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Abstract. We propose a framework in which anonymity protocols are
interpreted as particular kinds of channels, and the degree of anonymity
provided by the protocol as the converse of the channel’s capacity. We
justify this view in terms of the Bayesian probability of error that lim-
its the adversary’s capability of testing the protocol to infer the user’s
identity. We then illustrate how various notions of anonymity can be ex-
pressed in this framework, and show the relation with some definitions
of probabilistic anonymity in literature.

1 Introduction

In this paper we present a general approach to measure the degree of anonymity
provided by an anonymity protocol. Such protocols try to hide the link between
a set A of anonymous events and a set O of observable events. Events in A
represent the information that we want to hide from the potential attacker.
Ideally, we would like him to be totally unable to distinguish the events in A,
that is to deduce which of them really happened in a specific execution of the
protocol. Events in O are the ones that the attacker actually observes. They
should model all the possible outcomes of the protocol, from the point of view of
the attacker. We assume that in each execution of the protocol one event a ∈ A
and one event o ∈ O occur, and that o is disclosed to the attacker. An anonymity
system should prevent the attacker from deducing a given the information about
o and the knowledge about how the system works.

For example, a protocol could be designed to allow users to send messages
to each other without revealing the identity of the sender. In this case, A would
be the set of (the identities of) the possible users of the protocol, if only one
user can send a message at a time, or the powerset of the users, otherwise. On
the other hand, O could contain the sequences of all possible messages that the
attacker can observe, depending on how the protocol works.
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Probability plays an important role in anonymity protocols. First of all these
protocols are very often probabilistic themselves. They use random primitives
and the anonymity guarantees are based on the attacker’s inability of determin-
ing the outcome of probabilistic choices. Clearly, the precise analysis of such
protocols requires probabilistic means. Moreover, the analysis performed by the
attacker can be also probabilistic, for example by gathering statistical informa-
tion about the users. The attacker might not be able to find out exactly which
anonymous event happened, but he could obtain a distribution over A and draw
conclusions of the form “user i sent a message with probability 95%”.

In this paper we consider a probabilistic setting, where probability distribu-
tions can be assigned to the elements of A,O. As a consequence we will model
anonymous events by a random variable A on A and observable events by O
on O. From the point of view of the analysis, we are only interested in the dis-
tributions of A, O. In particular, the joint distribution p(a, o) provides all the
information about the conjoint behavior of the protocol and of the users that
we need. From p(a, o) we can derive, indeed, the marginal distributions p(a) and
p(o), and the conditional distributions p(o|a) and p(a|o).

Most of the times, however, one is interested in abstracting from the specific
set of users and its distribution, and proving properties about the protocol it-
self, aiming at universal anonymity properties that will hold no matter how the
users behave (provided they follow the rules of the protocol). To this purpose,
it is worth recalling that the joint distribution p(a, o) can be decomposed as
p(a, o) = p(o|a)p(a). This decomposition singles out exactly the contributions
of the protocol and of the users to the joint probability: p(a), in fact, is the
probability associated to the users, while p(o|a) represents the probability that
the protocol produces o given that the users have produced a. The latter clearly
depends only on the internal mechanisms of the protocol, not on the users.

This view of the protocol in isolation from the users brings us to consider
the protocol as a device that, given a ∈ A as input, it produces an output in O
according to a probability distribution p(·|a). This concept is well investigated in
information theory, where such kind of device is called channel, and it is described
by the matrix whose rows are the elements of A, the columns the elements of
O, and the value in position (a, o) is the conditional probability p(o|a). The
rationale behind this view will be discussed in more details in Section 3.

1.1 Contribution

In this paper we propose a definition of the degree of anonymity of a protocol
in terms of the information-theoretic notion of capacity of the protocol, seen as
channel. We also define a more general notion, that we call relative capacity,
which naturally models the case in which some loss of an anonymity is allowed
by design.

We justify our proposal by showing the relation with the knowledge that an
attacker can gain on the anonymous actions (the channel’s inputs), from the
observables (the channel’s outputs) and the matrix of the conditional probabili-
ties associated to the channel. In particular, we consider attackers following the
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so-called Bayesian approach, and we show bounds on the Bayesian probability
of error regarding the probabilistic information that the attacker can acquire.

We then compare our proposal with various probabilistic notions of anonymity
given in the past, in particular perfect anonymity, group anonymity, and probable
innocence. Finally, we show that the condition of probable innocence corresponds
to a certain information-theoretic bound.

1.2 Related work

Probabilistic definitions of anonymity have been explored in [3, 11, 1, 16, 2]. We
discuss the relation with these works in detail in Section 5.

A recent line of work has been dedicated to exploring the notion of anonymity
from an information-theoretic point of view [18, 9]. The main difference with our
approach is that in those works the anonymity degree is expressed in terms of
entropy, rather than mutual information. More precisely, the emphasis is on the
lack of information that an attacker has about the distribution of the users,
rather than on the capability of the protocol to conceal this information despite
of the observables that are made available to the attacker. Moreover, a uniform
user distribution is assumed, while in this paper we try to abstract from the user
distribution and make no assumptions about it.

Channel capacity has been already used in an anonymity context in [14,
15], where the ability to have covert communication as a result of non-perfect
anonymity is examined. The difference with our approach is that in those works
the channels are constructed by the users of the protocol using the protocol
mechanisms, and the purpose is to measure the amount of information that can
be transfered through these channels. In this paper, we consider the channel to
be the protocol itself, as an abstraction that allows us to measure anonymity.

Another approach close in spirit to ours is the one of [8]. In this work, the au-
thors use the notion of relative entropy to perform a metric analysis of anonymity.
In our work, we use the notion of mutual information, which is a special case
of relative entropy. However, the specific application of relative entropy in [8] is
radically different from ours. We use it to compare the entropy of the input of
an anonymity protocol before and after the observation. They use it to establish
a sort of distance between the traces of an anonymity system.

In the field of information flow and non-interference there is a line of research
which is closely related to ours. There have been various works [13, 10, 4, 5, 12] in
which the the high information and the low information are seen as the input and
output respectively of a channel. From an abstract point of view, the setting is
very similar; technically it does not matter what kind of information we are try-
ing to conceal, what is relevant for the analysis is only the probabilistic relation
between the input and the output information. The conceptual and technical
novelties of this paper w.r.t. the above works are explained in Section 1.1. We
believe that our findings are applicable more or less directly also to the field of
non-interference.
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1.3 Plan of the paper

Next section recalls some basic notions about information theory. In Section 3 we
justify our view of protocols as channels and (loss of) anonymity as capacity and
relative capacity, and we give a method to compute these quantities in special
symmetry cases. In Section 4 we consider the tests that an attacker can make
on the protocol in order to gain knowledge about the anonymous actions, and
we discuss the probability of error that limits the inferences based on such tests.
Finally, in Section 5, we relate our framework to other probabilistic approaches
to anonymity.

The proofs of all the results (except those that trivially follow from known
results in literature) are in the appendix.

2 Preliminaries on Information Theory

Being in a purely probabilistic setting gives us the ability to use tools from
information theory to reason about the uncertainty of a random variable and
the information that it can reveal about another random variable. In particular
the notions we will be interested in are entropy, mutual information and channel
capacity. In this section we briefly revise these notions. We refer to [6] for more
details.

In general, we will use capital letters X, Y to denote random variables and
the corresponding calligraphic letters X ,Y for their set of values. We will also
use small letters x, y to represent values of these variables, p(x), p(y) to denote
the probability of x and y respectively and p(x, y) to denote the joint probability
of x and y.

Let X be a random variable. The entropy H(X) of X is defined as

H(X) = −
∑

x∈X

p(x) log p(x)

The entropy measures the uncertainty of a random variable. It takes its max-
imum value log |X | when X ’s distribution is uniform and its minimum value 0
when X is constant. We usually take the logarithm with a base 2 and measure
entropy in bits. Roughly speaking, m bits of entropy means that we have 2m

values to choose from, assuming a uniform distribution.
The relative entropy or Kullback Leibler distance between two probability

distributions p, q on the same set X is defined as

D(p ‖ q) =
∑

x∈X

p(x) log
p(x)

q(x)

It is possible to prove that D(p ‖ q) is always non-negative, and it is 0 if and
only if p = q.

Now let X, Y be random variables. The conditional entropy H(X |Y ) is

H(X |Y ) = −
∑

y∈Y

p(y)
∑

x∈X

p(x|y) log p(x|y)
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Conditional entropy measures the amount of uncertainty of X when Y is known.
It can be shown that 0 ≤ H(X |Y ) ≤ H(X). It takes its maximum value H(X)
when Y reveals no information about X , and its minimum value 0 when Y
completely determines the value of X .

Comparing H(X) and H(X |Y ) gives us the concept of mutual information
I(X ; Y ), which is defined as

I(X ; Y ) = H(X) − H(X |Y )

Mutual information measures the amount of information that one random vari-
able contains about another random variable. In other words, it measures the
amount of uncertainty about X that we lose when observing Y . It can be shown
that it is symmetric (I(X ; Y ) = I(Y ; X)) and that 0 ≤ I(X ; Y ) ≤ H(X).

A communication channel is a tuple 〈X ,Y, p(·|·)〉 where X ,Y are the sets of
input and output symbols respectively and p(y|x) is the probability of observing
output y ∈ Y when x ∈ X is the input. Given an input distribution p(x) over X
we can define the random variables X, Y for input and output respectively. The
maximum mutual information between X and Y over all possible distributions
p(x) is known as the channel’s capacity:

C = max
p(x)

I(X ; Y )

The capacity of a channel gives the maximum rate at which information can be
transmitted using this channel.

3 Loss of Anonymity as Channel Capacity

The notions discussed in previous section can be used to reason about the in-
formation that the adversary obtains from the protocol. The entropy H(A) of
A gives the amount of uncertainty about the anonymous events, before execut-
ing the protocol. The higher the entropy is the less certain we are about the
outcome of A. After the execution, however, we also know the actual value of
O. Thus, the conditional entropy H(A|O) gives the uncertainty of the attacker
about the anonymous events after performing the observation. To compare these
two entropies, we consider the mutual information I(A; O) which measures the
information about A that is contained in O. This measure is exactly what we
want to minimize. It the best case it is 0, meaning that we can learn nothing
about A by observing O (in other words H(A|O) is equal to H(A)). In the worst
case it is equal to H(A) meaning that all the uncertainty about A is lost after
the observation, thus we can completely deduce the value of A (H(A|O) is 0).

As explained in the introduction, each execution of an anonymity protocol is
associated to the join probability p(a, o) of the particular values taken by A, O
in that execution. This probability can be written as p(a, o) = p(a)p(o|a). In our
view, among these two values, p(o|a) can be considered as a characteristic of
the protocol, while p(a) depends only on the users. For instance, in a protocol
for sender anonymity, A takes values on the set A of users, and p(a) is the
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Fig. 1. An anonymity channel

probability of user a being the sender. In some cases all users might have the
same probability of being the sender, in other cases a particular user might send
messages more often than the others. Since the design of the protocol should
be independent from the particular users who will use it, the analysis of the
protocol should make no assumptions about the distribution on A. On the other
hand p(o|a) gives the probability of o when a is the sender, so it depends only on
the internal mechanisms of the protocol, not on of how often a sends messages.

To abstract from the probabilities of the anonymous events, we view an
anonymity protocol as a channel 〈A,O, p(·|·)〉 where the sets of anonymous
events A and observable events O are the input and output alphabets respec-
tively, and the matrix p(o|a) gives the probability of observing o when a is the
input. An anonymity channel is shown in Figure 1. Different distributions of the
input will give different values of I(A; O). We are interested in the worst possi-
ble case, so we define the loss of anonymity as the maximum value of I(A; O)
over all possible input distributions, that is the capacity of the corresponding
channel.

Definition 1. Let 〈A,O, p(·|·)〉 be an anonymity protocol. The loss of anonymity
C of the protocol is defined as

C = max
p(a)

I(A; O)

where the maximum is taken over all possible input distributions.

The loss of anonymity measures the amount of information about A that
can be learned by observing O in the worst possible distribution of anonymous
events. If it is 0 then, no matter what is the distribution of A, the attacker can
learn nothing more by observing the protocol. In fact, as we will see in section
5.1, this corresponds exactly to notions of perfect anonymity in literature [3, 11,
1]. However, as we discuss in section 5.3, our framework also captures weaker
notions of anonymity.

As with entropy, channel capacity is measured in bits. Roughly speaking,
1 bit of capacity means that after the observation A will have one bit less of
entropy, in another words the attacker will have reduced the set of possible users
by a factor 2, assuming a uniform distribution.

3.1 Relative Anonymity

So far, we have assumed that ideally no information about the anonymous events
should be leaked. However, there are cases where some information about the
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Fig. 2. A simple elections protocol

anonymous events is allowed to be revealed by design, without this leak be
considered as a flaw of the protocol. Consider, for example, the case of a simple
elections protocol, displayed in figure 2. For simplicity we assume that there
are only two candidates c and d, and that each user always votes for one of
them, so an anonymous event can be represented by the subset of users who
voted for candidate c. In other words, A = 2V where V is the set of voters.
The output of the protocol is the list of votes of all users, however, in order
to achieve anonymity, the list is randomly reordered, using for example some
MIXing technique. As a consequence, the attacker can see the number of votes
for each candidate, although he should not be able to find out who voted for
whom. Indeed, determining the number of votes of candidate c (the cardinality
of a), while concealing the vote expressed by each individual (the elements that
constitute a), is the purpose of the protocol.

So it is clear that after the observation only a fraction of the anonymous
events remains possible. Every event a ∈ A with |a| 6= n where n is the number
of votes for candidate c can be ruled out. As a consequence H(A|O) will be
smaller than H(A) and the capacity of the corresponding channel will be non-
zero, meaning that some anonymity is lost. In addition, there might be a loss
of anonymity due to other factors, for instance, if the reordering technique is
not uniform. However, it is undesirable to confuse these two kind of anonymity
losses, since the first is by design and thus acceptable. We would like a notion
of anonymity that factors out the intended loss and measures only the loss that
we want to minimize.

In order to cope with the intended anonymity loss, we introduce a random
variable R whose outcome is the revealed information. In the example of the
elections protocol, the value of R is the cardinality of a. Since we allow to reveal
R by design, we can consider that R is known even before executing the protocol.
So, H(A|R) gives the uncertainty about A given that we know R and H(A|R, O)
gives the uncertainty after the execution of the protocol, when we know both
R and O. By comparing the two we retrieve the notion of conditional mutual
information I(A; O|R) defined as

I(A; O|R) = H(A|R) − H(A|R, O)

So, I(A; O|R) is the amount of uncertainty on A that we lose by observing O,
given that R is known. Now we can define the notion of relative loss of anonymity.
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Definition 2. Let 〈A,O, p(·|·)〉 be an anonymity protocol and R a random vari-
able defined by its set of values R and a probability matrix p(r|a, o). The relative
loss of anonymity of the protocol with respect to R is defined as

C|R = max
p(a)

I(A; O|R)

where the maximum is taken over all possible input distributions.

Partitions: a special case of relative anonymity An interesting special
case of relative anonymity is when the knowledge of either an anonymous event
or an observable event totally determines the value of R. In other words, both A
and O are partitioned in subsets, one for each possible value of R. The elections
protocol of the previous section is an example of this case. In this protocol, the
value r of R is the number of votes for candidate A. This is totally determined
by both anonymous events a (r is the cardinality of a) and observable events o
(r is the number of c’s in o). So we can partition A in subsets A0, . . . ,An such
that |a| = n for each a ∈ An, and similarly for O. Notice that an anonymous
event a ∈ Ai produces only observables in Oi, and vice versa.

In this section we show that such systems can be viewed as the composition
of smaller, independent sub-systems, one for each value of R.

We say that R partitions a random variable X if p(r|x) is 0 or 1 for all r ∈ R
and x ∈ X . In this case we can partition X as follows

Xr = {x ∈ X | p(r|x) = 1}

Clearly the above sets are disjoint and their union is X .

Theorem 1. Let 〈A,O, p(·|·)〉 be an anonymity protocol and R a random vari-
able defined by its set of values R = {r1, . . . , rl} and a probability matrix p(r|a, o).
If R partitions both A and O then the transition matrix of the protocol is of the
form

Or1
Or2

· · · Orl

Ar1
Mr1

0 . . . 0
Ar2

0 Mr2
. . . 0

...
...

...
. . .

...
Arl

0 0 . . . Mrl

and
C|R ≤ d ⇔ Ci ≤ d, ∀i ∈ 1..l

where Ci is the capacity of the channel with matrix Mri
.

3.2 Computing the channel’s capacity

In general, there is no formula to compute the capacity of an arbitrary channel.
In practice, however, channels have symmetry properties that can be exploited
to compute the capacity in an easy way. In this section we define classes of
symmetry and discuss how to compute the capacity for each class. Two classic
cases are the symmetric and weakly symmetric channels.
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Definition 3. A matrix is symmetric if all rows are permutations of each other
and all columns are also permutations of each other. A matrix is weakly sym-
metric if all rows are permutations of each other and the column sums are equal.

The following result is from literature:

Theorem 2 ([6], page 189). Let 〈A,O, p(·|·)〉 be a channel. If p(·|·) is weakly
symmetric then the channel’s capacity is given by a uniform input distribution
and is equal to

C = log |O| − H(r)

where r is a row of the matrix and H(r) is the entropy of r.

Note that symmetric channels are also weakly symmetric so Theorem 2 holds
for both classes.

In anonymity protocols, we expect all rows of the protocol’s matrix to be
permutations of each other since all users are executing the same protocol. On
the other hand, the columns are not necessarily permutations of each other.
Some symmetry is expected: if an observable o1 is produced with probability
p under user a1, it is reasonable to assume that under a2 there will be some
other observable o2 produced with the same probability. However, we can have
observables that are produced with equal probability by all users. Clearly, these
“constant” columns cannot be the permutation of a non-constant one so the
resulting channel matrix will not be symmetric (and not even weakly symmetric).

To cope with this kind of channels we define a more relaxed kind of symmetry
called partial symmetry. In this class we allow some columns to be constant and
we require the sub-matrix, composed only by the non-constant columns, to be
symmetric. A weak version of this symmetry can also be defined.

Definition 4. A matrix is partially symmetric (resp. weakly partially symmet-
ric) if some columns are constant (possibly with different values in each column)
and the rest of the matrix is symmetric (resp. weakly symmetric).

Now we can extend Theorem 2 to the case of partial symmetry.

Theorem 3. Let 〈A,O, p(·|·)〉 be a channel. If p(·|·) is weakly partially symmet-
ric then the channel’s capacity is given by

C = ps log
|Os|

ps

− H(rs)

where Os is the set of symmetric output values, rs is the symmetric part of a
row of the matrix and ps is the sum of rs.

Note that Theorem 3 is a generalization of Theorem 2. A (weakly) symmetric
channel can be considered as (weakly) partially symmetric with no constant
columns. In this case Os = O, rs = r, ps = 1 and we retrieve Theorem 2 from
Theorem 3.
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4 Testing anonymous events

In this section we illustrate the relation between the channel’s matrix and the
possibility for the attacker of guessing the anonymous event from the consequent
observable event. This problem is known in statistics literature as hypothesis
testing. The idea is that we have a set of data or outcomes of an experiment, and
a set of possible alternative explanations (hypotheses). We have to infer which
hypothesis holds from the data, possibly by repeating the experiment, and try to
minimize the probability of guessing the wrong hypothesis (probability of error).

We assume that the same hypothesis holds through the repetition of the ex-
periment, which corresponds to allowing the attacker to force the user to redo
the action. For instance, in Crowds, the attacker can intercept the message and
destroy it, thus obliging the sender to resend it. We also assume that the ran-
dom variables corresponding to the outcomes of the experiments are indepen-
dent. This corresponds to assuming that the protocol is memoryless, i.e. each
time it is reactivated, it works according to the same probability distribution,
independently from what happened in previous sessions.

In statistics there are several frameworks and methods for hypothesis testing.
We consider here the Bayesian approach, which requires the knowledge of the
matrix of the protocol and of the a priori distribution of the hypotheses, and
tries to infer the a posteriori probability of the actual hypothesis w.r.t. a given
observation or sequence of observations. The first assumption (knowledge of the
matrix of the protocol) is usually granted in an anonymity setting, since the way
the protocol works is public. The second assumption may look too strong, since
the attacker does not usually know the distribution of the anonymous actions. We
show, however, that under certain conditions the a priori distribution becomes
less and less relevant with the repetition of the experiment, and, at the limit, it
does not matter at all.

Let us introduce some notation. Given an anonymous event a, consider the
situation in which the attacker forces the users to execute the protocol n times
with the same a as input event, and tries to infer a from the n observable outputs
of the protocol executions. Let O1, O2, . . . , On represent the random variables
corresponding to the observations made by the attacker, and let o denote a
sequence of observed outputs o1, o2, . . . on. As stated above, we assume that O1,
O2, . . . , On are independent, hence the distribution of each of them is given by
p(·|a), and their conjoint distribution p : On → [0, 1] is given by

p(o|a) =

n
∏

i=1

p(oi|a) (1)

Let fn : On → A be the decision function adopted by the adversary to infer the
anonymous action from the sequence of observables. Let En : A → On be the
function that gives the error region of fn when a ∈ A has occurred, namely:

Ef (a) = {o ∈ On | f(o) 6= a}
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Finally, let ηn : A → [0, 1] be the function that associates to each a ∈ A the
probability of inferring the wrong input event on the basis of f when a ∈ A has
occurred, namely:

η(a) =
∑

o∈Ef (a)

p(o|a)

We are now ready to introduce the probability of error associated to anonymous
action testing on a given anonymity protocol, following the lines of the Bayesian
approach (see for instance [6], Section 12.8).

Definition 5. Given an anonymity protocol 〈A,O, p(·|·)〉, a sequence of n ex-
periments, and a decision function fn, the Bayesian probability of error Pfn

is
defined as the probability weighted sum over A of the individual probabilities of
error. Namely:

Pfn
=

∑

a∈A

p(a)η(a)

In the Bayesian framework, the best possible decision function is given by the
so-called maximum a posteriori rule, which, given the sequence of observables
o ∈ On, tries to maximize the a posteriori probability of the hypothesis a w.r.t.
o. The a posteriori probability of a w.r.t. o is given by Bayes theorem (aka Bayes
Inversion Rule):

p(a|o) =
p(o|a)p(a)

p(o)

We now define a class of decision functions based on the above approach.

Definition 6. Given an anonymity protocol 〈A,O, p(·|·)〉, and a sequence of n
experiments, a decision function fn is a Bayesian decision function if for each
o ∈ On, fn(o) = a implies p(o|a)p(a) ≥ p(o|a′)p(a′) for every a′ ∈ A.

The above definition is justified by the following result which is a straight-
forward consequence of known results in literature.

Proposition 1. Given an anonymity protocol 〈A,O, p(·|·)〉, a sequence of n ex-
periments, and a Bayesian decision function fn, for any other decision function
hn we have that Pfn

≤ Phn
.

4.1 Independence from the input distribution

The definition of the Bayesian decision functions depends on the a priori proba-
bility distribution of A. This might look artificial, since in general such distribu-
tion is unknown. We will show, however, that under a certain condition on the
matrix of the protocol, for n large enough, the Bayesian decision functions and
the associated Bayesian probability of error do not depend on the distribution
of A.

The following definition establishes the condition on the matrix.

11



Definition 7. Given an anonymity protocol 〈A,O, p(·|·)〉, we say that such pro-
tocol is Bayesian-determinate iff all rows are pairwise different, i.e. the proba-
bility distributions p(·|a), p(·|a′) are different for each pair a, a′ with a 6= a′.

We will now show that if a protocol is Bayesian-determinate, then in the
definition of the decision functions the distribution on A eventually washes out.
The intuition is that, in the comparison between p(o|a)p(a) and p(o|a′)p(a′),
the factor p(a)p(a′) is dominated by the factor p(o|a)p(o|a′), for n large enough,
provided that the latter is different from 1.

Proposition 2. Given a Bayesian-determinate anonymity protocol 〈A,O, p(·|·)〉,
for any distribution p(·) on A, and for any ε > 0, there exists n such that for each
Bayesian decision functions fn there exists a decision function gn : On → A such
that gn(o) = a implies p(o|a) ≥ p(o|a′) for all a′ ∈ A, and such that gn approx-
imates fn, in the sense that the probability of the set {o ∈ On | fn(o) 6= gn(o)}
is smaller than ε.

Proposition 2 allows us to define a decision function, for n sufficiently large,
by comparing only the probabilities p(o|a) for different a’s. These probabilities
are determined uniquely by the matrix and therefore no knowledge of the a priori
probability on A is required.

4.2 Bounds on the Bayesian probability of error

In this section we discuss some particular cases of matrices and the corresponding
bounds on the error that can be introduced by the Bayesian decision functions.
Some more cases will be considered in the next section.

We start with the bad case (from the anonymity point of view), which is
when the matrix is Bayesian-determinate:

Proposition 3. Given a Bayesian-determinate anonymity protocol 〈A,O, p(·|·)〉,
for any distribution p(·) on A, and for any ε, ε′ > 0, there exists n such that the
property

gn(o) = a implies p(o|a) ≥ p(o|a′) for all a′ ∈ A

determines a unique decision function gn on a set of probability greater than
1 − ε, and the Bayesian probability of error Pgn

is smaller than ε′.

Proposition 3 and its proof tell us that, in case of Bayesian-determinate ma-
trices, there is essentially only one decision function, and it is value is determined,
for n sufficiently large, by the a for which p(o|a) is greatest.

Consider now the converse case, i.e. when there are at least two identical rows
in the matrix, in correspondence of a1 and a2. In such case, for the sequences
o ∈ On such that n(o, o) = p(a|a) = p(o|a′) for all o ∈ O, the value of gn

is not uniquely determined, because p(o|a1) and p(o|a2) are both maximals.
Assuming that we chose arbitrarily between a1 and a2, and that the probability
of choosing the wrong one is uniformly distributed, we have that the Bayesian
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probability of error is bound from below as follows: Pgn
=

∑

a∈A p(a)η(a) ≥
p(a1)1/2 + p(a2)1/2.

More in general, if there are k identical rows a1, a2, . . . , ak, the lower bound
to the Bayesian probability of error is Pgn

=
∑

a∈A p(a)η(a) ≥ p(a1)(k − 1)/k +
p(a2)(k − 1)/k + . . . + p(ak)(k − 1)/k.

The situation is slightly different if we know the a priori distribution and we
define the function fn. In this case, the criterion of maximizing p(a)p(o|a) (for
the o s.t. n(o, o) = p(a|a) = p(o|a′) for all o ∈ O) reduces to maximizing p(a).
Hence, observing the outcome of the protocol does not add any information
to what we already know. However, the a priori knowledge can help to make
a sensible guess about the most likely a. This is not the case, of course, if in
addition to rows a1 and a2 being identical we also have p(a1) = p(a2).

5 Relation with existing anonymity notions

In this section we consider some particular channels, and we illustrate the rela-
tion with probabilistic (non information-theoretic) notions of anonymity existing
in literature.

5.1 Capacity 0: strong anonymity

The case in which the capacity of the anonymity protocol is 0 is by definition
obtained when I(A; O) = 0 for all possible input distributions on A. From infor-
mation theory we know that this is the case iff A and O are independent (cfr.
[6], page 27). Hence we have the following characterization:

Proposition 4. Given an anonymity system 〈A,O, p(·|·)〉, the capacity of the
corresponding channel is 0 iff all the rows of the channel matrix are the same,
i.e. p(o|a) = p(o|a′) for all o, a, A′.

The condition p(o|a) = p(o|a′) for all o, a, a′ has been called strong proba-
bilistic anonymity in [1] and it is equivalent to the condition p(a|o) = p(a) for
all o, a. The latter was considered as a definition of anonymity in [3] and it is
called conditional anonymity in [11].

Capacity 0 is the optimal case, of course, also w.r.t. the capability of the
adversary of testing the anonymous events (cfr. Section 4): All the rows are the
same, hence p(o|a1) = p(o|a2) for all a1, a2 ∈ A, and o ∈ On. Consequently
the observations are of no use for the attacker to infer the anonymous event, i.e.
to define the “right” gn(o), since all p(o|a) are maximal. Assuming a uniform
distribution in assigning a value to gn(o), the Bayesian probability of error is
bound from below by (|A| − 1)/|A| (cfr. Section 4.2).

An example of protocol with capacity 0 is the dining cryptographers in a
connected graph [3], under the assumption that it is always one of the cryptog-
raphers who pays, and that the coins are fair.
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5.2 Relative capacity 0: strong group anonymity

Group anonymity usually indicates the situation in which the users are divided
in groups, and the protocol allows to figure out the group which the culprit
belongs to, although it tries to conceal which user in the group is the culprit.

Such situation corresponds to having a partition on A and O, see Section 3.1.
The case of relative capacity 0 is obtained when each Mri

has capacity 0, namely
when in each group ri the rows are identical.

From the point of view of testing the anonymous events we note the following:
given a o ∈ On, there exists exactly one group ri of a’s such that p(o|a) > 0,
and p(o|a1) = p(o|a2) for all a1, a2 in ri. Hence the attacker knows that the
“right” value of gn(o) is an a in ri, but he does not know exactly which. In other
words, on the basis of the observations the attacker can get complete knowledge
about the group, but remains completely uncertain about the exact event a in
the group, as expected. The lower bound on the Bayesian probability of error is
(|Ar| − 1)/|Ar| where r ∈ R determines the set of maximal cardinality in A.

An example of protocol with relative capacity 0 is the dining cryptographers
in a generic graph [3], under the assumption that the coins are fair. The groups
correspond to the connected components of the graph.

The notion of strong group anonymity seems also related to the notion of
equivalence classes in [17]. Exploring this connection is left for future work.

5.3 Probable innocence: weaker bounds on capacity

Probable innocence is a weak notion of anonymity introduced by Reiter and
Rubin [16] for Crowds, a system based on communicating a message from the
originator to the receiver through a sequence of users acting as forwarders. Prob-
able innocence was verbally defined as “from the attacker’s point of view, the
sender appears no more likely to be the originator of the message than to not be
the originator”. In literature there are three different definitions [16, 11, 2] that
try to formally express this notion, see [2] for details. In this section we discuss
the relation between these definitions and the channel capacity.

Definition of Chatzikokolakis and Palamidessi The definition of [2] tries
to combine the other two by considering both the probability of producing some
observable and the attackers confidence after the observation. This definition
considers the probability of two anonymous evens a, a′ producing the same ob-
servable o and does not allow p(o|a) to be too high or too low compared to
p(o|a′). A protocol satisfies CP-probable innocence if

(n − 1) ≥
p(o|a)

p(o|a′)
∀o ∈ O, ∀a, a′ ∈ A (2)

where n = |A|. In [2] it is shown that this definition overcomes some drawbacks
of the other two definitions of probable innocence and it is argued that it is
more suitable for general protocols. In this section we show that CP-probable
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innocence imposes a bound on the capacity of the corresponding channel, which
strengthens our belief that it is a good definition of anonymity.

Since the purpose of this definition is to limit the fraction p(o|a)
p(o|a′) we could

generalize it by requiring this fraction to be less than or equal to a constant γ.

Definition 8. An anonymity protocol 〈A,O, p(·|·)〉 satisfies partial anonymity
if there is a constant γ such that

γ ≥
p(o|a)

p(o|a′)
∀o ∈ O, ∀a, a′ ∈ A

A similar notion is called weak probabilistic anonymity in [7].
Note that partial anonymity generalizes both CP-probable innocence (γ =

n−1) and strong probabilistic anonymity (γ = 1). The following theorem shows
that partial anonymity imposes a bound to the channel capacity:

Theorem 4. Let 〈A,O, p(·|·)〉 be an anonymity protocol. If the protocol is sym-
metric and satisfies partial anonymity with γ > 1 then

C ≤
log γ

γ − 1
− log

log γ

γ − 1
− log ln 2 −

1

ln 2

This bound has two interesting properties. First, it depends only on γ and
not on the number of input or output values or on other properties of the channel
matrix. Second, the bound converges to 0 as γ → 1. As a consequence, due to the
continuity of the capacity as a function of the channel matrix, we can retrieve
Proposition 4 about strong probabilistic anonymity (γ = 1) from Theorem 4. A
bound for probable innocence can be obtained by taking γ = n−1, so Theorem 4
treats strong anonymity and probable innocence in a uniform way. Note that this
bound is proved for the special case of symmetric channels, we plan to examine
the general case in the future.

Concerning the testing of the anonymous events, it is interesting to note that,
if the attacker has the possibility of repeating the test with the same input an ar-
bitrary number of times, then probable innocence does not give any guarrantee.
In fact, condition 2 does not prevent the function p(o|·) from having a maximum
with probability close to 1, for a sufficiently long sequence of observables o. So we
can define gn(o) to be such maximum, and we have that the Bayesian error cor-
responding to gn goes to 0. The only exception is when two (or more) raws a1, a2

are equal and correspond to maximals. Imposing this condition for all anony-
mous actions is equivalent to require strong anonymity. In conclusion, possible
innocence maintains an upper bound on anonymity through protocol repetition
only if the system is strongly anonymous. This result generalizes the one ex-
pressed by Proposition 17 in [2]: In the latter, the same conclusion is drawn, but
the tests are limited to the observable sequences of the form o, o, . . . , o.

Definition of Reiter and Rubin In [16] Reiter and Rubin give a formalization
of probable innocence for the Crowds protocol, which limits the probability of
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o1 o2 o3 o4 · · · o2n−1 o2n

a1 1/2 1/2 0 0 . . . 0 0
a1 0 0 1/2 1/2 . . . 0 0
...

...
. . .

...
an 0 0 0 0 . . . 1/2 1/2

Fig. 3. A maximum-capacity channel which satisfies RR-probable innocence

detection, that is the probability of a certain observable that reveals each sender.
The definition requires the probability of these observables to be less that one
half. A protocol satisfies RR-probable innocence if

p(o|a) ≤
1

2
∀o ∈ O, ∀a ∈ A (3)

In [2] it is argued that this definition is not suitable for arbitrary protocols. We
now show that RR-probable innocence imposes no bound on the capacity of the
corresponding channel. Consider, for example, the protocol shown in figure 3.
The protocols satisfies RR-probable innocence since all values of the matrix are
less than or equal to one half. However the channel capacity is (the matrix is
symmetric) C = log |O| − H(r) = log(2n) − log 2 = log n which is the maxi-
mum possible capacity, equal to the entropy of A. Indeed, users can be perfectly
identified by the output since each observable is produced by exactly one user.

Note, however, that in Crowds there are some special symmetries under which
RR-probable innocence is equivalent to CP-probable innocence so a bound on
the capacity can be obtained.

Definition of Halpern and O’Neill In [11] Halpern and O’Neill give a def-
inition of probable innocence that focuses on the attacker’s confidence that a
particular anonymous event happened, after performing an observation. It re-
quires that the probability of an anonymous event should be at most one half,
under any observation. A protocol satisfies HO-probable innocence if

p(a|o) ≤
1

2
∀o ∈ O, ∀a ∈ A (4)

This definition looks like the one of Reiter and Rubin but its meaning is very
different. It does not limit the probability of observing o. Instead, it limits the
probability of an anonymous event a given the observation of o.

As discussed in [2], the problem with this definition is that it depends on
the probabilities of the anonymous events which are not part of the protocol. As
a consequence, HO-probable innocence cannot hold for all input distributions.
If we consider a distribution where p(a) is very close to 1, then p(a|o) cannot
possibly be less than 1/2. So we cannot speak about the bound that HO-probable
innocence imposes to the capacity, since to compute the capacity we quantify
over all possible input distributions and HO-probable innocence cannot hold for
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all of them. However, if we limit ourselves to the input distributions where HO-
probable innocence actually holds, then we can prove the following proposition.

Proposition 5. Let 〈A,O, p(·|·)〉 be a channel and p(a) a fixed distribution over
A. If the channel is symmetric and satisfies HO-probable innocence for this input
distribution then

I(A; O) ≤ H(A) − 1

Note that we consider the mutual information for a specific input distribution,
not the capacity, for the reasons explained above.
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A Proofs

We present here the proofs that were omitted from the paper.

Theorem 1 Let 〈A,O, p(·|·)〉 be an anonymity protocol and R a random
variable defined by its set of values R = {r1, . . . , rl} and a probability matrix
p(r|a, o). If R partitions both A and O then the transition matrix of the
protocol is of the form

Or1
Or2

· · · Orl

Ar1
Mr1

0 . . . 0
Ar2

0 Mr2
. . . 0

...
...

...
. . .

...
Arl

0 0 . . . Mrl

and
C|R ≤ d ⇔ Ci ≤ d, ∀i ∈ 1..l

where Ci is the capacity of the channel with matrix Mri
.

Proof. First we show that the protocol matrix has the above form, that is
p(o|a) = 0 if a ∈ Ar, o ∈ Or′ with r 6= r′. Since R partitions A, O we have
p(r|a) = 1 and p(r|o) = 0. The idea is that, since a implies r, o cannot intersect
with a unless it also intersects with r, which is impossible. More formally:

0 = p(o, r) = p(o, r, a) + p(o, r,¬a) ≥ p(o, r, a) = p(o, a)

since p(a, r) = p(a). Thus p(o, a) = 0 which is only possible if p(o|a) = 0.
Now we show that C|R ≤ d iff Ci ≤ d, ∀i ∈ 1..l where Ci is the capacity of

the channel with matrix Mri
, constructed by taking only the rows in Ari

and
the columns in Ori

.
(⇒) Assume that C|R ≤ d but ∃i : Ci > d. Then there exists a distribution

pi over Ari
such that I(Ari

; Ori
) > d where Ari

, Ori
are the input and output

random variables of channel Mri
. We construct a distribution over A as follows

p(a) =

{

pi(a) if a ∈ Ari

0 otherwise

It is easy to see that under that distribution, I(A; O|R) = I(Ari
|Ori

) which is a
contradiction since I(A; O|R) ≤ C|R ≤ d < I(Ari

|Ori
).

(⇐) The idea is that for each input distribution p(a) we can construct an
input distribution pr(a) for each sub-channel Mr and express I(A; O|R) in terms
of the mutual information of all sub-channels. We write I(A; O|R) as:

I(A; O|R) = H(A|R) − H(A|R, O)

= −
∑

r∈R

p(r)
∑

a∈A

p(a|r) log p(a|r) +
∑

r∈R
o∈O

p(r, o)
∑

a∈A

p(a|r, o) log p(a|r, o)

= −
∑

r∈R

p(r)
[

∑

a∈A

p(a|r) log p(a|r) −
∑

o∈O

p(o|r)
∑

a∈A

p(a|r, o) log p(a|r, o)
]
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Moreover, we have

p(a|r) =

{

p(a)
p(r) if a ∈ Ar

0 otherwise

p(o|r) =

{

p(o)
p(r) if o ∈ Or

0 otherwise

Also p(a|r, o) = p(a|o) if o ∈ Or and p(a|r, o) = 0 if a /∈ Ar. Thus in the above
sums the values that do not correspond to each r can be eliminated and the rest
can be simplified as follows:

I(A; O|R) = −
∑

r∈R

p(r)
[

∑

a∈Ar

p(a)

p(r)
log

p(a)

p(r)
−

∑

o∈Or

p(o)

p(r)

∑

a∈Ar

p(a|o) log p(a|o)
]

(5)
Now for each r ∈ R we define a distribution pr over Ar as follows:

pr(a) =
p(a)

p(r)

It is easy to verify that this is indeed a probability distribution. We use pr as
the input distribution in channel Mr and since, by construction of Mr, pr(o|a) =
p(o|a) we have

pr(o) =
∑

a∈Ar

pr(a)pr(a|o) =
∑

a∈Ar

p(a)

p(r)
p(a|o) =

p(o)

p(r)

Now equation (5) can be written:

I(A; O|R) =
∑

r∈R

p(r)
[

−
∑

a∈Ar

pr(a) log pr(a) +
∑

o∈Or

pr(o)
∑

a∈Ar

pr(a|o) log pr(a|o)
]

=
∑

r∈R

p(r)
[

H(Ar) − H(Ar|Or)
]

=
∑

r∈R

p(r)I(Ar ; Or)

≤
∑

r∈R

p(r)d

= d

Where Ar, Or are the input and output random variables of channel Mr. Finally,
since I(A; O|R) ≤ d for all input distributions we have C|R ≤ d. �

Theorem 3 Let 〈A,O, p(·|·)〉 be a channel. If p(·|·) is weakly partially
symmetric then the channel’s capacity is given by

C = ps log
|Os|

ps

− H(rs)

where Os is the set of symmetric output values, rs is the symmetric part of a
row of the matrix and ps is the sum of rs.
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Proof. Let Os by the set of symmetric output values (the ones that correspond
to the symmetric columns) and On the set of the non-symmetric ones. Also let
r be a row of the matrix and rs the symmetric part of r. Since the matrix is
partially symmetric all rows are permutations of each other. As a consequence:

H(O|A) = −
∑

o

p(o)
∑

a

p(o|a) log p(o|a) = H(r)

Moreover the columns in On are constant so for all o ∈ On, p(o) is independent
of the input distribution: p(o) =

∑

a p(a)p(o|a) = p(o|a′) for some fixed a′. We
have

I(A; O) = H(O) − H(O|A)

= −
∑

o∈O

p(o) log p(o) − H(r)

= −
∑

o∈Os

p(o) log p(o) −
∑

o∈On

p(o|a′) log p(o|a′) − H(r)

= −
∑

o∈Os

p(o) log p(o) − H(rs)

≤ −
∑

o∈Os

ps

|Os|
log

ps

|Os|
− H(rs) (6)

= ps log
|Os|

ps

− H(rs) (7)

We constructed inequality (6) by taking a uniform distribution p(o) = ps

|Os|

of symmetric outputs (the non-symmetric outputs have constant probabilities).
ps is the total probability of having an output among those in Os. Now if we
take a uniform input distribution p(a) = 1

|A| then for all o ∈ Os : p(o) =
∑

a p(a)p(o|a) = c
|A| where c is the sum of the corresponding column which

is the same for all symmetric output values. So a uniform input distribution
produces a uniform distribution of the symmetric output values, thus the bound
(7) is achieved and it is the actual capacity of the channel. �

Proposition 1 Given an anonymity protocol 〈A,O, p(·|·)〉, a sequence of n
experiments, and a Bayesian decision function fn, for any other decision
function hn we have that Pfn

≤ Phn
.

Proof. Immediate from the fact that the maximum a posteriori rule minimizes
the Bayesian probability of error. See, for instance, [6], Section 12. �

Proposition 2 Given a Bayesian-determinate anonymity protocol
〈A,O, p(·|·)〉, for any distribution p(·) on A, and for any ε > 0, there exists n
such that for each Bayesian decision functions fn there exists a decision
function gn : On → A such that gn(o) = a implies p(o|a) ≥ p(o|a′) for all
a′ ∈ A, and such that gn approximates fn, in the sense that the probability of
the set {o ∈ On | fn(o) 6= gn(o)} is smaller than ε.
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Proof. Given a fixed input a and the corresponding sequence of observable out-
comes o ∈ On, and given a value o ∈ O, let n(o, o) denote the number of o that
occur in o. By the strong law of large numbers ([6]), for any δ > 0 the probability
of the set {o ∈ On | ∀o ∈ O |p(a)n(o, o)/n− p(a)p(o|a)| < δ} goes to 0 as n goes
to ∞. Consequently, the probability of the set S = {o ∈ On | ∀a’ p(a)p(o|a) >
p(a′)p(o|a′)} goes to 1 as n goes to ∞. In fact p(a)p(o|a)/p(a′)p(o|a′) > 1 iff

1

n
log

p(a)p(o|a)

p(a′)p(o|a′)
> 0

and

1

n
log

p(a)p(o|a)

p(a′)p(o|a′)
=

1

n
log

p(a)

p(a′)
+

1

n
log

p(o|a)

p(o|a′)

−→
n→∞

1

n
log

p(o|a)

p(o|a′)
(since

1

n
log

p(a)

p(a′)
−→
n→∞

0)

=
1

n
log

n
∏

i=1

p(oi|a)

p(oi|a′)
(by (1))

=
1

n

n
∑

i=1

log
p(oi|a)

p(oi|a′)

=
1

n

∑

o∈O

n(o, o)log
p(o|a)

p(o|a′)
(by definition of n(o, o))

−→
n→∞

∑

o∈O

p(o|a)log
p(o|a)

p(o|a′)
(by the strong law of large numbers)

= D(p(·|a) ‖ p(·|a′))

> 0 (by Bayesian-determinacy)

Given a Bayesian decision function fn, consider now the set S′ = {o ∈
On | fn(o) = a}. Because of the definition of fn, we have that S ⊆ S′. Hence also
the probability of the set S′ goes to 1 as n goes to ∞. Following a similar reason-
ing, we can prove that for any gn the probability of the set {o ∈ On | gn(o) = a}
goes to 1 as n goes to ∞. We can therefore conclude that the same holds for the
probability of the set {o ∈ On | gn(o) = fn(o)}. �

Proposition 3 Given a Bayesian-determinate anonymity protocol
〈A,O, p(·|·)〉, for any distribution p(·) on A, and for any ε, ε′ > 0, there exists n
such that the property

gn(o) = a implies p(o|a) ≥ p(o|a′) for all a′ ∈ A

determines a unique decision function gn on a set of probability greater than
1 − ε, and the Bayesian probability of error Pgn

is smaller than ε′.
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Proof. Given o ∈ On, define gn(o) = a iff a is the value of A for which p(o|a) is
greatest. By following the same lines as in the proof of Proposition 2, we have
that the set {o ∈ O | ∀a′ ∈ A p(o|a) > p(o|a′)} has probability greater than 1−ε
for n sufficiently large. Consequently, the choice of a is unique.

As for Pgn
, we observe that for n sufficiently large the set Egn

{o ∈ On | ∃a′ ∈
A p(o|a) ≤ p(o|a′)} has probability smaller than ε′. Hence η(a) < ε′ and Pgn

=
∑

a∈A p(a)η(a) < ε′. �

Theorem 4 Let 〈A,O, p(·|·)〉 be an anonymity protocol. If the protocol is
symmetric and satisfies partial anonymity with γ > 1 then

C ≤
log γ

γ − 1
− log

log γ

γ − 1
− log ln 2 −

1

ln 2

Proof. Since the channel is symmetric, by Theorem 2 its capacity is given by
log |O| − H(r) where r is a row of the matrix. We consider the first row which
contains values of the form p(o|a1), o ∈ O. Since the columns are permutations
of each other, we have ∀o∃a : p(o|a1) = p(o1|a). And since the protocol satisfies

partial anonymity we have ∀a, a′ ∈ A : γ ≥ p(o1|a)
p(o1|a′) , thus

∀o, o′ ∈ O : γ ≥
p(o|a1)

p(o′|a1)
(8)

Let p be the minimum value of the row r. By (8) the maximum value of r will
be at most γp. To maximize the capacity we want to minimize H(r) so we will
construct the row which gives the minimum possible entropy without violating
(8). If there are any values of the row between p and γp we could subtract some
probability from one and add it to another value. Clearly, this operation lowers
the entropy of the row since it increases the distance between the values (without
any constraints the lowest entropy of 0 is given when one value of the row is 1
and all the others 0). So for a fixed p the lowest entropy is given by the row
whose values are either p or γp. After that we can no longer separate the values
without violating (8). However, this is a local optimum. If we take a new p′ and
construct a new row with values p′ and γp′ then we might find an even lower
entropy.

Let x be the number of elements with value γp. Also let m = |O|. We have

(m − x)p + xγp = 1 ⇒ p =
1

A
with A = x(γ − 1) + m

And the entropy of r will be

H(r) = −(m − x)
1

A
log

1

A
− x

γ

A
log

γ

A

= (−x(γ − 1) − m)
1

A
log

1

A
− x

γ

A
log γ

= log A − x
γ

A
log γ
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So H(r) is a function h(x) of only one variable x. We want to find the value
x0 which minimizes h(x). First we derive h(x)

h′(x) =
1

ln 2

γ − 1

A
− γ log γ

m

A2

And x0 will be the value for which

h(x0) = 0 ⇒

1

ln 2

γ − 1

x0(γ − 1) + m
=

mγ log γ

(x0(γ − 1) + m)2
⇒

x0 =
A0 − m

γ − 1
with

A0 =
mγ log γ ln 2

γ − 1

Finally the minimum entropy of r will be equal to

h(x0) = log
mγ log γ ln 2

γ − 1
−

γ log γ

γ − 1
+

1

ln 2

= log m −
log γ

γ − 1
+ log log γ − log(γ − 1) + log ln 2 +

1

ln 2

And the maximum capacity will be

Cmax = log m − h(x0)

=
log γ

γ − 1
− log

log γ

γ − 1
− log ln 2 −

1

ln 2

�

Proposition 5 Let 〈A,O, p(·|·)〉 be a channel and p(a) a fixed distribution
over A. If the channel is symmetric and satisfies HO-probable innocence for
this input distribution then

I(A; O) ≤ H(A) − 1

Proof. If X is a random variable and f a function on X , we will denote by Ef(X)
the expected value of f(X). Note that H(X) = −E log p(X) and H(X |Y ) =
−E log p(X |Y ).

We have

I(A; O) = H(A) − H(A|O) = H(A) + E log p(A|O)

And since p(A|O) ≤ 1/2 and both log and E are monotonic

I(A; O) ≤ H(A) + E log
1

2
= H(A) − 1

�
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