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Abstract. In information-hiding, an adversary that tries to infer the se-
cret information has a higher probability of success if it knows the distri-
bution on the secrets. We show that if the system leaks probabilistically
some information about the secrets, (that is, if there is a probabilistic
correlation between the secrets and some observables) then the adversary
can approximate such distribution by repeating the observations. More
precisely, it can approximate the distribution on the observables by com-
puting their frequencies, and then derive the distribution on the secrets
by using the the correlation in the inverse direction. We illustrate this
method, and then we study the bounds on the approximation error as-
sociated with it, for various natural notions of error. As a case study, we
apply our results to Crowds, a protocol for anonymous communication.

1 Introduction

The growing development of the internet and its interaction with everyday ac-
tivities has triggered an unprecedented need for mechanisms to protect private
information such as personal data, preferences, credit card number, etc., against
potentially malicious users. Consequently, there has been an increasing inter-
est for research on information-hiding, both at the level of developing protocols
which ensure the protection of sensitive data during transactions, and at the
level of studying the foundational aspects related to the leakage of classified
information in programs, systems, and protocols.

Recent research on the foundations of information-hiding has been paying
more and more attention to the quantitative aspects, and in particular to prob-
ability. This is because the data to be protected are often obeying the laws of
some probabilistic distribution, and also because the mechanisms for ensuring
their protection often rely on randomization to obfuscate the link between the
hidden information and the observables. This is the case, for example, of many
anonymity protocols, such as Crowds [22], Onion Routing [27], Tor [13], Tarzan
[14], Mix-Nets [7], DC Nets [6], etc.

A common framework for studying the information leakage from a proba-
bilistic point of view is to regard the correlation between the hidden information
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and the observables as a noisy channel, in the information-theoretic sense. The
hidden information is modeled as a random variable A which constitutes the
input of the channel, the observables O constitute the output of the channel
and are in general a random variable as well, and the channel itself represents
the protocol, program or system, and extablishes the correlation between secrets
and observables. Such correlation, which in general is probabilistic if the pro-
tocol or program performs randomized operations, is expressed in terms of the
conditional probability distribution on the observables, given the input. This
distribution is in general assumed to be known, and also supposed to be the
only information that matters about the channel. That is to say, a channel is
represented by the matrix of the conditional probabilities.

In general an adversary is able to see the observable outcome o of the protocol
or program, and it is interested in finding out the secret information, namely
the element of A which has given rise to such observable. If the distribution on
A (i.e. the a priori probability of the input) is known, then the best strategy,
for the adversary, is to apply the so-called Maximum Aposteriori Probability
(MAP) rule, which consists in choosing the a ∈ A with the maximum a posteriori
probability Pr(a|o), that can be computed, using Bayes’ theorem, as:

Pr(a|o) =
Pr(o|a)Pr(a)

Pr(o)
(1)

where Pr(o) can be computed using the formula:

Pr(o) =
∑

a

Pr(o|a)Pr(a) (2)

The MAP rule is optimal in the sense that it minimizes the probability of error,
i.e. the average probability of choosing the wrong a, weighted on the probabilities
of all the observables [11].

If the distribution on A is not known then the above formula does not help to
compute Pr(a|o). If one can repeat the experiment and collect more observables
while keeping the same secret as the input, however, then the MAP rule can
be replaced by the so-called Maximum Likelyhood (ML) rule, which consists in
choosing the a for which Pr(~o|a) is maximum, where ~o is the sequence of the
observables collected during the experiments. It is well known that the ML rule
gives in the long term (i.e. as the number of experiments increases) the same
result as the MAP rule, in the sense that the Pr(a) component becomes less
and less relevant for determining the a which gives the maximum Pr(a|~o) [11].
(The denominator of (1) is just a normalization factor and it does not need to
be computed for determining such a.)

In protocols and in programs it is in general not possible to ensure that
the input remains the same through different runs, especially if the adversary
is passive. On the other hand, we show in this paper that the fact that the
input may change makes it possible to approximate its distribution. The idea
is the following: The adversary observes the outcomes of n experiments, and it
approximates the distribution on the observables by computing their frequencies,
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i.e. by assigning to each o the number of times that o has occurred, divided by n.
Then, it replaces the Pr(o) in (2) by its approximations, thus obtaining a system
of linear equations where the unknown are the Pr(a)’s. Finally, by solving the
system, the adversary obtains a distribution on A. We show in this paper that,
under the condition that the matrix is invertible, this distribution approximates
the true distribution on A, namely that the probability of error with respect to
the true distribution decreases as the number of the experiments increases.

1.1 Related work

The problem of inferring a hidden information from observable events that de-
pend on the information is known under the name of hypothesis testing (see
for example [11]). The case in which this dependence is expressed in terms of a
known conditional distribution is well studied in literature, and the MAP and
ML rules are the most used decision functions. Inspite of the large literature on
this topic, however, we have not been able to find an investigation of the scenario
in which the hidden event (the hypothesis) changes every time the experiment is
performed. We think that the reason may be the fact that hypothesis testing has
been considered, so far, for applications in which there is one hypothesis which
is true, and it is not supposed to change over time. For instance, in medicine,
the hypothesis is the kind of illness of the patient, and the observables are the
symptoms. The tests on the patient may detect various symptoms, but the cause
remains the same. The situation in which the hypothesis changes at every ex-
periment is typical of information-hiding protocols and programs, where the
hypotheses are the inputs, and the experiments are the runs. This application
is new for hypothesis testing, with the exception of the recent work mentioned
below. Consequently we think that, despite its relative simplicity, the method
that we describe in this paper is new.

Hypothesis testing in the context of information hiding protocols has been
investigated in [16, 4, 26]. In these works, however, the focus is on the inference
of the true hypothesis, and not on the inference of the probability distribution.

The foundational aspects of information hiding and information flow, in a
probabilistic setting, have been studied also in several other papers. We mention
in particular [1] which explores the relation between probability and nondeter-
minism, and [3] which extends of the notion of probable innocence. A related line
of work is directed at exploring the application of information-theoretic concepts
[24, 12, 20, 21, 29, 5, 10, 19, 15, 8, 9, 17, 18, 2]. The relation with hypothesis testing
is given by the fact that the exponential of the conditional entropy is an upper
bound of the Bayes risk (the probability of error using the MAP rule) [23, 4],
although [26] has pointed out that the bound can be in some case very loose.

1.2 Contribution

The contributions of this paper are:

– A method to compute the probability distribution on the hidden events from
repeated executions of the protocol or program.
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– The proof of correctness of this method, expressed in probabilistic terms: the
probability that the error with respect to the true distribution is arbitrarily
small converges to 1 as the number of experiments grows.

– The application of these concepts to the case of Crowds. The studies of
Crowds so far have been assuming a fixed user as the culprit, and have
ignored the problem of determining the a priori probability that an arbitrary
user be the culprit.

1.3 Plan of the paper

In the next section we recall some basic notions about the systems of linear equa-
tions. In Section 3 we present our framework in which protocols and programs
are seen as noisy channels, we explain our method for approximating the distri-
bution on the hidden events, and we introduce three notions of approximation
error. In Section 4 we show that, under the hypothesis that the matrix of the
channel is invertible, the approximation of the probability distribution can be
made as accurate as desired, provided we increase the number of experiments.
In Section 5 we study the case in which the matrix is not invertible. Finally, in
Section 6, we apply our study to the example of Crowds.

2 Preliminaries

A system of linear equations is a set of the form

m11x1 + m12x2 + . . . + m1nxn = y1

m21x1 + m22x2 + . . . + m2nxn = y2

...
mm1x1 + mm2x2 + . . . + mmnxn = ym

where the mij ’s and the yi’s are constants and the xj ’s are the unknowns. Such
a system can be represented as:

MX = Y

where Y is the m×1 vector containing the yi’s, X is the n×1 vector containing
the xj ’s and M is the m×n matrix whose element in the ith row and jth column
is mij .

In this paper we denote by Mij the (i, j) minor, namely the determinant of
the matrix formed by removing the ith row and the jth column. We use cij to
represent the cofactor of mij , namely (−1)i+jMij . We represent by det A the
determinant of the square matrix A, and by |x| the absolute value of the real
number x.

The inverse of M , if it exists, is the unique matrix M−1 such that MM−1 =
M−1M = I, where I is the identity matrix, i.e. the matrix with whose elements
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are 1 on leading diagonal and 0 otherwise. We recall that:

M−1 =
1

det M


c11 c21 . . . cn1

c12 c22 . . . cn2

...
...

. . .
...

c1n c2n . . . cnn


3 Information hiding protocols modeled as matrices

In our framework, we regard an information-hiding protocol as a system where
the secrets are disjoint hidden events a1, a2, · · · , an, with a probability dis-
tribution Pr(a1),Pr(a2), · · · ,Pr(an), and the observables are disjoint events
o1, o2, · · · , om that depend probabilistically on the aj ’s. We use Pr(oi|aj) to
represent the conditional probability of oi given aj . These conditional probabili-
ties induce a probability distribution on the oi’s that, because of the disjointness
of the aij ’s, is given by:

Pr(oi) =
n∑

j=1

Pr(oi|aj)Pr(aj) for each i. (3)

For simplicity, we introduce the following notation:

xj = Pr(aj)

yi = Pr(oi)

mij = Pr(oi|aj)

and we denote by X, Y and M the matrices containing the xj ’s, yi’s and mij ’s
respectively. Hence, the property (3) can be represented as the equality:

Y = MX (4)

Since, Pr(·|aj) is a probability distribution, we have the following properties:

0 ≤ mij ≤ 1 for each i, j (5)

m∑
i=1

mij = 1 for each j (6)

We assume that we have a passive adversary, namely an entity that can observe
the outcome of the protocol (the observables), and knows the behaviour of the
protocol, hence the Pr(oi|aj)’s, but it cannot interfere with or change the way
the protocol works. The adversary wishes to find out the Pr(aj)’s. Due to the
above assumptions, the only thing it can do is to estimate (an approximation of)
the Pr(oi)’s, and then calculate (an approximation of) the Pr(aj)’s by solving
the system (4) above.
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The estimation of Pr(oi) can be done by observing the outcome of the proto-
col several times, say h, and counting the number of times #oi that the event oi

has occurred. We know that for large h, this method gives a good approximation
of Pr(oi) with high probability, because of the law of large numbers [28]:

lim
h→∞

Pr(|Pr(oi)−
#oi

h
| < ε) = 1 (7)

for any ε > 0 and for 1 ≤ i ≤ m.
The real goal of the adversary, however, is to estimate the Pr(aj)’s. So, we

want to find out whether the method of solving the system (4) also gives an
approximation of the Pr(aj)’s, and how good this approximation is, namely
what the bounds are on the approximation errors for the Pr(aj)’s in terms of
the approximation errors for the Pr(oi)’s.

Let Yh be the computed approximation of the yi’s, namely the vector:

Yh
def= (

#o1

h
,
#o2

h
, · · · ,

#om

h
)

notation= (yh1, yh2, · · · , yhm)

Let Xh be the vector of the solutions to the system (4) with Y substituted by
its approximation Yh (if the system is solvable), namely the vector such that:

Yh = MXh (8)

We are now going to explore the bounds on the approximation errors on X in
terms of the bounds of the approximation errors on Y .

There are various possibilities for defining the notion of approximation error.
We consider the following three, which seem to us the most natural.

In the first definition, we regard the error as the vector of the absolute differ-
ences on the individual components of Y and Yh and on X and Xh respectively.

Definition 1 (Notion of error #1).

EY = (|y1 − yh1|, |y2 − yh2|, · · · , |ym − yhm|)

EX = (|x1 − xh1|, |x2 − xh2|, · · · , |xm − xhn|)

In the second definition, we regard the error as the sum of all the absolute
differences on the individual components.

Definition 2 (Notion of error #2).

eY =
m∑

i=1

|yhi − yi|

eX =
n∑

j=1

|xhj − xj |
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Finally, in the third definition, we regard the error as the vectorial distance
between Y and Yh, and X and Xh respectively.

Definition 3 (Notion of error #3).

errY =

√√√√ m∑
i=1

|yhi − yi|2

errX =

√√√√ n∑
j=1

|xhj − xj |2

4 Analysis of the error in the case of invertible matrix

In this section, we study the bounds on the approximation error when m = n
and M is invertible. We use L to represent M−1, and lij to represent the ith row
and jth column element of L. Hence, (4) can be rewritten as X = LY .

4.1 Bound on the error for notion #1

Here we study the upper bound on EX in terms of EY . We do not have any
interesting lower bound for this case.

First we observe the following:

Lemma 1.
∑

i |lji| ≤ n
maxi |Mij |
|det M |

Proof. Recall that lji = cij

det M (cfr. Section 2). Hence we have:∑
i

|lji| =
∑

i

| cij

det M
|

=
1

|det M |
∑

i

|Mij |

≤ 1
|det M |

∑
i

max
i
|Mij |

= n
maxi |Mij |
|det M |

ut

The above lemma allows us to establish an upper bound on the error:

Theorem 1. Each component of EX is bounded by

n
maxij |Mij |
|det M |

max
i
|yhi − yi|

7



Proof. By definition, the components of X, Xh are given by:

xj =
∑

i

ljiyi and xhj =
∑

i

ljiyhi

Hence, we have:

|xhj − xj | = |
∑

i lji(yhi − yi)|

≤
∑

i |lji(yhi − yi)| by the triangle inequality

=
∑

i |lji||yhi − yi|

≤ (
∑

i |lji|) maxi |yhi − yi|

≤ n
maxj |Mij |
|det M | maxi |yhi − yi| by Lemma 1

≤ n
maxij |Mij |
|det M | maxi |yhi − yi|

ut

Thus, we see that if each component of Yh is error-bound by ε , then each
component of Xh is error-bound by some finite multiple of ε. Hence, if the
protocol matrix M is invertible, then the adversary can approximate the values
of the probability of the inputs with very high probability to the desired degree
of accuracy, by increasing the number of experiments.

4.2 Bounds on the error for notion #2

We now study the bounds on eX in terms of eY . We start with the lower bound.

Theorem 2. eX ≥ eY
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Proof.

eY =
∑n

i=1 |yhi − yi| by definition

=
∑n

i=1 |
∑n

j=1 mij(xhj − xj)| by (4) and (8)

≤
∑n

i=1

∑n
j=1 |mij(xhj − xj)| by the triangle inequality

=
∑n

i=1

∑n
j=1 mij |xhj − xj | since mij ≥ 0

=
∑n

j=1

∑n
i=1 mij |xhj − xj |

=
∑n

j=1 |xhj − xj |(
∑n

i=1 mij)

=
∑n

j=1 |xhj − xj | since
∑

i mij = 1

= eX by definition

ut

Now we show that we can give an upper bound on eX in terms of eY .

Lemma 2.
∑

j |lji| ≤ n
maxj |Mij |
|det M |

Proof.

∑
j

|lji| =
∑

j

| cij

det M
|

=
1

|det M |
∑

j

|Mij |

≤ n
maxj |Mij |
|det M |

ut

Theorem 3. eX ≤ n
maxij |Mij |
|det M | eY
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Proof.

eX =
∑

j |xhj − xj |

=
∑

j |
∑

i lji(yhi − yi)|

≤
∑

j

∑
i |lji(yhi − yi)| by the triangle inequality

=
∑

i

∑
j |lji(yhi − yi)|

=
∑

i |yhi − yi|(
∑

j |lji|)

≤
∑

i |yhi − yi|nmaxj |Mij |
|det M | by Lemma 2

= n
|det M |

∑
i(maxj |Mij |)|yhi − yi|

≤ n
|det M |

∑
i(maxij |Mij |)|yhi − yi|

= n
maxij |Mij |
|det M |

∑
i |yhi − yi|

= n
maxij |Mij |
|det M | eY by definition

ut

Combining the lower and upper bounds, we get:

eY ≤ eX ≤ n
maxij |Mij |
|det M |

eY

4.3 Bounds on the error for notion #3

Here we study the bounds on errX in terms of errY . We will make use of the
following well-known fact:

(
∑n

i=1 ci

n
)2 ≤

∑n
i=1 c2

i

n
(9)

For the lower bound, we have:

Theorem 4. errY ≤
√

n errX
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Proof.

err2
Y =

∑n
i=1 |yhi − yi|2

=
∑n

i=1(
∑n

j=1 mij(xhj − xj))2

≤ n
∑n

i=1

∑n
j=1(mij(xhj − xj))2 by (9)

= n
∑n

j=1

∑n
i=1(mij(xhj − xj))2

= n
∑n

j=1(xhj − xj)2(
∑n

i=1 m2
ij)

≤ n
∑n

j=1(xhj − xj)2(
∑n

i=1 mij)2 since mij ≥ 0

= n
∑n

j=1((xhj − xj)2 since
∑

i mij = 1

= n err2
X

ut

Now, we show that we can give an upper bound on errX in terms of errY . First,
we observe the following:

Lemma 3.
∑

j l2ji ≤ n
maxj M2

ij

(det M)2

Proof. ∑
j

l2ji =
∑

j

(
cij

det M
)2

=
1

(det M)2
∑

j

M2
ij

≤ n
maxj M2

ij

(det M)2

ut

The above lemma allows us to derive an upper bound on the third notion of
error:

Theorem 5. errX ≤ n
maxij |Mij |
|det M | errY
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Proof.

err2
X =

∑
j(xhj − xj)2 by definition of errX

=
∑

j(
∑

i lji(yhi − yi))2

≤ n
∑

j

∑
i(lji(yhi − yi))2 by (9)

= n
∑

i(
∑

j l2ji)(yhi − yi)2

≤ n maxi(
∑

j l2ji)
∑

i(yhi − yi)2

≤ n maxi(
∑

j l2ji) err2
Y by definition of errY

≤ n2 maxij M2
ij

(det M)2 err2
Y by Lemma 3

ut

Combining the lower and upper bounds, we get:

errY√
n

≤ errX ≤ n (
maxij |Mij |
|detM |

) errY

4.4 Convergence to 0 of the error in the three definitions

A consequence of the bounds determined above is that, since the error in the
approximation of Y tends to 0 as h increases (cfr. (7)), the error in the ap-
proximation of X also tends to 0 as h increases (for all the three notions), by
the sandwich principle. In other words, if the adversary is able to repeat the
experiment, his guesses about the input distribution become increasingly more
accurate. Formally, this is expressed by the following theorem.

Theorem 6.

lim
h→∞

Pr(|xhj − xj | < ε) = 1 for any ε > 0 and for any j

lim
h→∞

Pr(eX < ε) = 1

lim
h→∞

Pr(errX < ε) = 1

The above result states that all the definitions of error we have considered con-
verge to 0. The convergence speed is also the same: In fact, the coefficient factors
on the bounds of all the three definition are the same despite the definitions are
different.
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5 Analysis of the error in the general case

In this section we consider the cases in which m 6= n or M is not invertible.
We first note that the system MX = Y always has a solution, because Y

represents the true probability distribution on the output, hence the equation is
satisfied, by definition, by the vector X which represents the true probability on
the input.

It may happen, however, that the system has infinitely many solutions. This
happens when the rank of M (i.e. the maximal number of linearly-independent
columns of M) is strictly smaller than min{m,n}. In this case it is not possible,
for the adversary, to approximate the input distribution at an arbitrary degree
of precision. Consider the following example:

Example 1. Consider a protocol represented by the following system:

1
3x1 + 1

3x2 + 1
2x3 = y1

1
3x1 + 1

3x2 + 3
8x3 = y2

1
3x1 + 1

3x2 + 1
8x3 = y3

Assume that the adversary gets to know somehow the true output distribution,
and assume that it is y1 = 5

12 , y2 = 17
48 , y3 = 11

48 . By solving the system, the
adversary finds that all the tuples which satisfy x1 + x2 = 1

2 , x3 = 1
2 (and

x1, x2 ≥ 0) are possible probability distributions on the input. However, it has
no way to infer how the probability 1

2 distributes among x1 and x2. So the
approximation error on the first two components in the worst case is 1

2 even in
the limit.

¿From the above example we can conclude that in case the rank of the matrix
is smaller than n, the adversary cannot approximate the true probability of the
input. It is possible, however, to approximate the combined probability of some
of the inputs, like the combination of x1 and x2 in the example.

Let r be the rank of M . We show how the adversary can reduce M to a
matrix r× r without losing any information that can be used for computing the
approximation. The idea is to remove the dependent columns, one by one, and
then remove the redundant rows, again one by one. Once this reduction is done,
the adversary can proceed like illustrated in the previous section for the square
and invertible matrices.

5.1 Removal of the dependent columns

Consider a column of M that can be expressed as a linear combination of other
columns. Let h be its index, and let T be the set of indexes of the columns which
form the linear combination. Let T ′ denote the set of indexes of the remaining
columns. Let λi’s be the corresponding coefficients of the linear combination.
Hence, for every i, ∑

j∈T

λjmij = mih
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Now, Let M ′ be the matrix obtained from M by simply removing its hth column,
and let X ′ be a vector of variables which is same as X without the component
xh.

Proposition 1. If MX = Y has a solution X = (x1, x2, · · · , xn) then M ′X ′ =
Y has a solution X ′ = (x′1, x

′
2, · · · , x′n), where

x′j =

{
xj + λjxh if j ∈ T

xj otherwise

Proof. We show that
∑

j m′
ijx

′
j = yi for every i.

∑
j m′

ijx
′
j =

∑
j∈T mijx

′
j +

∑
j∈T ′−h mijx

′
j

=
∑

j∈T mij(xj + λjxh) +
∑

j∈T ′−h mijx
′
j

=
∑

j∈T mijxj +
∑

j∈T ′−h mijxj + (
∑

j∈T mijλj)xh

=
∑

j∈T mijxj +
∑

j∈T ′−h mijxj + mihxh

= yi by the hypothesis

ut

We continue the above procedure till we obtain a matrix Mf which has r
columns.

The number of rows m of Mf is still the same as the one of M . If r < m, there
are necessarily m − r rows which are linear combinations of other rows in Mf .
The corresponding system MfXf = Y has a solution, as proved above, however
when we replace Y by the approximation vector Yh, we are not guaranteed that
MfXf = Yh still has a solution. To fix this problem, we could simply remove
the dependent rows of Mf . This would not be the best method, however, from
the point of view of efficiency. In fact, the experiments which give an output
corresponding to a removed row would be waisted for the calculation of the
frequencies. In the rest of this section we illustrate a better method.

5.2 Elimination of the dependent rows

We rename Mf as M for simplicity. Now, consider a row of M that can be
expressed as a linear combination of other rows. Let h be its index, and let S be
the set of indexes of the rows which form the linear combination. We choose an
arbitrary k from S and construct the new M ′ and Y ′ from M,Y respectively by
removing their h-th row, and defining the other elements as follows:

m′
ij =

{
mij if i 6= h, k

mkj + mhj i = k
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y′i =

{
yi if i 6= h, k

yk + yh i = k

It is important to note that, by the above construction, the crucial properties,
(5) and (6) still hold.

Proposition 2. If X = (x1, x2, · · · , xn) is a solution to MX = Y then it is
also a solution to M ′X = Y ′.

Proof. We show that
∑

j m′
ijxj = y′i for every i 6= h.

If i 6= h, k, then ∑
j m′

ijxj =
∑

j mijxj

= yi

= y′i

If i = k, then ∑
j m′

ijxj =
∑

j mkjxj +
∑

j mhjxj

= yk + yh

= y′i

ut

Example 2. Consider again the system in Example 1, with the known values of
the y′is. By removing the dependent column (the second one), we obtain:

1
3x′1 + 1

2x′3 = 5
12

1
3x′1 + 3

8x′3 = 17
48

1
3x′1 + 1

8x′3 = 11
48

Then, we observe that the first row is a linear combination of the other two, with
coefficients 3

2 and − 1
2 respectively. By eliminating the dependent rows with the

method illustrated above, (h = 1, k = 2) we obtain:

2
3x′1 + 7

8x′3 = 37
48

1
3x′1 + 1

8x′3 = 11
48

The solution is x′1 = x′3 = 1
2 . We recall that the relation with the solutions

of the original system is given by x′1 = x1 + x2, x
′
3 = x3.
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6 Application: Crowds

In this section, we apply the previously obtained bounds to the Crowds’ anonymity
protocol. This protocol was intoduced by Reiter and Rubin [22] to the purpose
of making it possible for a user to send a message to a server without revealing
its identity. The idea is to send the message through a chain of users who are
also participating in this protocol. The exact algorithm is as follows: First, the
initiator chooses a user x randomly and forwards the message to x. Then, with
probability pf , x decides to forward it to another randomly chosen user, and
with probability 1 − pf he sends it to the server directly. It is easy to see that
the initiator is strongly anonymous with respect to the server, as all users have
the same probability of being the forwarder who finally delivers the message.
However, the more interesting case is when the attacker is one of the users of
the protocol (called a corrupted user) which uses his information to find out the
identity of the initiator. A corrupted user has more information than the server
since he sees other users forwarding the message through him. The initiator,
being the first in the path, has greater probability of forwarding the message to
the attacker than any other user, so strong anonymity cannot hold. However,
under certain conditions on the number of corrupted users, Crowds can be shown
to satisfy a weaker notion of anonymity called probable innocence [22]. In our
analysis, we shall consider the clique network topology which was also used in
the original presentation of Crowds. In this topology, each user can communicate
with any other user. Therefore, the protocol matrix M is symmetric and easy to
compute.

Let the total number of users be m, out of which n are honest and c = m−n
are corrupt. To construct the protocol matrix M we must define the hidden
events and the visible events. Since the initiator wants to hide his identity, we
choose A = u1, · · · , un as the set of hidden events, where uj denotes the event
that user j is the initiator. For the purpose of the analysis we consider only the
honest users as possible initiators. This is because the attacker’s own identity
cannot be hidden from him.

Now, we have to define the set of visible events. In Crowds we assume that
the attacker does not have access to the entire network (such an attacker would
be too powerful for this protocol) but only to the messages that pass through a
corrupted user. If a user i forwards the message to a corrupted user, we say that
he is detected. As in other studies of Crowds [22, 25], we assume that an attacker
will not forward a message himself, as he would not gain more information by
that. Thus, we can say that at each execution of the protocol, if a corrupted user
is on the path, then there is exactly one detected user. Therefore we define O =
d1, · · · , dn where di means that user i was detected, restricted to the cases in
which there was a corrupted user in the path.

Now we need to compute the probabilities Pr(di|uj) for all 1 ≤ i, j ≤ n. As
in [22], let I be the event that the first corrupted user on the path is immediately
preceded by the message initiator. Let Hk be the event that the first corrupted
person on the path appears at the kth position. The initiator occupies the 0th

position. Let Hk+ = ∪k′≥kHk′ . It has been shown in [22] that Pr(I|H1+) =
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1− n−1
m pf . It is also easy to see that, for every i,

Pr(di|ui) = Pr(I|H1+)

Also, by (6), for every j, ∑
i

Pr(di|uj) = 1

By symmetry, we note that Pr(di|uj) is the same for any j except when i = j.
Thus, by the above observations, we state the following:

mij = Pr(di|uj) =

1− n−1
m pf if i = j

pf

m otherwise

6.1 Probable innocence and strong anonymity

The condition of probable innocence, proposed in [22], is that the detected user
is not more likely to be the initiator than not to be. Formally:

Pr(I|H1+) ≤ 1
2

(10)

In our case Pr(I|H1+) is the value of the elements of the the leading diagonal
of the protocol matrix. Hence, if the mii ≤ 1/2, then the path initiator has the
probable innocence protection against the c corrupted users.

Example 3. Let us consider the case in which pf = 0.6, m = 100 and n = 90.
The matrix M is as follows:

M =


0.466 0.006 . . . 0.006
0.006 0.466 . . . 0.006

...
...

. . .
...

0.006 0.006 . . . 0.466


Note that the condition of probable innocence is satisfied as mii = 0.466 ≤ 0.5.

We shall now compute the bound on the approximation error in X as a
function of the approximation error in Y using the three definitions introduced
previously.

Notion #1 0 ≤ |xhj − xj | ≤ 194.48 maxi |yhi − yi|, for each j.
Notion #2 eY ≤ eX ≤ 194.48 eY .
Notion #3 0.11errY ≤ errX ≤ 194.48 errY .

It is evident that as the error in approximation of Y tends to 0, the errors in
approximating X also tend to 0. However, as we shall observe from the graphical
analysis to follow, the coefficient of the upper bound on the error in X shoots
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up when probable innocence is not satisfied, and goes to infinity for the case in
which the columns of the matrix are all equal, which corresponds to the case of
strong anonymity [5]3. The condition under which the columns are equal is, by
definition:

1− n− 1
m

pf =
pf

m

or, equivalently
pf =

m

n

Since pf < 1 and m
n > 1, this condition cannot be achieved, but it can be

approximated for n = m− 1, large values of m, and values of pf close to 1.

6.2 Graphical analysis of the error bounds

We consider the upper bounds on the errors, which are the most interesting. In
the following, we analyze the coefficients in the upper bounds as a function of
the various parameters of the system.

We denote by Z the coefficient of the bound on the error according to notion
#i, for i ∈ {1, 2, 3}, as in, for instance, eX ≤ Z eY . We recall that Z is the same
for all the three definitions.

Figure 1 illustrates the plot of Z obtained by varying n and pf , while m is
kept constant and equal to 100.

It is clear from the graph that as n increases (keeping pf constant), also Z
increases, and the network becomes safer. Thus, the chance of error is big for
the attacker. Also, as pf increases (keeping n constant), Z increases.

We now study how Z is related to the condition of probable innocence. It is
easy to see (cfr. also [22]) that the condition (10), in case pf > 1

2 , is equivalent
to the following:

m ≥ pf

pf − 1/2
(c + 1), given pf > 1/2. (11)

Let us consider the line in the graph where pf = 0.8. By applying relation (11),
we see that probable innocence is achieved for n ≥ 64. As we can see from the
graph, along the line pf=0.8, Z increases rapidly when n increases beyond 64.

6.3 Study of the bounds in relation to the condition of probable
innocence

We now plot Z as a function of c+1
m (x-axis) and pf−1/2

pf
(y-axis). This plots is

shown in Figure 2. Note that we are justified in taking pf−1/2
pf

and c+1
m as the

independent variables because we keep m constant and thus Z can entirely be
written in terms of these two new variables without any explicit mention of pf

and c.
3 Note that in our case we use the convention of linear algebra for the matrix, while

[5] uses the convention of Information Theory, and as a consequence the roles of the
rows and columns are exchanged
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Fig. 1. The plot of Z as a function of n and pf , and for m = 100. The minimum value
of Z is 1.00 at n = 1, pf ∗ 100 = 10. The convergence to 0 for small n is only apparent
and due to the large scale of Z.
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Fig. 2. A plot of Z as a function of c+1
m

and
pf−1/2

pf
, and for m = 100. The minimum

value of Z is 2.0132 at x = 0.9875, y = 0.038. Again, the convergence to 0 as x
approaches 1 is only apparent and due to the large scale of Z.
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In all the readings, pf > 1/2. Thus, probable innocence is satisfied in the
region where the x-value is smaller than the y-value. We observe that there is
a considerable increase in the slope in this region, and that the inclination is
parallel to the plane x = y.
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