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Abstract

Anonymity means that the identity of the user performing a certain action is main-
tained secret. The protocols for ensuring anonymity often use random mechanisms
which can be described probabilistically. The user, on the other hand, may be
selected either nondeterministically or probabilistically. We investigate various no-
tions of anonymity, at different levels of strength, for both the cases of probabilistic
and nondeterministic users.
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1 Introduction

Anonymity is the property of keeping secret the identity of the user perform-
ing a certain action. The need for anonymity may raise in a wide range of
situations, like postings on electronic forums, voting, delation, donations, and
many others.

The protocols for ensuring anonymity often use random mechanisms which
can be described probabilistically. This is the case, for example, of the Dining
Cryptographers [3], Crowds [7], and Onion Routing [12]. In contrast, we usu-
ally don’t know anything about the users, so their behavior, and in particular,
the choice of the user who performs the action with respect to which we want
to ensure anonymity, should better be regarded as nondeterministic. (The
same would hold for adversaries, although in this paper we do not consider
them.) The whole system constituted by the protocol and the users presents
therefore both probabilistic and nondeterministic aspects.
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Various formal definitions and frameworks for analyzing anonymity have
been developed in literature. They can be classified into approaches based
on process-calculi [9,8], epistemic logic [11,5], and “function views” [6]. From
the point of view of the concepts of probability and nondeterminism, how-
ever, all these approaches are either purely nondeterministic (also known as
possibilistic) or purely probabilistic.

The purely nondeterministic approach in [9,8] is based on the so-called
“principle of confusion”: a system is anonymous if the set of the possible
outcomes is saturated with respect to the intended anonymous users, i.e. if
one such user can cause a certain observable trace in one possible computation,
then there must be alternative computations in which each other anonymous
user can give rise to the same observable trace (modulo the identity of the
anonymous users).

The purely probabilistic proposals can be classified under two different
points of view: those which focus on the probability of the users, and those
which focus on the effect that the observables have on the probability of the
users. The distinction is subtle but fundamental. In the fist case, anonymity
holds when (an observer knows that) all users have the same probability of
having performed the action (cfr. strong probabilistic anonymity in [5]). In
the second case, it holds when the for any user i and any observable o the
conditional probability that i has performed the action, given the observable,
is the same as the (a priory) probability that the user has performed the
action (cfr. the informal notion used in [3], and the conditional probabilistic
anonymity in [5]).

The probabilistic approach also brings naturally to differentiate the notion
of anonymity with respect to different levels of strength. Reiter and Robin [7]
have proposed the following hierarchy:

Beyond suspicion The actual user (i.e. the user that performed the action) is
not more likely (to have performed the action) than every other user.

Probable innocence The actual user has probability less than 1/2.

Possible innocence There is a non trivial probability that another used could
have performed the action.

These notions were only given informally in [7], and it is unclear to us whether
the authors had in mind the first or the second of the “points of view” de-
scribed above. On one hand, if we interpret the informal definitions literally,
they correspond to the first point of view. This is the interpretation given by
Halpern and O’Neill in [5]: they characterize probable innocence and possible
innocence with the notion of (probabilistic) α-anonymity, and beyond suspi-
cion with their notion of strong probabilistic anonymity. On the other hand,
the result of probable innocence proved in [7] for Crowds does not seem to
fit with this interpretation, while it could fit with a suitable weakening of the
anonymity notion illustrated above under the second perspective (i.e. what
Halpern and O’Neill call conditional probabilistic anonymity).
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In this work we assume that the users may be nondeterministic, i.e. that
nothing may be known about the relative frequency by which each user per-
form the anonymous action. More precisely, the users can in principle be
totally unpredictable and change intention every time, so that their behav-
ior cannot be thought of as probabilistic 3 . The internal mechanisms of the
systems, on the contrary, like coin tossing in the dining philosophers, or the
random selection of a nearby node in Crowds, are supposed to exhibit a certain
regularity and obey a probabilistic distribution. Correspondingly, we explore
a notion of probabilistic anonymity that focuses on the internal mechanism of
the system, i.e. their non-leakage of probabilistic information, and it is in a
sense independent from the users in case they are nondeterministic. The coun-
terpart of our definition in the case the users are probabilistic (with possibly
unknown probabilities), can be shown to correspond to a generalized version
of Halpern and O’Neill’s conditional probabilistic anonymity, where “general-
ized” here means that the anonymity holds for any probability distribution to
the users.

This abstract is based on the ongoing work reported in [1], [4] and [2].

2 Nondeterminism and probability

In our approach we consider systems that can perform both probabilistic and
nondeterministic choice. Intuitively, a probabilistic choice represents a set
of alternative transitions, each of them associated to a certain probability of
being selected. The sum of all probabilities on the alternatives of the choice
must be 1, i.e. they form a probability distribution. Nondeterministic choice
is also a set of alternatives, but we have no information on how likely one
alternative is selected.

There have been many models proposed in literature that combine both
nondeterministic and probabilistic choice. One of the most general is the
formalism of probabilistic automata proposed in [10]. We give here a brief and
informal description of it.

A probabilistic automaton consists in a set of states, and labeled transitions
between them. For each node, the outgoing transitions are partitioned in
groups called steps. Each step represents a probabilistic choice, while the
choice between the steps is nondeterministic.

Figure 1 illustrates some examples of probabilistic automata. We represent
a step by putting an arc across the member transitions. For instance, in (a),

3 In the areas of concurrency theory there has been a long-standing discussion on whether
nondetermistism can be thought of as a situation in which the probabilities are unknown and
can change very time the experiment is repeated. Nowadays the prevailing opinion, which
we share, is that nondetermistism and probability are fundamentally different concepts.
Furthermore, in the formalisms used in concurrency (for instance process algebras) the dif-
ference is clear, as these two concepts (nondeterminism and unknown changing probability)
obey different laws.
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Fig. 1. Examples of probabilistic automata

state s1 has two steps, the first is a probabilistic choice between two transitions
with labels a and b, each with probability 1/2. When there is only a transition
in a step, like the one from state s3 to state s6, the probability is of course 1
and we omit it.

In this paper, we use only a simplified kind of automaton, in which from
each node we have either a probabilistic choice or a nondeterministic choice
(more precisely, either one step or a set of singleton steps), like in (b). In the
particular case that the choices are all probabilistic, like in (c), the automaton
is called fully probabilistic.

Given an automaton M , we denote by etree(M) its unfolding, i.e. the
tree of all possible executions of M (in Figure 1 the automata coincide with
their unfolding because there is no loop). If M is fully probabilistic, then
each execution (maximal branch) of etree(M) has a probability obtained as
the product of the probability of the edges along the branch. In the finite
case, we can define a probability measure for each set of executions, called
event, by summing up the probabilities of the elements 4 . Given an event
x, we will denote by p(x) the probability of x. For instance, let the event
c be the set of all computations in which c occurs. In (c) its probability is
p(c) = 1/3 × 1/2 + 1/6 = 1/3.

When nondeterminism is present, the probability can vary, depending on
how we resolve the nondeterminism. In other words we need to consider a
function ς that, each time there is a choice between different steps, selects one
of them. By pruning the non-selected steps, we obtain a fully probabilistic
execution tree etree(M, ς) on which we can define the probability as before.
For historical reasons (i.e. since nondeterminism typically arises from the
parallel operator), the function ς is called scheduler.

It should then be clear that the probability of an event is relative to the
particular scheduler. We will denote by pς(x) the probability of the event
x under the scheduler ς. For example, consider (a). We have two possible

4 In the infinite case things are more complicated: we cannot define a probability measure
for all sets of execution, and we need to consider as event space the σ-field generated by
the cones of etree(M). However, in this paper, we consider only the finite case.
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schedulers determined by the choice of the step in s1. Under one scheduler,
the probability of c is 1/2. Under the other, it is 2/3 × 1/2 + 1/3 = 2/3. In
(b) we have three possible schedulers under which the probability of c is 0,
1/2 and 1, respectively.

3 Anonymity systems

We model the anonymity protocol as a probabilistic automaton M . The con-
cept of anonymity is relative to the set of anonymous users and to what is
visible to the observer. Hence, following [9,8] we classify the actions of M into
the three sets A, B and C as follows:

• A is the set of the anonymous actions A = {a(i) | i ∈ I} where I is the set
of the identities of the anonymous users and a is an injective functions from
I to the set of actions, which we call abstract action. We also call the pair
(I, a) anonymous action generator.

• B is the set of the observable actions. We will use b, b′, . . . to denote the
elements of this set.

• C is the set of the remaining actions (which are unobservable).

Note that the actions in A normally are not visible to the observer, or at least,
not for the part that depends on the identity i. However, for the purpose
of defining and verifying anonymity we model the elements of A as visible
outcomes of the system.

Definition 3.1 An anonymity system is a tuple (M, I, a, B,Z , p), where M
is a probabilistic automaton, (I, a) is an anonymous action generator, B is a
set of observable actions, Z is the set of all possible schedulers for M , and for
every ς ∈ Z , pς is the probability measure on the event space generated by
etree(M, ς).

For simplicity, we assume the users to be the only possible source of non-
determinism in the system. If they are probabilistic, then the system is fully
probabilistic, hence Z is a singleton and we omit it.

We introduce the following notation to represent the events of interest:

• a(i) : all the executions in etree(M, ς) containing the action a(i);

• a : all the executions in etree(M, ς) containing an action a(i) for an arbitrary
i;

• o : all the executions in etree(M, ς) containing as their maximal sequence
of observable actions the sequence o (where o is of the form b1b2 . . . bn for
some b1, b2, . . . , bn ∈ B). We denote by O (observables) the set of all such
o’s.

We use the symbols ∪, ∩ and ¬ to represent the union, the intersection, and
the complement of events, respectively.
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We wish to keep the notion of observables as general as possible, but we
still need to make some assumptions on them. First, we want the observables
to be disjoint events. Second, they must cover all possible outcomes. Third,
an observable o must indicate unambiguously whether a has taken place or
not, i.e. it either implies a, or it implies ¬a. In set-theoretic terms it means
that either o is a subset of a or of the complement of a. Formally:

Assumption 1 (on the observables)

(i) ∀ς ∈ Z . ∀o1, o2 ∈ O. o1 6= o2 ⇒ pς(o1 ∪ o2) = pς(o1) + pς(o2)

(ii) ∀ς ∈ Z . pς(O) = 1

(iii) ∀ς ∈ Z . ∀o ∈ O. (pς(o ∩ a) = pς(o)) ∨ pς(o ∩ ¬a) = pς(o)

Analogously, we need to make some assumption on the anonymous actions.
We consider first the conditions tailored for the nondeterministic users: each
scheduler determines completely whether an action of the form a(i) takes place
or not, and in the positive case, there is only one such i. Formally:

Assumption 2 (on the anonymous actions, for nondeterministic users)

∀ς ∈ Z . pς(a) = 0 ∨ (∃i ∈ I. (pς(a(i)) = 1 ∧ ∀j ∈ I. j 6= i ⇒ pς(a(j)) = 0))

We now consider the case in which the users are fully probabilistic. The
assumption on the anonymous actions in this case is much weaker: we only
require that there be at most one user that performs a, i.e. a(i) and a(j) must
be disjoint for i 6= j. Formally:

Assumption 3 (on the anonymous actions, for probabilistic users)

∀i, j ∈ I. i 6= j ⇒ p(a(i) ∪ a(j)) = p(a(i)) + p(a(j))

4 Strong probabilistic anonymity

In this section we recall the notion of strong anonymity proposed in [1].

Let us first assume that the users are nondeterministic. Intuitively, a
system is strongly anonymous if, given two schedulers ς and ϑ that both
choose a (say a(i) and a(j), respectively), it is not possible to detect from the
probabilistic measure of the observables whether the scheduler has been ς or
ϑ (i.e. whether the selected user was i or j).

Definition 4.1 A system (M, I, a, B,Z , p) with nondeterministic users is
anonymous if

∀ς, ϑ ∈ Z . ∀o ∈ O. pς(a) = pϑ(a) = 1 ⇒ pς(o) = pϑ(o)

The probabilistic counterpart of Definition 4.1 can be formalized using the
concept of conditional probability. Recall that, given two events x and y with
p(y) > 0, the conditional probability of x given y, denoted by p(x | y), is equal
to p(x ∩ y)/p(y).
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Definition 4.2 A system (M, I, a, B, p) with probabilistic users is anony-
mous if

∀i, j ∈ I. ∀o ∈ O. (p(a(i)) > 0 ∧ p(a(j)) > 0) ⇒ p(o | a(i)) = p(o | a(j))

The notions of anonymity illustrated so far focus on the probability of the
observables. More precisely, it requires the probability of the observables to
be independent from the selected user. In [1] it was shown that Definition 4.2
is equivalent to the notion adopted implicitly in [3], and called conditional
anonymity in [5]. As illustrated in the introduction, the idea of this notion is
that a system is anonymous if the observations do not change the probability of
the a(i)’s. In other words, we may know the probability of a(i) by some means
external to the system, but the system should not increase our knowledge
about it.

Proposition 4.3 A system (M, I, a, B, p) with probabilistic users is anony-
mous if

∀i ∈ I. ∀o ∈ O. p(o ∩ a) > 0 ⇒ p(a(i) | o) = p(a(i) | a)

The notions of strong anonymity proposed in this section have been verified
in [1] on the example of the Dining Cryptographers with perfectly fair coins.

4.1 Independence from the probability distribution of the users

One important property of Definition 4.2 is that it is independent from the
probability distribution of the users. Intuitively, this is due to the fact that
the condition of anonymity implies that p(o | a(i)) = p(o)/p(a), hence it is
independent from p(a(i)).

Theorem 4.4 If (M, I, a, B, p) is anonymous (according to Definition 4.2)
then for any p ′ which differs from p only on the a(i)’s, (M, I, a, B, p ′) is
anonymous.

Also the characterization of anonymity given in Proposition 4.3 is (obvi-
ously) independent from the probability distribution of the users. It should
be remarked, however, that their correspondence with Definition 4.2, and the
property of independence from the probability of the users, only holds under
the hypothesis that there is at most one agent performing a. (Assumption 3.)

5 Weak probabilistic anonymity

The notion of anonymity proposed in previous section is very strong as it imply
the system to leak no information. In reality, some amount of probabilistic
information may be revealed by the protocol. Typical causes may be either the
presence of attackers which interfere with the normal execution the protocol,
or some unavoidable imperfection of the internal mechanisms, or may even
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be inherent to the way the protocol is designed. In any case, the information
leaked by the system can be used by an observer to infer the likeliness that
the action has been performed by a certain user.

In [4] we have proposed the following weak variants of Definition 4.1, Def-
inition 4.2, and of the notion expressed in Proposition 4.3.

Let us consider first the case of nondeterministic users:

Definition 5.1 Given α ∈ [0, 1], a system (M, I, a, B, Z, p) with nondeter-
ministic users is α-anonymous if

max{ pς(o)−pϑ(o) | ς, ϑ ∈ Z, o ∈ O, pς(o∩a) = pς(o), pϑ(o∩a) = pϑ(o)} = α

Intuitively, pς(o) − pϑ(o) = α means that, whenever we observe o, we
suspect that user i is more likely than user j to have performed the action by
an additive factor α (where i and j represent the users selected by ς and ϑ,
respectively).

Let us now consider the case of probabilistic users. The weak version of
Definition 4.2, is the following:

Definition 5.2 Given α ∈ [0, 1], a system (M, I, a, B, p) with probabilistic
users is α-anonymous if

max{ p(o | a(i))−p(o | a(j)) | i, j ∈ I, o ∈ O, p(a(i)) > 0, p(a(j)) > 0 } = α

An alternative notion of weak anonymity for probabilistic users can be
obtained by weakening the formula in Proposition 4.3.

Definition 5.3 Given α ∈ [0, 1], a system (M, I, a, B, p) with probabilistic
users is α-anonymous if

max{ p(a(i) | o) − p(a(i) | a) | i ∈ I, o ∈ O, p(o ∩ a) > 0} = α

Intuitively, p(a(i) | o)−p(a(i) | a) = α means that, after observing o, the
probability we attribute to i as the performer of the action, has increased by
an additive factor α.

Differently from their strong version, Definitions 5.2 and Definitions 5.3
are not equivalent.

The notions of weak anonymity proposed in this section have been tested
in [4] on the example of the Dining Cryptographers with biased coins.

In [2] it has been proved that a slight variant of Definitions 5.2 and 5.3
correspond, with α = 1/2, to the property proved in [7] for the system Crowds
(and called, still in [7], probable innocence).
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