check that f=1(f(DCP))) ~r DCP, where we recall that ~
stands for trace equivalence. Hence the nondeterministic notion of anonymity,
as defined in Section 2, is verified.

3.2 Limitations of the nondeterministic approach

As a result of the nondeterminism, we cannot differentiate between a fair coin
and an unfair one. However, it is evident that the fairness of the coins is essential
to ensure the anonymity property in the system, as illustrated by the following
example.

Example 1. Assume that, whenever a cryptographer pays, an external observer
obtains almost always (i.e. with high frequency, say 99% of the times) one of



Master = 3.7 7 .7:p . Mi@in . Mig2n . 0
+ T.mon.min.m2n.0
Crypt; = mi(x) . cii(y) - ciie1(2) .
ifx=p
then pay, .if y ==z
then out;disagree
else out;agree
else if y = 2
then out;agree
else out;disagree
Coin; = 7.Head; + 7. Tail;
Head; =¢;ihead .Cio1,:head .0
Tail; = €;,itail .Cior,itail .0
DCP = (vm)(Master
| (UL Crypt; | 117, Coins) )

Table 1. Chaum'’s system for the Dining Cryptographers in the m-calculus.



Fig. 3. Illustration of Example 1: the results that are observed with high frequency.

the three outcomes represented in Figure 3, where a stands for agree and d for
disagree. What can the observer deduce? By examining all possible cases, it is
easy to see that the coins must be biased, and more precisely, Coing and Coin,
must produce almost always head, and Coins must produce almost always tail
(or vice-versa). From this estimation, it is immediate to conclude that, in the
first case, the payer is almost for sure Crypt,, in the second case Crypt,, and in
the third case Crypt.

In the situation illustrated in the above example, clearly, the system does
not provide anonymity. However the nondeterministic definition of anonymity
is still satisfied (as long as “almost always” is not “always”, which in terms of
observations means that the fourth configuration d, a,a must also appear, from
time to time). The problem is that that definition can only express whether or
not it is possible to have a particular trace, but cannot express whether one trace
is more likely than the other.

3.3 Probabilistic Dining Cryptographers

The probabilistic version of the system can be obtained from the nondeterminis-
tic one by attaching probabilities to the the outcome of the coin tossing. We wish
to remark that this is the essential change in perspective: the random mecha-
nisms internal to the system which is designed to ensure anonymity are assumed
to have a probabilistic behavior. As for the choices of the master, those are in
a sense external to the system, and it is secondary whether they are nondeter-
ministic or probabilistic.

We start by considering a nondeterministic master, which is in a sense the
basic case: the fact that the master is nondeterministic means that we cannot
assume any regularity in its behavior, nobody has any information about it,
not even a probabilistic one. The anonymity system must then assure that this
complete lack of knowledge be preserved through the observations of the possible
outcomes (except, of course, for gaining the information on whether the payer
is one of the cryptographers or not).

We use the probabilistic m-calculus (7)) introduced in [12, 18] to represent
the probabilistic system. The essential difference with respect to the m-calculus



is the presence of a probabilistic choice operator of the form
> piciP;
i

where the p;’s represents probabilities, i.e. they satisfy p; € [0,1] and ), p; =1,
and the «;’s are non-output prefixes, i.e. either input or silent prefixes. (Actu-
ally, for the purpose of this paper, only silent prefixes are used.) The detailed
presentation of this calculus is in Appendix A.2.

The only difference with respect to the program presented in Section 3.1
is the definition of the Coin;’s, which is as follows (p; and p; represent the
probabilities of the outcome of the coin tossing):

Coin; = pp7 . Head; + pe7 . Tail;

It is clear that the system obtained in this way combines probabilistic and
nondeterministic behavior, not only because the master is nondeterministic, but
also because the various components of the system and their internal interactions
can follow different scheduling policies, selected nondeterministically (although
it can be proved that this latter form of nondeterminism is not relevant for this
particular problem).

This kind of systems (combining probabilistic and nondeterministic choices)
is by now well established in literature, see for instance the probabilistic au-
tomata of [25], and have been provided with solid mathematical foundations
and sophisticated tools for verification. In particular, we are interested here in
the definition of the probability associated to a certain observable. The canonical
way of defining such a probability is the following: First we solve the nondeter-
minism, i.e. we determine a function (scheduler) which, for each nondeterministic
choice in the the computation tree, selects one alternative. After pruning the tree
from all the non-selected alternatives, we obtain a fully probabilistic automaton,
and we can define the probabilities of (measurable) sets of runs (and therefore of
the intended observables) in the standard way. See Appendix A.2 for the details.

One thing that should be clear, from the description above, is that in general
the probability of an observable depends on the given scheduler.

4 Probabilistic anonymity for nondeterministic users

In this section we propose our notion of probabilistic anonymity for the case in
which the anonymous user is selected nondeterministically.

The system in which the anonymous users live and operate is modeled as
a probabilistic automaton M ([25], see Appendix A.2). Following [24,21] we
classify the actions of M into the three sets A, B and C (cfr. Section 2). As
before, these three sets are determined by the set of the anonymous users, the
specific type of action on which we want anonymity, and the observer. We only
change notation slightly:



— The set of the anonymous actions:
A={a(i)|i eI}

where I is the set of the identities of the anonymous users and a is an injective
functions from I to the set of actions which we call abstract action. We also
call the pair (I,a) anonymous action generator.

— The set of the actions that we observe entirely, B. We will use b, ¥, ...to
denote the elements of this set.

— The set of the hidden actions C.

It should be remarked the the term “observable” here is relative: we assume that
the observer can observe only B and a, but, to the purpose of defining anonymity
and checking whether a system is anonymous, we need the elements of A to be
visible outcomes of the system.

Definition 1. An anonymity system is a tuple (M,1,a,B,Z,p), where M is
a probabilistic automaton which we assume already restricted (abstracted) on
C, (I,a) is an anonymous action generator, B is a set of observable actions,
Z is the set of all possible schedulers for M, and for every ¢ € Z, pc is a
probability measure on the event space generated by the execution tree of M under
¢ (denoted by etree(M,<)), i.e. the o—field generated by the cones in etree(M,¢)
(cfr. Appendiz A.2).

Note that, as expressed by the above definition, given a scheduler ¢, an event
is a set of executions in etree(M,<). We introduce the following notation to
represent the events of interest:

— a(i) : all the executions in etree(M, <) containing the action a(7)

— a: all the executions in etree(M, ¢) containing an action a(i) for an arbitrary
1

— o : all the executions in etree(M,¢) containing as their maximal sequence of
observable actions the sequence o (where o is of the form (b1, bs,...,b,) for
some by, b, ..., b, € B). We denote by O the set of all such o’s (observables).

We use the symbols U, N and — to represent the union, the intersection, and the
complement of events, respectively.

We wish to keep the notion of observables as general as possible, but we
still need to make some assumptions on them. First, we want the observables
to be disjoint events. Second, they must cover all possible outcomes. Third, an
observable o must indicate unambiguously whether a has taken place or not, i.e.
it either implies a, or it implies —a. In set-theoretic terms it means that either o
is contained in a or in the complement of a. Formally:

Assumption 1 (Assumptions on the observables)

1. Ys € Z.Yoi,02 € O. 01 # 03 = p(01Uo2) = p(01)+ pc(02)

10



2.¥¢eZ. p(0)=1
3. ¥se Z.YoeO. p(oNa)=pc(o)V pc(oN-a)=po)

Analogously, we need to make some assumption on the anonymous actions.
We consider here conditions tailored for the nondeterministic users: Each sched-
uler determines completely whether an action of the form a(i) takes place or
not, and in the positive case, there is only one such i. Formally:

Assumption 2 (Assumption on the anonymous actions for nondeterministic users)

Vo€ Z. pa)=0V (Fie€l (p(a(i))=1 A Vjel. j#i= pca(j)) =0))

We are now ready to give the definition of anonymity for the case in which
the anonymous user is selected nondeterministically:

Definition 2 (Probabilistic anonymity for nondeterministic users).
A system (M,1,a,B,Z,p) is anonymous if
Vs, 9 € Z. Yo € O. pc(a) =py(a) =1 = pc(0) = py(o)

Intuitively, the above definition expresses the fact that, for every two possible
nondeterministic choice ¢ and ¥ which both select a, (say a(i) and a(j), with ¢
and j possibly different) it should not be possible to detect from the probabilistic
measure of the observables whether the choice was ¢ or ¢ (i.e. whether the user
was i or j).

Ezample 2. Consider the dining cryptographers with probabilistic coins and
nondeterministic master. If the coins can give both head and tail, then, for each
scheduler which chooses a (i.e. 7;p for some %), the possible observable events
are {a,a,d), {a,d,a), {(d,a,a), and (d,d,d) ({rg,r1,r2) here represents the collec-
tive result outorg, outir1, and oufars). In principle different schedulers would
affect also the order in which the outputs are emitted, but it is easy to see that
the order, in this system, does not affect the probability, so we ignore it.
Consider the case in which the coins are totally fair, i.e. each of them gives
head and tail with 1/2 probability each. By considering all the 8 possible con-
figurations of the coins, (h,h,h), (h,h,t), ...(t,t,t), it is easy to see that, for
each possible payer i, each of the above observables is produced by exactly two
configurations and hence has probability 1/4. Hence Definition 2 is verified.
Consider now the case in which the coins are biased. Say, Coing and Coiny
give head with probability 9/10 and tail with probability 1/10, and vice-versa
Coing gives head with probability 1/10 and tail with probability 9/10. (This case
is analogous to that illustrated in Example 1). Let us consider the observable
{(a,a,d). In case Crypt, is the payer, then the probability to get (a, a,d) is equal
to the probability that the result of the coins is (h, h,t), plus the the probability
that the result of the coins is (¢, ¢, h), which is 9/10%9/10%9/1041/10%1/10 =
1/10 = 730/1000. In case Crypt, is the payer, then the probability to get (a, a, d)
is equal to the probability that the result of the coins is (h, h, h), plus the the

11



probability that the result of the coins is (¢,¢,t), which is 9/10%9/10 % 1/10 +
1/10%1/10%9/10 = 90/1000.

Hence, in the biased case, Definition 2 is not verified. And this is what we ex-
pect, because the system, intuitively, is not anonymous: when we observe (a, a, d),
Crypt, is much more likely to be the payer than Crypt,.

As proved in the example above, the dining cryptographers with fair coins
are anonymous.

Proposition 1. The dining cryptographers with probabilistic fair coins and non-
deterministic master are probabilistically anonymous.

5 Probabilistic anonymity for users with combined
probabilistic and nondeterministic behavior

In this section we develop a notion of anonymity for the more general case in
which also the users may be selected according to some probabilistic distribution,
possibly combined with a nondeterministic selection.

An example of such kind of behavior in the dining cryptographers can be
obtained by specifying the master as making first a nondeterministic choice on
which probabilistic distribution to apply for selecting the payer (the master
herself or one of the cryptographers), and then a probabilistic choice.

An example of such a master in 7, would be the following (po, ..., ps, qo, - - -, q3
represent the probabilities of the various decisions of the master)

Master = 1.Master, + 7.Masters

Master, = Z?:opi T.TMp .- Mig1n . Migan .0
+  psT.mon.min.man.0

Masters = Z?:o Qi TP . Mig1N . Mgan . 0
+ q3T.mon.min.man.0

Note that the choice in Master is nondeterministic while the choices in
Master; and Masters are probabilistic.

While the assumptions on the observables remain the same, the assumption
on the anonymous actions in this case is much weaker: the scheduler does not
determine completely, in general, whether a is executed or not, and who is the
user. However, we still require that there be at most an user which performs a
for each computation, i.e. a(¢) and a(j) must be disjoint for ¢ # j. Formally:

Assumption 3 (Assumption on the anonymous actions for users with
combined probabilistic and nondeterministic behavior)

Vee Z.Vi,jel. i#j = pslali)Ual(f)) = ps(ali)) + pe(aly))

12



The notion of anonymity, in this case, must take into account the probabilities
of the a(7)’s. When we observe a certain event o, the probability of o having been
induced by a(i) must be the same as the probability of o having been induced
by a(j) for any other j € I. To formalize this notion, we need the concept of
conditional probability. Recall that, given two events x and y with p(y) > 0, the
conditional probability of x given y, denoted by p(z|y), is equal to the probability
of x and y, divided by the probability of y:

p(zNy)
»(y)

Definition 2 can now be extended as follows:

p(z|y) =

Definition 3 (Probabilistic anonymity for users with combined prob-
abilistic and nondeterministic behavior). A system (M,I,a,B,Z, p) is
anonymous if

Ve, € Z.Vi,j el YoeO.
(p<(a(i)) > 0 A po(a(j)) > 0) = pc(o]a(i)) = polo]alj))

Ezample 3. Consider the dining cryptographers with probabilistic coins and the
nondeterministic and probabilistic master illustrated above. Assume that the
coins are totally fair. Consider a scheduler ¢ which selects Master; and assume
that Master; selects ¢ € I as the payer, with probability p;. Consider now a
scheduler ¢ which selects Masters, and assume that Mastery selects j € I as
the payer, with probability ¢;. Again, the possible observable events are (a, a, d),
(a,d,a), {d,a,a), and (d,d,d). By considering all the 8 possible configurations
of the coins, (h, h,h), (h, h,t), ... (t,t, 1), it is easy to see that if the scheduler is
¢ and the payer is i, each of the above observables is produced by exactly two
configurations and hence the conditional probability of that observable, given
that i is the payer, is 1/4. The same holds for ¢ and j, hence Definition 3 is
verified.

The behavior of a master which combines nondeterministic and probabilistic
behavior can be much more complicated than the one illustrated above. However
it is easy to see, by following the reasoning in the example above, that as long
as the master does not influence the behavior of the coins, and these are fair,
the conditional probability of each observable for a given payer is 1/4.

Proposition 2. The dining cryptographers with probabilistic fair coins and non-
deterministic and probabilistic master are probabilistically anonymous.

We terminate this section by giving an alternative characterization of the
notion of anonymity.

Theorem 1. A system (M,I,a,B,Z,p) is anonymous iff
Vs, 0 € Z.VieI. Yoe O. (ps(a(i)) >0Apy(a)>0)= p(o]a(i)) = ps(o]|a)

Note that py(o]a) = py(0)/py(a) if o implies a, and pg(o]|a) =0 otherwise.
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Proof. If part) Let ¢,9 € Z and 4,5 € I such that p.(a(z)) > 0 and py(a(j)) >
0. Since pg(a(7)) > 0 implies py(a) > 0, by the hypothesis we have p.(o|a(i)) =
py (0| a). Furthermore, by replacing in the hypothesis ¢ with ¢ and ¢ with j
we have py(o|a(j)) = ps(o]a).

Only if part) Let ¢,¥ € Z and i € I such that p.(a(?)) > 0 and py(a) > 0.

po(oNa) = po(oNUj e ald))
= po(Uje (0N a(j)))
= Zje] po(oNa(y)) (by Assumption 3)
- Zp«a(a(j))>o po(oNal(j))
=2 potai)>o0 Po(olali)) po(a(i))
= pc(o]af(i)) Epﬂ(a(j)bo po(a(j)) (by Definition 3)
= pe(o]a(i)) ps(a)

Hence py(o]a) = py(oNa)/ps(a) = pc(o]a(i)). 0

6 Probabilistic Anonymity for fully probabilistic users

In this section we investigate how the removal of the nondeterministic dimension
influences the definition of anonymity. We consider therefore a totally probabilis-
tic system.

For instance, in the case of the dining philosophers, the master would be of
the form

2 __ I —
Master =3 7 pi 7. TP . TMig1n . Mig2n . 0
+ p3T.mon.min.meon.0

Furthermore, we would fix the scheduling of the parallel activities, so that each
step in the computation would be either deterministic or probabilistic.

Since the system is totally probabilistic, the probability measures do not
depend on the choice of the scheduler (there is only one scheduler, in a sense).
So we can eliminate the component Z from the tuple and we can write p(z)
instead of p.(z). The definition of Probabilistic anonymity given in previous
section (cfr. Definition 3) simplifies into the following:

Definition 4 (Probabilistic anonymity for probabilistic users).
A system (M, 1,a, B, p) is anonymous if

Vi,j € 1. Vo€ O. (p(a(i)) > 0Ap(a(j)) > 0) = plo]a(i)) = plo]a(j))

Furthermore, the alternative characterization in Theorem 1 reduces to the
following:
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Corollary 1. A system (M, I,a, B, p) is anonymous iff
VieI.Yoe O. (p(a(i)) >0Ap(a) >0)= plo]a(i)) = plo]a)

We recall that p(o|a) = p(o)/p(a) if o implies a, and p(o|a) =0 otherwise.

In the fully probabilistic case there are two other interesting characteriza-
tions: The first is based on the intuition that a system is anonymous if the
observations do not change the probability of a(i): we may know the probability
of a(i) by some means external to the system, but the system should not increase
our knowledge about it (cfr. [11]). The second is based on the (similar) idea that
observing o rather than o’ should not change our knowledge of the probability
of a(¢). Formally:

Proposition 3. The following conditions are equivalent, and are equivalent to
the condition of anonymity.

1.YielI.NYoeO. plona)>0 = pla(i)|o) = pla(i))/p(a)
2. YieI.Yo,0 €0. (plona) >0Ap(d'Na)>0) = pla(i)|o) = pla(i)]|o).

Proof. The equivalence of (1) and the condition in Proposition 1 is easy to prove,
and we leave it as an exercise for the reader. As for the equivalence of (1) and
(2), we have:

(1) = (2)) Let i € I, and 0,0’ € O such that p(oNa) > 0 and p(o’ Na) > 0.
By (1) we have p(a(i) | 0) = p(a(i))/p(a) = p(a(i) [ o).

(2) = (1)) Let i € I and o € O such that p(oNa) > 0. We have

p(a(i)) = p(a(i) "Uyeo ) (by Assumption 1.2)
= p(Uyeola(i) N0))
=Y oeco pla(i)no) (by Assumption 1.1)

= Zp(o’ﬁa)>0 p(a(i) No)

= Lp(onay>0 Plali)[0) p(o')

= p(a(i) [0) Xpimmya0 2(0) (b (2))

= p(a(i)]o) p(a) (by Assumptions 1.2 and 1.3)

O

Proposition 3 can be reformulated as a general property of probablistic
spaces, independent from the notion of anonymity. Similar results have been
presented in [10] and in [9].
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6.1 Characterizations given by Proposition 3 and nondeterminism

It is not clear whether the characterizations expressed in Proposition 3 can be
generalized to the case of the users with combined nondeterministic and proba-
bilistic behavior. The “naive” extensions obtained by introducing the scheduler
in the formulae would not work. Let us consider the first characterization (the
other would be analogous):

Viel.YoeO. plona)>0 = p(a(i)|o) = pla(i))/p(a)

One possible way of reintroducing the notion of scheduler is

Ve, 9 € Z.Viel. Yo e O.
(ps(0Na) > 0Apy(a) >0) = p(a(i)]o) = ps(ali))/ps(a)

However this condition is too strong because it implies that py(a(i))/py(a) is
the same for every ¢, and this is clearly not the case for instance for the nonde-
terministic and probabilistic master specified in Section 5.

On the other hand, if we weaken the condition by identifying ¢ and ¥:

VoeZ.Viel.YoeO. pona)>0= p(a(i)]o) = ps(a(i))/ps(a)

then the condition would be too weak to ensure anonymity, as shown by the
following example:

Example 4. Consider a system in which the master influences the behavior of
the coins somehow, in such a way that when Crypt; is chosen as the payer (say,
purely nondeterministically, by ¢;) the result is always oy = (d, a,a) for i = 0,
01 = {a,d,a) for i = 1, and 0y = {(a,a,d) for ¢ = 2. Then we would have
pe,(0; Na) >0 only if j =4, and p, (a(i) |0;) =1 = p, (a(i))/pe, (a). Hence the
above condition would be verified, but the system is not be anonymous at all:
whenever we observe (d, a, a), for instance, we are sure that Crypt, is the payer.

6.2 Independence from the probability distribution of the users

One important property of Definition 4 is that it is independent from the prob-
ability distribution of the users. Intuitively, this is due to the fact that the con-
dition of anonymity implies that p(o]|a(i)) = p(0)/p(a), hence it is independent
from p(a(i)).

Theorem 2. If (M, I,a,B,p) is anonymous (according to Definition 4) then
for any p’ which differs from p only on the a(i)’s, (M, I,a, B, p’) is anonymous.

Also the characterizations of anonymity given in Proposition 3 are (obvi-
ously) independent from the probability distribution of the users. It should be
remarked, however, that their correspondence with Definition 4, and the prop-
erty of independence from the probability of the users, only holds under the
hypothesis that there is at most one agent performing a. (Assumption 3.)
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7 Related work

The work [13] presents a modular framework to formalize a range of proper-
ties (including numerous flavors anonymity and privacy) of computer systems in
which an observer has only partial information about system behavior, thereby
combining the benefits of the knowledge-based approach (natural specification
of information-hiding) and the algebra-based approach (natural specification of
system behavior). It proposes the notion of function view to represent a math-
ematical abstraction of partial knowledge of a function. The logical formulas
describing a property are characterized as opaqueness of certain function views,
converted into predicates over observational equivalence classes, and verified,
when possible, using the proof techniques of the chosen process formalism.

In [11,26] epistemic logic is used to characterize a number of information-
hiding requirements (including anonymity). In particular, [26] introduces the
notion of a group principal and an associated model, language and logic to axiom-
atize anonymity. The main advantage of modal logic is that even fairly complex
properties can be stated directly as formulas in the logic. On the other hand,
[11] uses a completely semantic approach and provides an appropriate semantic
framework in which to consider anonymity. It also propose notions of probabilis-
tic anonymity in a purely probabilistic framework. In particular, it propose a
notion of conditional probability (cfr. Definition 4.4 in [11]) which is similar to
the first characterization in Proposition 3, if we interpret the formula ¢ in [11]
as the occurrence of the event a.

The first characterization in Proposition 3 was also implicitly used by Chaum
in [7] (in which he considered a purely probabilistic system) as definition of
anonymity. The factor p(a) is not present in the formula of Chaum, but that’s
probably a typo, because in the informal explanation he gives, that factor is
taken into account.

In literature there have been other works involving the use of variants of the
m-calculus for formalizing protocols providing anonymity or similar properties.
See for example [1,14].

8 Conclusion and future work

We have proposed a new notion of anonymity based on a model which combines
probability and nondeterminism, and we have shown that it can be regarded as
a generalization of the probabilistic one given in [11].

We have formulated the notion of anonymity in terms of observables for
processes in the probabilistic m-calculus, whose semantics is based on the prob-
abilistic automata of [25]. This opens the way to the automatic verification of
the property. We are currently developing a model checker for the probabilistic
m-calculus.

We are currently investigating weaker versions of our notion of anonymity,
and considering their application to protocols like Crowds [8, 6].
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A Appendix

A.1 The m-calculus

We recall here the basic notions about the m-calculus. We choose the variant used
in [4,22], which differs from the standard one because is has a guarded choice
instead of the free choice. This is convenient because it will allow to introduce
the probabilistic 7-calculus, in the next section, in a smoother way.

Let N be a countable set of names, x,y, . ... The set of prefixes, a, 8, ..., and
the set of m-calculus processes, P, Q, ..., are defined by the following abstract
syntax:

Prefivzes o :=x(y) | zy | 7

Processes P =Y. «;.P; | vaP | P|P
| 1P =y P | [z#yP

Prefixes represent the basic actions of processes: x(y) is the input of the
(formal) name y from channel x; zy is the output of the name y on channel z; 7
stands for any silent (non-communication) action.
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The process ), o;.P; represents guarded (global) choice and it is usually
assumed to be finite. We will use the abbreviations 0 (inaction) to represent the
empty sum, o.P (prefiz) to represent sum on one element only, and P + @ for
the binary sum. The symbols vz, |, and ! are the restriction, the parallel, and
the replication operator, respectively.

To indicate the structure of a process expression we will use the following con-
ventions: Py | Py | Pe|...| Py—1 stands for (...((Po|P1)|P2)|...| Pe—1), i.e. the
parallel operator is left associative, and a;.P; | ae. Py stands for (a1.Py)|(ce.Ps),
i.e. the prefix operator has precedence over |. In all other cases of ambiguity we
will use parentheses.

The operators vz and y(x) are z-binders, i.e. in the processes va P and y(z).P
the occurrences of x in P are considered bound, with the usual rules of scoping.
The set of the free names of P, i.e. those names which do not occur in the scope of
any binder, is denoted by fn(P). The alpha-conversion of bound names is defined
as usual, and the renaming (or substitution) P{y/x} is defined as the result of
replacing all occurrences of z in P by y, possibly applying alpha-conversion to
avoid capture.

In the paper we use also the construct

if x =y then P else Q

This expression is syntactic sugar standing for the process [x = y] P | [z # y] Q.
The operational semantics is specified via a transition system labeled by
actions u, i’ . ... These are given by the following grammar:

Actions p==ay | Ty | T(y) | 7

Action xy corresponds to the input prefix z(z), where the formal parameter z is
instantiated to the actual parameter y (see Rule I-SuMm in Table 2). Action Ty
correspond to the output of a free name. The bound output Z(y) is introduced
to model scope extrusion, i.e. the result of sending to another process a private
(v-bound) name. The bound names of an action u, bn(u), are defined as follows:
bn(Z(y)) = {y}; dn(zy) = bn(Ty) = bn(r) = 0. Furthermore, we will indicate
by n(u) all the names which occur in p.

In literature there are two definitions for the transition system of the =-
calculus which induce the so-called early and late bisimulation semantics respec-
tively. Here we choose to present the first one. There is no difference between
the two for the purposes of our paper.

The rules for the early semantics are given in Table 2. The symbol = used
in Rule CONG stands for structural congruence, a form of equivalence which
identifies “statically” two processes. Again, there are several definition of this
relation in literature. For our purposes we do not need a very rich notion, we will
just use it to simplify the presentation. Hence we only assume this congruence
to satisfy the following:

(i) P=Q if Q can be obtained from P by alpha-renaming, notation P =, @,
(ii) PlQ =QlP,
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(iif) (P|Q)|R = P(Q|R)
(iv) (vzP)|Q = vz(P|Q)
v) IP=P|IP,

(vi) [ |P =P,

(vii) [

I-Sum

OPEN

REs

PAR

Com

CLOSE

ConG

O/T—SUM Zz Oqu & Pj

z(z)
Yo P — Pilz/yl  a; =x(y)

P p

W, C7Y
vyP — P

PP
—— vy é&n
vyP — vyP

P p
————  bn(w)nf(@) =0
PlQ — P'|Q
P p QI
P|Q — P'|Q’
P p QMg

PlQ —— vy(P'|Q")

Pp=pP P 5Q Q=Q

P2 Q

Table 2. The transition system of the m-calculus.

A.2 The probabilistic w-calculus

In this section we recall the definition of the probabilistic 7-calculus, 7, which
was introduced in [12]. This calculus was used in [18] to express various random-
ized algorithms, notably the distributed implementation of the w-calculus with
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mixed choice. In this paper, we are going to use it as a formalism to express
systems of probabilistic anonymous agents.

Probabilistic Automata The m,-calculus is based on the model of proba-
bilistic automata of Segala and Lynch ([25]), which are able to express both
probabilistic and nondeterministic behaviors.

A discrete probabilistic space is a pair (X, pb) where X is a finite or countable
set and pb is a function pb : X — (0, 1] such that >~ _ pb(z) = 1. Given a set
Y, we define the sets of all probabilistic spaces on Y as

Prob(Y) ={(X,pb) | X CY and (X, pd) is
a discrete probabilistic space }.

Given a set of states S and a set of actions A, a probabilistic automaton on S
and A is a triple (S, 7, sg) where sg € S (initial state) and 7 C S x Prob(A x S).
We call the elements of 7 transition groups (in [25] they are called steps). The
idea behind this model is that the choice between two different groups is made
nondeterministically and possibly controlled by an external agent, e.g. a sched-
uler, while the transition within the same group is chosen probabilistically and
it is controlled internally (e.g. by a probabilistic choice operator). An automa-
ton in which there is at most one transition group for each state is called fully
probabilistic.

We define now the notion of execution of an automaton under a scheduler,
by adapting and simplifying the corresponding notion given in [25]. A scheduler
can be seen as a function that solves the nondeterminism of the automaton by
selecting, at each moment of the computation, a transition group among all the
ones allowed in the present state. Schedulers are sometimes called adversaries,
thus conveying the idea of an external entity playing “against” the process. For
the purpose of this paper, however, we stick to the term “scheduler” in order to
avoid confusion with the notion of adversary used in security. We will assume
that a scheduler can decide the next transition group depending not only on the
current state, but also on the whole history of the computation till that moment,
including the random choices made by the automaton.

Given a probabilistic automaton M = (5,7, sg), define tree(M) as the tree
obtained by unfolding the transition system, i.e. the tree with a root ng labeled
by sg, and such that, for each node n, if s € S is the label of n, then for each
(s,(X,pb)) € T, and for each (u,s’) € X, there is a node n’ child of n labeled
by s’, and the arc from n to n’ is labeled by u and pb(u, s’). We will denote by
nodes(M) the set of nodes in tree(M), and by state(n) the state labeling a node
n.

A scheduler for M is a function ¢ that associates to each node n of tree(M)
a transition group among those which are allowed in state(n). More formally, < :
nodes(M) — Prob(A x S) such that ¢(n) = (X, pb) implies (state(n), (X, pb)) €
T

The execution tree of an automaton M = (S5,7,s¢) under a scheduler g,
denoted by etree(M,¢), is the tree obtained from tree(M) by pruning all the
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arcs corresponding to transitions which are not in the group selected by .
More formally, etree(M, <) is a fully probabilistic automaton (S’,7’,ng), where
S" C nodes(M), ng is the root of tree(M), and (n, (X', pb")) € T iff X' =
{(p,n") | (, state(n’)) € X and n' is a child of n in tree(M)} and pb'(u,n’) =
pb(u, state(n’)), where (X, pb) = ¢(n). If (n,(X’,pb")) € T, (u,n') € X', and
pb’ (i, n’) = p, we will use sometime the notation n % n'.

An execution fragment & is any path (finite or infinite) from the root of
etree(M, ). The notation ¢ < ¢ means that ¢ is a prefix of &. If £ is ng ~>
Po

n1 5 ng 225 .. the probability of € is defined as pb(&) =1, p;- If § is maximal,
p1 p2

then it is called ezecution. We denote by exec(M, <) the set of all executions in

etree(M, ).

We define now a probability on certain sets of executions, following a standard
construction of Measure Theory. Given an execution fragment &, let C¢ = {¢’ €
exec(M,s) | & < &'} (cone with prefix £). Define pb(Ce) = pb(§). Let {Ci}ier
be a countable set of disjoint cones (i.e. I is countable, and Vi,j. i # j =
C; N Cj = 0). Then define pb(U;c; Ci) = > ;c; pb(Ci). Two countable sets of
disjoint cones with the same union produce the same result for pb, so pb is well
defined. Further, we define the probability of an empty set of executions as 0,
and the probability of the complement of a certain set of executions, with respect
to the all executions as the complement with respect to 1 of the probability of
the set. The closure of the cones (plus the empty set) under countable unions
and complementation generates what in Measure Theory is known as a o-field.

Syntax and transition system of the the m,-calculus We will now il-
lustrate the m,-calculus. Syntactically, the only difference with respect to the
m-calculus is that we do not have the free choice (or mixed guarded choice de-
pending on the presentation), and we have instead the output prefix

ry.P

and the following probabilistic non-output choice operator
Zpiai-Pi
i

where the p;’s represents positive probabilities, i.e. they satisfy p; € (0,1] and
>.;pi =1, and the a;’s are non-output prefixes, i.e. either input or silent prefixes.
Note that the nondeterministic blind choice 7.P +7.Q can be obtained in this
calculus by using the parallel operator: it is in fact equivalent to (vz)(Z || 2. P || z.Q).
In order to give the formal definition of the probabilistic model for =, it is
convenient to introduce the following notation: given a probabilistic automaton
(S,7,50) and s € S, we write

s {15 s |ie I}
pPi
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iff (s, ({(ps,8:) |4 € I},pdb)) € T and Vi € I p; = pb(u, s;), where I is an index
set. When [ is not relevant, we will use the simpler notation s {5 s;};. We will
Pi

also use the notation s { £ 5i }i:¢(i), Where ¢(i) is a logical formula depending
Pi
on i, for the set s {-~5 s; | i € I and ¢(i)}.
o

The operational semantics of a m, process P is a probabilistic automaton
whose states are the processes reachable from P and the 7 relation is defined
by the rules in Table 3.

The following is an informal explanation of the rules in Table 3.

SuM: This rule models the behavior of a choice process: each transition corre-
sponds to the possible execution of an enabled guard a; and the consequent
commitment to the branch P;. Note that all possible transitions belong to
the same group, meaning that the transition is chosen probabilistically by
the process itself.

OuT: This rule expresses the fact that an output prefix process a.P simply
performs the action, and then continues with P.

REs: This rule models restriction on channel y: only the actions on channels
different from y can be performed and possibly synchronize with an external
process. The probability is redistributed among these actions.

OPEN: This rule works in combination with CLOSE by signaling that the send
action labeling the transition is on a name which is private to the sender.

PAR: This rule represents the interleaving of parallel processes. All the transi-
tions of the processes involved are made possible, and they are kept separated
in the original groups. In this way we model the fact that the selection of
the process for the next computation step is determined by a scheduler. In
fact, choosing a group corresponds to choosing a process.

CoM: This rule models communication by handshaking. The output action syn-
chronizes with all matching input actions of a partner, with the same prob-
ability of the input action. The other possible transitions of the partner are
kept with the original probability as well. Note that the the side condition
ensure that all matching inputs are considered. Thanks to alpha-conversion,
we can always rewrite a process so that this condition is met.

CLOSE: This rule is analogous to CoM, the only difference is that the name
being transmitted is private (local) to the sender.

CoNG: This rule rule says that structurally equivalent processes perform the
same transitions.
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a; = zi(y;) and P} = P;[z;/y:] or

SuM Y. pici.Pi {Iﬁ) P/}
Pi a;=7and P/ =P,

our zy.P {if> P}

pP{ZL p}
OPEN # T Hy
vyP {Ty> P’}
i
PGB S0y ¢ () and
REs p - o,
Vﬁwzjwﬂhwmw Vi Dy = Pif Xjyg i) Pi
P {5 P}
PAr Zi bn(p)Nfm(Q) =10
PlQ {p—> P | Q}s
P{=%P}  Q{">Qi}
Com P if u; = x(2) then z =y

PlQ {f P Qi}Yispi=a(y) Y {Z—> P | Qi}icp;#a()

P{ERPY Q{25 Qi
CLOSE - - Pi o if p; = x(z) then z =y
PlQ {7 vy(P" | Qi) i, =a(y) U {7 P Qi}ispia(y)

P=P P {5Q} ViQi=Qi
DPi

P{f%*Qﬁi

ConG

Table 3. The probabilistic transition system of the m,-calculus.
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