
A Probabilistic Applied Pi–Calculus�

Jean Goubault-Larrecq1, Catuscia Palamidessi2, and Angelo Troina1,2

1 LSV - ENS Cachan
61 Avenue du Président Wilson, 94235 Cachan - France

{goubault,troina}@lsv.ens-cachan.fr
2 LIX - École Polytechnique

Rue de Saclay, 91128 Palaiseau - France
{catuscia,troina}@lix.polytechnique.fr

Abstract. We propose an extension of the Applied Pi–calculus by
introducing nondeterministic and probabilistic choice operators. The se-
mantics of the resulting model, in which probability and nondetermin-
ism are combined, is given by Segala’s Probabilistic Automata driven by
schedulers which resolve the nondeterministic choice among the probabil-
ity distributions over target states. Notions of static and observational
equivalence are given for the enriched calculus. In order to model the
possible interaction of a process with its surrounding environment a la-
beled semantics is given together with a notion of weak bisimulation
which is shown to coincide with the observational equivalence. Finally,
we prove that results in the probabilistic framework are preserved in a
purely nondeterministic setting.

1 Introduction

Security protocols are a critical element of the infrastructures needed for secure
communication and processing information. Most security protocols are quite
simple if only their length is considered. However, the properties they are sup-
posed to ensure are extremely subtle, hence it is hard to get protocols correct just
by informal reasoning. The history of cryptography and security protocols has a
lot of examples where weaknesses of supposedly correct algorithms or protocols
were discovered even years later. Thus, security protocols are excellent candi-
dates for rigorous formal analysis. They are critical components of distributed
security, are very easy to express and very difficult to evaluate by hand.

The use of formal methods for modeling and analyzing cryptographic proto-
cols is now well-established. After the seminal paper by Dolev and Yao [11], which
introduced a simple and intuitive description for cryptographic protocols, many
alternative definitions have been proposed on the basis of several approaches,
ranging from modal logics to process algebras (see the calculi in [15,25,2]).

Probabilistic models are nowadays widely used in the design and verification
of complex systems in order to quantify unreliable or unpredictable behaviour in
security, performance and reliability analysis. Probability is taken into account
� This work has been partially supported by the INRIA/ARC project ProNoBiS.

Z. Shao (Ed.): APLAS 2007, LNCS 4807, pp. 175–190, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

176 J. Goubault-Larrecq, C. Palamidessi, and A. Troina

when analyzing quantitative security properties (measuring, in a sense, the se-
curity level of the protocol) or when dealing with probabilistic protocols. Proba-
bilistic frameworks applied to security analysis are, just as an example, [3,10,20]).
In particular, in [20] Mitchell et al. introduce a variant of CCS allowing prob-
abilistic polynomial-time expressions in messages and boolean tests. The se-
mantics of the calculus schedules probabilistically the exchanged messages. The
authors also define a form of asymptotic protocol equivalence that allows security
properties to be expressed using observational equivalence.

In [1], Abadi and Fournet introduce the Applied Pi–calculus, an extension
of the Pi–calculus [18] with functions and equations allowing to treat messages
not only as atomic names, but also as more complex terms constructed from
names and functions. Such an extension gives rise to an important interaction
between the new construct and value–passing communication allowing to model
unforgeable capabilities. Applications to security are immediate. Moreover, the
Applied Pi–calculus permits a general and systematic development of syntax,
operational semantics, equivalences and proof techniques.

It has been remarked that the Applied Pi–calculus, thanks to its explicit
substitutions, is similar to Concurrent Constraint calculi like CCP [24], the ρ–
calculus [21] and the CC–pi calculus [5].

Bisimulation relations [17] are well–established behavioural equivalences and
are now widely used for the verification of properties of computer systems. Ac-
tually, a property can be verified by assessing the bisimilarity of the considered
system with a specification one knows to enjoy the property. Moreover, bisimu-
lations can sometimes be verified automatically thanks to successful implemen-
tations of verification tools like, e.g., the Concurrency Workbench [7] or the
Mobility Workbench [28]. It is also extremely important for bisimulations to be
congruences in order to account on compositional behavioural equivalences.

Contribution

In this paper we introduce an extension of the Applied Pi–calculus, called Prob-
abilistic Applied Pi–calculus (PAPi for short), where both nondeterministic and
probabilistic choices are taken into account. The semantics of the resulting model
is given by Segala’s Probabilistic Automata [26] driven by schedulers which re-
solve the nondeterministic choice among the probability distributions over target
states (see [27]).

For the enriched calculus, we propose a notion of static equivalence (inher-
ited from the Applied Pi–calculus) and a notion of probabilistic observational
congruence. We also give a labeled semantics for modeling the interaction of a
process with its surrounding environment. We derive a notion of weak bisimula-
tion and show that it is a congruence relation coinciding with the observational
equivalence defined for the unlabeled semantics. Finally, abstracting away from
probabilities, we prove that results holding in the probabilistic version of the
calculus are preserved within a purely nondeterministic framework.

A Probabilistic Applied Pi–Calculus 177

As an application, we use PAPi to model and analyze the 1-out-of-2 oblivi-
ous transfer protocol given in [12]. Such a protocol makes use of cryptographic
operations and randomization to achieve fairness in information exchange.

2 Preliminaries

In this section we recall some preliminary notions about terms, equational the-
ories and probability distributions.

Terms. A signature Σ = {(f1, a1), . . . , (fn, an)} consists of a finite set of func-
tion symbols fi each with an arity ai. A function with arity 0 denotes a constant
symbol. Given a signature Σ, and infinite set of names and variables, the set of
terms is defined by the grammar:

M, N ::= a, b, c, . . .
∣
∣ x, y, z, . . .

∣
∣ f(M1, . . . , Ml)

where M, N are terms, a, b, c are names, x, y, z are variables and f(M1, . . . , Ml)
denotes function application with (f, l) ∈ Σ. With T we denote the set of terms.
A term is called ground when it does not contain free variables and we use TG

to denote the set of ground terms. Metavariables u, v range over both names
and variables. Tuples u1, . . . , ul and M1, . . . , Ml are abbreviated to ũ and M̃ ,
respectively.

As in [1], we rely on a sort system for terms. It may include a set of base types,
such as Integer, Key, etc., or simply a universal base type Data. In addition, if
S is a sort, then Channel(S) is the sort of those channels that convey messages
of sort S. Variables and names can have any sort. We would use a, and c as
channel names, s and k as names of some base type, and m and n as names of
any sort. For simplicity, function symbols take arguments and produce results
of base types only. In the following of the paper we always assume that terms
are well-sorted and that substitutions preserve sorts.

Equational Theories. Given a signature Σ, we equip it with an equational
theory E. An equational theory is a congruence over terms closed under substi-
tutions of terms for variables (see [19,9,13]). We require this equational theory
to be also closed under one-to-one substitutions on names. We use the standard
notation Σ � M =E N when the equation M = N is in the theory E of Σ, and
Σ �� M =E N for the negation of Σ � M =E N .

In [1] one may find several examples of equational theories for the modeling
of different kinds of cryptographic applications such as pairing, symmetric and
asymmetric encryption, hashing, probabilistic encryption (modeled in a nonde-
terministic sense), signatures and XOR. We recall just some of them.

Algebraic data types such as pairs and lists could be defined by equipping a
signature Σ with the binary function symbol pair and the unary function symbols
fst and snd, with equations fst(pair(x, y)) = x and snd(pair(x, y)) = y.

Now, the equational theory for algebraic data types consists of these equa-
tions and all the ones obtained by reflexivity, symmetry and transitivity and by

178 J. Goubault-Larrecq, C. Palamidessi, and A. Troina

substituting terms for variables. The sort system should enforce that fst and snd
are applied only to pairs (alternatively a boolean function recognizing pairs
may be added). Equations can be added to describe particular behaviours.
For example, a constant symbol wrong can be considered such that fst(M) =
snd(M) = wrong for appropriate ground terms M which are not pairs. In the
following we use the abbreviations (M, N) for pair(M, N) and (L, M, N) for
pair(pair(L, M), N).

A one-way hash function can be represented as a unary function symbol h
with no equations. The one-wayness of h is modeled by the absence of an inverse
while the fact that h is collision-free results from h(M) = h(N) only for M = N .

Symmetric cryptography (shared-key cryptography), is modeled via binary
function symbols enc and dec for encryption and decryption with equation
dec(enc(x, y), y) = x, where x represents the plaintext and y the key.

Asymmetric encryption can be modeled introducing two unary function sym-
bols pk and sk for generating the public and the secret keys from a seed with
the equation dec(enc(x, pk(y)), sk(y)) = x.

Sometimes, it may be useful to assume that encrypted messages come with
sufficient redundancy such that decryption with a wrong key is evident. We may
incorporate this property by adding equations dec(M, N) = wrong for all ground
terms M and N such that M �= enc(L, N) for all L.

Probability Measures. A discrete probability measure over a countable set X
is a function μ : 2X → [0, 1] such that μ(X) = 1 and for each countable family
{Xi} of pairwise disjoint elements of 2X , μ(∪iXi) =

∑

i μ(Xi). We adopt the
convenient abuse of notation μ(x) for μ({x}). Let us denote by D(X) the set of
discrete probability measures over X . Given an element x ∈ X , we denote by δx

the Dirac measure on x, namely, the probability measure μ such that μ(x) = 1.
Given two probability measures μ1, μ2 and a real number p ∈ [0, 1], we define

the convex combination μ1 +p μ2 to be the probability measure μ such that for
each set Y ∈ 2X , μ(Y) = p · μ1(Y) + (1 − p) · μ2(Y).

Recall that any discrete probability measure is the countable linear combina-
tion

∑

x.μ(x) �=0 μ(x) · δx.

3 The Probabilistic Applied Pi–Calculus

In this section we introduce the Probabilistic Applied Pi–calculus (PAPi).

3.1 Syntax

The grammar of PAPi processes is obtained by extending the one for the Applied
Pi–calculus with a nondeterministic (+) and a probabilistic (⊕p) choice operator:

P, Q ::= 0
∣
∣ u〈M〉.P

∣
∣ u(x).P

∣
∣ P +Q

∣
∣ P ⊕pQ

∣
∣

P | Q
∣
∣ !P

∣
∣ νn.P

∣
∣ if M = N then P else Q

A Probabilistic Applied Pi–Calculus 179

The null process 0 does nothing; u〈M〉.P outputs the term M on channel
u and then behaves like P ; u(x).P is ready to perform an input on channel u,
then to behave like P with the actual received message replacing the formal
parameter x; P +Q denotes a process which may behave either like P or Q;
P ⊕pQ behaves like P with probability p, like Q with probability 1 − p; P | Q is
the parallel composition of P and Q; the replication !P behaves as an infinite
number of copies of P running in parallel; νn.P generates a fresh private name
n and then behaves like P ; if M = N then P else Q is the usual conditional
process, it behaves like P if M = N and like Q otherwise. Note that M = N
represents equality (i.e. with respect to some equational theory) rather than
syntactic identity. We may omit a process when it is equal to 0.

As was done for the Applied Pi–calculus, we extend plain processes with active
substitutions:

A, B ::= P
∣
∣ νn.A

∣
∣ νx.A

∣
∣ A | B

∣
∣ {M/x}

where P is a plain process. We denote with A the set of extended processes.
We write {M/x} for the active substitution that replaces the variable x with
the term M . The substitution {M/x} is like let x = M in..., with the ability
to float and to apply to any process that comes in contact with it. By applying
a restriction νx.({M/x} | P) we obtain exactly let x = M in P . Intuitively, a
substitution {M/x} denotes either a static public information known to every
participant of the protocol, or it may appear when the term M has been sent
to the environment, and the environment may not contain the atomic names
appearing in M ; in this situation, the variable x is just a way to refer to M . We
write {M1/x1, . . . , Ml/xl} for the parallel substitutions {M1/x1} | . . . | {Ml/xl}.
We denote substitutions by σ, the image of a variable x according to σ as xσ and
the result of applying σ to the free variables of a term T as Tσ. In the following
we identify the empty frame and the null process 0.

Extending the sort system for terms, we rely on a sort system for extended
processes. This should enforce that M and N are of the same sort in the condi-
tional expression, that u has sort Channel(S) for some S in the input and output
expressions, and that x and M have the corresponding sort S in those expres-
sions. As done before, we omit the details of the sort system, and we just assume
that extended processes are well-sorted.

Names and variables have scopes which are delimited by restrictions and by
inputs. As usual, we denote with fv(A) and fn(A) the free variables and names
of A which do not occur within the scope of any binder νu and v(u). With bv(A)
and bn(A) we denote the bound variables and names of A, respectively.

An extended process is closed when every variable is either bound or de-
fined by an active substitution. With AC we denote the set of closed extended
processes. We may use the abbreviation νũ for the (possibly empty) series of
pairwise-distinct binders νu1.νu2 . . . νul.

Intuitively, we may see extended processes as plain processes extended with a
context for the interpretation of their variables. As usual, an evaluation context is

180 J. Goubault-Larrecq, C. Palamidessi, and A. Troina

an expression (an extended process) with a hole. Formally, an evaluation context
C[] is defined by the following grammar:

C[] ::= �
∣
∣ νn.C[]

∣
∣ νx.C[]

∣
∣ A | C[]

∣
∣ C[] | A

where A ∈ A is an extended process. A context C[] closes A when C[A] is closed.
A frame is an extended process built up from 0 and active substitutions by

parallel composition and restriction. The domain dom(ϕ) of a frame ϕ is the
set of variables that ϕ exports (those variables x for which ϕ has an active
substitution {M/x} not under a restriction on x). We assume all substitutions
in a frame to be cycle-free, and that there is at most one substitution for each
variable (and exactly one when the variable is restricted).

A frame can be viewed as an approximation of an extended process A that
accounts for the static knowledge exposed by A to its environment, but not for
A’s dynamic behaviour. Given a probabilistic extended process A, with ϕ(A) we
denote the frame obtained from A by replacing every plain process embedded
in A with 0. For example, given the process A = (P ⊕pQ) | {M/x} | {N/x}, we
have that ϕ(A) = 0 | {M/x} | {N/x}. The domain dom(A) of A is the domain of
its frame ϕ(A); namely, dom(A) = dom(ϕ(A)).

3.2 Semantics

Structural congruence (≡) is the smallest equivalence relation on extended pro-
cesses that is closed (i) by α-conversion on both names and variables, (ii) by
application of evaluation contexts, and such that:

(Par-0) A ≡ A |0 (Par-C) A | B ≡ B | A
(Par-A) A | (B | C) ≡ (A | B) | C (Repl) !P ≡ P | !P

(New-0) νn.0 ≡ 0 (New-C) νu.νv.A ≡ νv.νu.A

(New-Par) A | νu.B ≡ νu.(A | B) if u �∈ fv(A) ∪ fn(A)

(Alias) νx.{M/x} ≡ 0 (Subst) {M/x} | A ≡ {M/x} | A{M/x}
(Rewrite) {M/x} ≡ {N/x} if Σ � M =E N

Rules for parallel composition and restriction are standard. Alias enables the
introduction of an arbitrary active substitution, Subst describes the application
of an active substitution to a process in contact with it, and Rewrite deals
with equational term rewriting. As pointed out in [1], Alias and Subst yield
A{M/x} ≡ νx.({M/x} | A) for x �∈ fv(M).

We let μ range over distributions over the classes of extended processes defined
by the structural congruence relation. Namely, μ : 2A/≡ → [0, 1]. In the following
we abbreviate μ([B]) with μ(B), where [B] is the equivalence class of B up to
structural congruence ≡.

The internal probabilistic reduction A −→ μ, which describes a transition that
leaves from A and leads to a probability distribution μ, is the smallest relation
satisfying the following axioms:

A Probabilistic Applied Pi–Calculus 181

(Id) P −→ δP (Comm) a〈x〉.P | a(x).Q −→ δP | Q

(NdBran)
P −→ μ

P +Q −→ μ
(NdBran’)

Q −→ μ

P +Q −→ μ

(PrBran)
P −→ μ1 Q −→ μ2

P ⊕pQ −→ μ1 +p μ2
(Then) if M = M then P else Q −→ δP

(Else) if M = N then P else Q −→ δQ for M, N ∈ TG s.t.Σ �� M =E N

(EvCon)
A −→ μ

C[A] −→ μC

A stuttering reduction (Id) is needed to deal with + and ⊕p (see Example 1).
Communication (Comm) is kept simple considering as a variable the message
sent. There is no loss of generality since Alias and Subst can introduce a vari-
able to stand for a term (see [1]). Nondeterministic branching (NdBran) is as
usual. Probabilistic branching (PrBran) results from the convex combination
of probability measures. Comparisons (Then and Else) rely on the underlying
equational theory E; using Else may sometimes require to apply active substi-
tutions in the context in order to get ground terms M and N . Note that the
only rule that gives rise to a probabilistic choice is PrBran, the other ones just
return a Dirac measure.

Since reduction rules should be closed under application of evaluation con-
texts, we need to define extensions of the distributions μ such that given A −→ μ
we could define μC such that C[A] −→ μC . Formally, given an evaluation context
C[] and a distribution μ, we define the unique distribution μC such that for any
extended process A, μC(C[A]) = μ(A). For example, with μ� | B we denote the
distribution μ′ such that μ′(A | B) = μ(A), with μνu.� we denote the distribution
μ′ such that μ′(νu.A) = μ(A).

Example 1. Consider the process A = (a〈M〉+b〈M〉)⊕pc〈M〉. We have A −→ μ
and A −→ μ′, where μ = δa〈M〉 +p δc〈M〉 and μ′ = δb〈M〉 +p δc〈M〉. Moreover, we
have A | B −→ μ� |B and A | B −→ μ′

� |B for any process B.

There is a step from a process A to a process B through the distribution μ
(denoted A −→μ B) if A −→ μ and μ([B]) > 0.

An execution of A is a finite (or infinite) sequence of steps e = A −→μ1 A1 −→μ2

. . . −→μk
Ak, where A0, . . . , Ak ∈ A and μi ∈ D(A/≡). With ExecA we denote

the set of executions starting from A. For the finite execution e = A −→μ1 A1 −→μ2

. . . −→μk
Ak we define last(e) = Ak and |e| = k. For any j ≤ |e|, with ej we

define the sequence of steps A −→μ1 A1 −→μ2 . . . −→μj Aj .
Finally, with e↑ we denote the set of executions e′ such that e ≤prefix e′, where

≤prefix is the usual prefix relation over sequences.

Example 2. Consider again process A of Example 1, and process B = a(x). We
have A | B −→μ� | B

a〈M〉 | a(x) −→δ0 0, with μ = δa〈M〉+pδc〈M〉 and a〈M〉 | a(x) ≡
νx.(a〈x〉 | a(x) | {M/x}). Note that we also have A | B −→μ� | B

c〈M〉 | a(x).

Since we allow nondeterministic choices, an extended process may behave in
several different ways. Intuitively, the nondeterministic choice is among the pos-
sible probability distributions that a process may follow. Given a process A, we

182 J. Goubault-Larrecq, C. Palamidessi, and A. Troina

denote with behave(A) the set of the possible behaviours of A, i.e., behave(A) =
{μ | A −→ μ}. Hence, each possible probabilistic transition A −→μ can be seen
as arising from a scheduler resolving the nondeterminism in A (see [27]). A
scheduler is a total function F assigning to a finite execution e a distribution
μ ∈ behave(last(e)). Given a scheduler F and a process A, we define ExecF

A as
the set of executions starting from A and driven by F , namely the set of exe-
cutions {e = A −→μ1 A1 −→μ2 A2 −→μ3 . . . | ∀i, μi(Ai) > 0 where μi = F (ei−1)}.
Given the finite execution e = A −→μ1 A1 −→μ2 . . . −→μk

Ak ∈ ExecF
A, we define

PF
A (e) = μ1(A1) · . . . · μk(Ak).
We define the probability space on the executions starting from a given process

A ∈ A, as follows. Given a scheduler F , σFieldF
A is the smallest sigma field on

ExecF
A that contains the basic cylinders e↑, where e ∈ ExecF

A. The probability
measure ProbF

A is the unique measure on σFieldF
A such that ProbF

A(e↑) = PF
A (e).

Example 3. Consider again the process A of Example 1, and the scheduler F such
that F (A) = μ = δa〈M〉 +p δc〈M〉. We have that the executions e = A −→μ a〈M〉
and e′ = A −→μ c〈M〉 are in ExecF

A with PF
A (e) = p and PF

A (e′) = 1 − p. Note
that with the chosen F , action b〈M〉 is never performed.

Given a scheduler F , a process A and a measurable set of processes H ⊆ A, with
ExecF

A(H) we denote the set of executions starting from A that cross a process
in the set H . Namely, ExecF

A(H) = {e ∈ ExecF
A | last(ei) ∈ H, for some i}.

We define the probability of reaching a process in H starting from A according
to the policy given by F as ProbF

A(H) = ProbF
A(ExecF

A(H)).

4 Equivalences

In this section we recall the definition of static equivalence for frames introduced
in [1]. We also introduce a notion of observational congruence allowing to argue
when PAPi extended processes cannot be distinguished by any context. Contexts
can be used to represent active attackers and observational congruence may
capture security properties. For example, secrecy and authentication properties
have been defined in this way in [2] for the Spi–calculus.

4.1 Static Equivalence

Two frames should be considered equivalent when they behave equivalently when
applied to terms obeying a certain equational theory E. We denote this equiv-
alence (also called static equivalence) with ≈E . As pointed out in [1], defining
a static equivalence in presence of the ν construct becomes somehow delicate.
Consider, for instance, the three frames:

ϕ0 = νk.{k/x} | νs.{s/y} ϕ1 = νk. {f(k)/x, g(k)/y} ϕ2 = νk. {k/x, f(k)/y}

where f and g are unary functions with no equations (two independent one-way
hash functions). In ϕ0, since k and s are new, variables x and y are mapped to

A Probabilistic Applied Pi–Calculus 183

unrelated values different from any value a context may build. This also holds for
ϕ1 (even if f(k) and g(k) are based on the same fresh value, they look unrelated).
Thus, a context obtaining values for x and y cannot distinguish between ϕ0 and
ϕ1. However, a context may discriminate ϕ2 by checking the predicate f(x) = y.
Hence, static equivalence is defined so that ϕ0 ≈E ϕ1 �≈E ϕ2.

Definition 1. Given an equational theory E, two terms M and N are equal
in the frame ϕ ≡ νñ.σ (written (M =E N)ϕ), if and only if Mσ =E Nσ and
{ñ} ∩ (fn(M) ∪ fn(N)) = ∅.

Hence, for the previous example, we have (f(x) = y)ϕ2 but not (f(x) = y)ϕ0.

Definition 2. Given an equational theory E, two closed frames ϕ and ψ are
statically equivalent (written ϕ ≈E ψ) when dom(ϕ) = dom(ψ) and for all terms
M and N , (M =E N)ϕ iff (M =E N)ψ.

We say that two closed extended processes A and B are statically equivalent
(written A ≈E B) iff ϕ(A) ≈E ϕ(B).

Note that deciding static equivalence can be quite hard to check (it depends on
E and Σ) [8]. The next lemma, proved in [1], states a basic property of ≈E.

Lemma 1. Static equivalence is closed by structural congruence, by reduction,
and by application of closing evaluation contexts.

4.2 Observational Congruence

We write A ⇓F
p a (a probabilistic barb) when A can send a message on a with

probability p according to the scheduler F , namely, when ProbF
A(H) = p where

A′ ∈ H if and only if A′ = C[a〈x〉.P] for some evaluation context C[] that
does not bind a. Notice that the set of executions starting from A and crossing
a process in H is measurable since it can be seen as the countable union of
measurable sets

⋃

C,P,x,e.e∈ExecF
A∧last(e)=C[a〈x〉.P] e↑.

Definition 3. Observational congruence (≈) is the largest symmetric relation
R between closed extended processes with the same domain such that ARB
implies:

1. for all schedulers F such that A ⇓F
p a, there exists a scheduler F ′ such that

B ⇓F ′

p a;
2. for all schedulers F there exists a scheduler F ′ such that for all classes

C ∈ AC/R, ProbF
A(C) = ProbF ′

B (C);
3. C[A]RC[B] for all closing evaluation contexts C[].

The quantification on the schedulers means, intuitively, that given A ≈ B, for
any possible behaviour (scheduler) of A there exists an analogous behaviour of
B and viceversa.

As pointed out in [1], if A ≈ B, then, for any test C of the form if M =
N then a〈s〉 else 0, where a does not occur in A or B, A | C and B | C should have

184 J. Goubault-Larrecq, C. Palamidessi, and A. Troina

the same barbs, thus implying static equivalence for A and B. As a consequence,
the following lemma holds, stating that observational congruence is finer than
static equivalence.

Lemma 2. Given A, B ∈ A, A ≈ B implies A ≈E B.

4.3 Labeled Semantics and Weak Bisimulation

In process calculi theory, a labeled semantics usually allows describing the po-
tential interactions of a process with other ones that could occur in its envi-
ronment. Such interactions are modeled by allowing the process to perform as
many transitions as its active actions are. Each transition has the corresponding
action as label and leads to a new process which corresponds to the result of the
execution of that action. Moreover, a labeled semantics may include silent (or
internal) transitions, usually labeled with τ , which describe the internal activity
of the process, namely the interactions occurring between internal components
of the system. Furthermore, the actions performed may include parameters. As
an example, since the action of sending or receiving a message on a channel may
require the transmitted message as parameter, one should explicitly show the
parameter within the transition label.

Thus, to model the interaction of PAPi processes with the environment, a
labeled operational semantics can be provided which defines a relation A

α−→ μ,
where α is a label of one of the following forms:

– the symbol τ (corresponding to an internal reduction);
– a label a(M), where M may contain names and variables (corresponding to

an input of M on a);
– a label a〈u〉 or νu.a〈u〉, where u is either a channel name or a variable of

base type (corresponding to an output of u on a).

In addition to the structural congruence rules and the internal reduction seman-
tics of Section 3.2 (where each reduction rule should be equipped with the label
τ), we adopt the following rules:

(In) a(x).P
a(M)−−−→ δP{M/x} (Out-Atom) a〈u〉.P a〈u〉−−−→ δP

(Open-Atom)
A

a〈u〉−−−→ μ u �= a

νu.A
νu.a〈u〉−−−−−→ μ

(Scope)
A

α−→ μ u does not occur in α

νu.A
α−→ μνu.�

(Par)
A

α−→ μ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A | B α−→ μ� | B

(Struct)
A ≡ B B

α−→ μ

A
α−→ μ

There is a step from a process A to a process B through the distribution μ with
label α (denoted A

α−→μ B) if A
α−→ μ and μ(B) > 0. Given a process A, different

A Probabilistic Applied Pi–Calculus 185

reaction rules A
α−→ μ may be applied according to α and μ. As a consequence,

we redefine the set of possible behaviours of A as behavel(A) = {(α, μ) | A α−→ μ}.
A labeled execution of A is a finite (or infinite) sequence of steps e = A

α1−→μ1

A1
α2−→μ2 . . .

αk−−→μk
Ak, where A0, . . . , Ak ∈ A and μi ∈ D(A/≡). With abuse

of notation, we define ExecA, last(e) = Ak, |e|, ej and e ↑ as for unlabeled
executions.

Executions arise by resolving the nondeterminism on both α and μ. As a
consequence, a scheduler for the labeled semantics is a function F assigning to
a finite labeled execution e a pair (α, μ) ∈ behavel(last(e)).

Given a scheduler F and a process A, we define ExecF
A as the set of executions

starting from A and driven by F , namely the set of executions {e = A
α1−→μ1

A1
α2−→μ2 A2

α3−→μ3 . . . | ∀i, μi(Ai) > 0 where (αi, μi) = F (ei−1)}. Given the
finite execution e = A

α1−→μ1 A1
α2−→μ2 . . .

αk−−→μk
Ak ∈ ExecF

A, we define PF
A (e) =

μ1(A1) · . . . · μk(Ak).

Example 4. Consider the process A of Example 1 and the scheduler F such that
F (A) = (τ, μ), with μ defined as in Example 1, and, trivially, F (A τ−→μ a〈M〉) =

(a〈M〉, δ0) and F (A τ−→μ c〈M〉) = (c〈M〉, δ0). We have e = A
τ−→μ a〈M〉 a〈M〉−−−→δ0

0 and e′ = A
τ−→μ c〈M〉 c〈M〉−−−→δ0 0 with PF

A (e) = p and PF
A (e′) = 1 − p. Note,

again, that with such a scheduler the label b〈M〉 does never appear. Also note
that the process νc.A may reach with probability (1 − p) the process νc.c〈M〉
from which it cannot perform any other step.

Again, given a scheduler F , a finite execution e and a measurable set H , ProbF
A

(e↑), ExecF
A(H) and ProbF

A(H) are defined analogously as for the unlabeled case.
Let ExecF

A(τ∗ατ∗, H) be the set of executions that, starting from A, lead to a
process in H via an execution performing an α action preceded and followed by
an arbitrary number of τ steps. We define the probability ProbF

A(τ∗ατ∗, H) =
ProbF

A(ExecF
A(τ∗ατ∗, H)).

Definition 4. Weak bisimulation (≈l) is the largest symmetric relation R be-
tween closed extended processes with the same domain such that ARB implies:

1. A ≈E B;
2. for all schedulers F there exists a scheduler F ′ such that for all classes

C ∈ AC/R, ProbF
A(C) = ProbF ′

B (C);
3. for all schedulers F there exists a scheduler F ′ such that ProbF

A(α, C) =
ProbF ′

B (τ∗ατ∗, C), for all classes C ∈ AC/R and for all α �= τ with fv(α) ⊆
dom(A) and bn(α) ∩ fn(B) = ∅.

The following lemma states that given A ≈l B and a closing evaluation context
C[], C[A] ≈l C[B] holds.

Lemma 3. ≈l is closed under application of closing evaluation contexts.

The next theorem derives immediately from the previous lemma.

186 J. Goubault-Larrecq, C. Palamidessi, and A. Troina

Theorem 1. ≈l is a congruence.

We can also show that ≈l and ≈ coincide. Even if the notion of weak bisimulation
does not include an explicit condition about contexts, it is still closed under
application of evaluation contexts. As a consequence, ≈l is simpler than the
notion of observational congruence given in Definition 3. The following theorem
holds.

Theorem 2. A ≈l B if and only if A ≈ B.

5 An Application

We give an implementation of the 1-out-of-2-oblivious transfer protocol (OT1
2)

in PAPi. The notion of oblivious transfer (OT) was first introduced by Ra-
bin [22] in a number theoretic context and then generalized by Even, Goldreich
and Lampel [12] with the OT1

2 notion. Intuitively, OT1
2 allows one party (S) to

transfer exactly one secret, out of two different recognizable secrets (M0, M1),
to his counterpart (R). Each secret is received with probability one half and
the sender is completely ignorant of which secret has been received. Intuitively,
OT1

2(S, R, M0, M1) is a protocol that should satisfy the following axioms: (A)
R can read exactly one message: either M0 or M1, the probability of each to
be read is one half; (B) if R does not read Mi he gains no useful information
about Mi by the execution of OT1

2; (C) for S, the a posteriori probability that
R got M0 (M1) remains one half. Oblivious transfer is widely used in protocols
for secure multiparty computation and has been shown to be rather efficient.

In order to describe OT1
2 in PAPi, and recalling the notation in [12], we

should extend the equational theory for asymmetric encryption with two binary
functions � and � such that (x � y) � y = x and the mappings x �→ x � y and
y �→ x�y are permutations on the set of terms. Intuitively, when using RSA [23],
x� y is implemented as reduction modulo N (the RSA modulus) of x+ y, while
x � y is the reduction modulo N of x − y. The full list of equations is:

(1) fst(pair(x, y)) = x (2) snd(pair(x, y)) = y
(3) dec(enc(x, pk(y)), sk(y)) = x (4) enc(dec(x, sk(y)), pk(y)) = x
(5) (x � y) � y = x (6) x � (y � x) = y
(7) x � y = y � x

We are now ready to implement OT1
2 in PAPi in the following way:

OT1
2(S, R,M0, M1) ::= S(M0, M1) | R where:

S(M0, M1) ::= νe.νm0.νm1.
�
c〈pk(e),m0, m1〉.c(y).(c〈T00, T11, 0〉⊕ 1

2
c〈T01, T10, 1〉)

�

with Tij = Mi � dec(y � mj , sk(e)) and:
R ::= νl.

�
c(z, x0, x1).(c〈enc(l, z) � x0〉.P0⊕ 1

2
c〈enc(l, z) � x1〉.P1)

�

with, for i ∈ {0, 1} Pi ::= c(y0, y1, y2). (if y2 =E 0 then a〈yi � l〉 else a〈y1−i � l〉) .

For simplicity we write input actions with multiple variables (this can be easily
encoded with pair, fst and snd). S picks two fresh messages m0 and m1 and

A Probabilistic Applied Pi–Calculus 187

transmits them to R, together with the public key of the fresh secret e. The
receiver R receives this triple and randomly (with probability 1

2) sends back to
S the term T = enc(l, pk(e))�mi, for i ∈ {0, 1}. Since S does not know the secret
value l, it cannot tell whether T has been obtained from m0 or m1. S generates
the messages Tij obtained by combining Mi and mj and with probability 1

2 sends
to R the Mi combined with the right mj used by R. The flag 0 (1, resp.) is used
to indicate that S used m0 (m1, resp.) for the first part of the message. The
receiver can now compute the secret (M0 or M1) from the right Tij and l. At
the final step, R sends the value of the received secret on channel a.

Note that we do not consider equations of the form dec(M, sk(e)) = wrong
when M is not encrypted with sk(e). Otherwise, S may be able to know which
mj was used by R through the test dec(enc(l, pk(e)) � mi � mj , sk(e)) = wrong.
Such a test is true only if i �= j. In the case of i = j, S is able to compute the
secret l as dec(enc(l, pk(e)) � mi � mj , sk(e)). This problem is avoided by using
an asymmetric cipher (e.g., RSA), obtained with equations (4) and (5) such that
enc and dec commute. In this way, the test never returns the value wrong and S
cannot tell whether the result of dec(enc(l, pk(e)) � mi � mj , sk(e)) is l or just a
random decryption.

By means of our notion of weak bisimulation we can show that the protocol
implementation in PAPi, given the well–behaving sender S(M0, M1) and receiver
R, satisfies the OT1

2 axioms. In particular, we can show that the receiver R
receives M0 or M1 with probability 1

2 by checking the weak bisimulation of the
protocol implementation with the process that simply outputs M0 or M1 on a
channel a with probability 1

2 . Such a system, which captures axioms (A), (B)
and (C) required by OT1

2, may be seen as the correct behaviour of the protocol.
Namely, imposing a restriction on channel c, thus forcing synchronization among
S and R, it holds that:

νc.OT1
2(S, R, M0, M1) ≈l a〈M0〉⊕ 1

2
a〈M1〉.

This can be proved easily, since νc.OT1
2(S, R, M0, M1) performs only internal

reductions labeled with τ before performing the output of M0 or M1 (with prob-
ability 1

2 , resp.) on channel a. The two bisimilar labeled probabilistic automata
modeling the behaviour of νc.OT1

2(S, R, M0, M1) and a〈M0〉⊕ 1
2
a〈M1〉 are shown

in Figure 1 (probabilities equal to 1 are omitted). Notice that at each step there
is just a probability distribution that a scheduler can choose (the only nonde-
terministic choices are among blocking schedulers).

6 A Conservative Extension

Many process algebraic approaches are non–probabilistic and, in general, prob-
abilistic choice can be approximated by suitable nondeterministic mechanisms.
Using probabilistic features, however, provides stronger safety and security guar-
antees. We give formal substance to this claim (Proposition 1 below), by show-
ing that ≈ is a conservative extension of an appropriate notion of observational

188 J. Goubault-Larrecq, C. Palamidessi, and A. Troina

�τ ����τ 1
2

����τ 1
2

����τ 1
2

�
τ

�
a〈M0〉

			
τ 1
2

�τ �a〈M1〉

����τ 1
2

�
τ

�
a〈M1〉

			
τ 1
2

�τ �a〈M0〉

≈l
����
a〈M0〉 1

2

����
a〈M1〉 1

2

Fig. 1. νc.OT1
2(S, R, M0, M1) ≈l a〈M0〉⊕ 1

2
a〈M1〉

congruence for the purely Nondeterministic Applied Pi–calculus (NAPi), obtained
by removing the probabilistic choice operators from the syntax of plain processes.

With ANP we denote the set of extended processes in NAPi. The internal re-
duction A −→ A′, becomes now the smallest relation on ANP closed by structural
congruence and application of evaluation contexts such that:

a〈x〉.P | a(x).Q −→ P | Q P −→ P ′

P +Q −→ P ′
Q −→ Q′

P +Q −→ Q′

if M = M then P else Q −→ P

if M = N then P else Q −→ Q for M, N ∈ TG s.t.Σ �� M =E N

Given a process A ∈ A we define the plain process ANP ∈ ANP obtained
by replacing each probabilistic choice operator appearing in A with a purely
nondeterministic choice operator.

As an example, given A = (P ⊕pQ) | {M/x}, we get ANP = (P +Q) | {M/x}.
Note that NAPi essentially results in the Applied Pi–calculus given in [1]

enriched with a nondeterministic choice operator. Actually, the lack of an explicit
nondeterministic choice operator in [1] is not a real limitation since it can be
derived by means of restriction and parallel composition in the standard way.

The notion of observational congruence introduced in the probabilistic frame-
work (see Definition 3) can be rewritten for the purely nondeterministic case.

For A ∈ ANP , we write A ⇓ a when A can send a message on a, namely when
A −→∗ C[a〈x〉.P] for some evaluation context C[] that does not bind a.

Definition 5. Nondeterministic observational congruence (≈NP) is the largest
symmetric relation R between closed extended processes in ANP with the same
domain such that ARB implies:

1. if A ⇓ a, then B ⇓ a;
2. if A −→∗ A′, then B −→∗ B′ and A′RB′ for some B’;
3. C[A]RC[B] for all closing evaluation contexts C[].

The following proposition states that removing probabilities from two observa-
tionally equivalent probabilistic extended processes the equivalence is preserved
in the purely nondeterministic setting.

Proposition 1. Given A, B ∈ A such that A ≈ B, then ANP ≈NP BNP .

Hence, if a system satisfies an observational equivalence property in the prob-
abilistic setting, its nondeterministic counterpart does still satisfy the property
in the nondeterministic setting. The converse implication does, in general, not

A Probabilistic Applied Pi–Calculus 189

hold, since systems satisfying a property in the nondeterministic setting may
turn out to lose the property in the more expressive probabilistic framework.

Example 5. Consider the process A = νc.OT1
2(S, R, M0, M1) introduced in Sec-

tion 5 and the family of processes B = a〈M0〉⊕p a〈M1〉. It is easy to see that
ANP ≈NP BNP (both processes have just a barb on channel a). However, it is
not true that A ≈ B for all p. Actually, the equivalence holds just for p = 1

2 .

7 Conclusions

In this paper we have introduced the Probabilistic Applied Pi–calculus (PAPi),
an extension of the Applied Pi–calculus ([1]) for dealing with probability, non-
determinism and equations (which are shown to be rich enough for modeling the
most common cryptographic operations). We have given a labeled operational
semantics and a labeled weak bisimulation, which we have then shown to be a
congruence. As one expects, the results given in the probabilistic framework are
preserved with respect to the results given in the non-probabilistic one.

As an application, we have shown how PAPi applies to the OT1
2 protocol

where probability and cryptographic operations play an important role. While
we just prove the correct execution of the protocol for two given parties, it would
be quite natural to develop a framework for the analysis of security properties
(as, for example, in [2]) in order to prove more general properties.

As another possible future application, we mention, just as an example, sensor
networks, for which: (a) environmental distributed sensing can be modeled with
a nondeterministic choice among input channels waiting for external stimuli; (b)
randomization is crucial (see the probabilistic routing policies introduced in [4],
or the randomized sleeping architecture proposed in [6]); (c) cryptography is fun-
damental when dealing with secure wireless communication. Notice, moreover,
that thanks to the generality of equational theories, PAPi can also be applied to
domains different from security.

References

1. Abadi, M., Fournet, C.: Mobile Values, New Names, and Secure Communication.
In: POPL 2001, pp. 104–115. ACM Press, New York (2001)

2. Abadi, M., Gordon, A.D.: A Calculus for Cryptographic Protocols: The Spi Cal-
culus. Information and Computation 148(1), 1–70 (1999)

3. Aldini, A., Bravetti, M., Gorrieri, R.: A Process-algebraic Approach for the Analysis
of Probabilistic Non Interference. Journal of Computer Security 12, 191–245 (2004)

4. Barrett, C.L., Eidenbenz, S.J., Kroc, L., Marathe, M., Smith, J.P.: Parametric
Probabilistic Sensor Network Routing. In: WSNA 2003, pp. 122–131. ACM Press,
New York (2003)

5. Buscemi, M.G., Montanari, U.: CC–pi: A Constraint–based Language for Spec-
ifying Service Level Agreements. In: ESOP 2007. LNCS, vol. 4421, pp. 19–32.
Springer, Heidelberg (2007)

6. Cao, Q., Abdelzaher, T., He, T., Stankovic, J.: Towards Optimal Sleep Scheduling
in Sensor Networks for Rare-event Detection. In: IPSN 2005, pp. 20–27. IEEE
Computer Society Press, Los Alamitos (2005)

190 J. Goubault-Larrecq, C. Palamidessi, and A. Troina

7. Cleaveland, R., Parrow, J., Steffen, B.: The concurrency workbench: a semantics-
based tool for the verification of concurrent systems. ACM Trans. Program. Lang.
Syst. 15(1), 36–72 (1993)

8. Cortier, V., Abadi, M.: Deciding Knowledge in Security Protocols under Equational
Theories. Theoretical Computer Science 367(1–2), 2–32 (2006)

9. Dershowitz, N., Jouannaud, J.-P.: Rewrite Systems. Handbook of Theoretical Com-
puter Science. Formal Models and Sematics (B) B, 243–320 (1990)

10. Di Pierro, A., Hankin, C., Wiklicky, H.: Approximate Non-Interference. Journal of
Computer Security 12, 37–82 (2004)

11. Dolev, D., Yao, A.C.: On the Security of Public Key Protocols. IEEE Transactions
on Information Theory 29(12), 198–208 (1983)

12. Even, S., Goldreich, O., Lempel, A.: A Randomized protocol fo Signing Contracts.
Communications of the ACM 28(6), 637–647 (1985)

13. Goguen, J.A., Thatcher, J.W., Wagner, E.G., Wright, J.B.: Initial Algebra Seman-
tics and Continuous Algebras. Journal of the ACM 24(1), 68–95 (1977)

14. Jung, A., Tix, R.: The Troublesome Probabilistic Powerdomain. In: Proc. of Work-
shop on Computation and Approximation. ENTCS, vol. 13, Elsevier, Amsterdam
(1998)

15. Lowe, G.: Casper: A compiler for the analysis of security protocols. Journal of
Computer Security 6, 53–84 (1998)

16. Mislove, M.W., Ouakine, J., Worrell, J.: Axioms for Probability and Nondetermin-
ism. In: EXPRESS 2003, 96th edn. ENTCS, pp. 7–28. Elsevier, Amsterdam (2004)

17. Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs
(1989)

18. Milner, R.: Communicating and Mobile Systems: the π–Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

19. Mitchell, J.C.: Foundations for Programming Languages. MIT Press, Cambridge
(1996)

20. Mitchell, J.C., Ramanathan, A., Scedrov, A., Teague, V.: Polynomial-time Pro-
cess Calculus for the Analysis of Cryptographic Protocols. Theoretical Computer
Science 353(1–3), 118–164 (2006)

21. Niehren, J., Mueller, M.: Constraints for Free in Concurrent Computation. In: Kan-
chanasut, K., Levy, J.-J. (eds.) ACSC. LNCS, vol. 1023, pp. 171–186. Springer, Hei-
delberg (1995)

22. Rabin, M.O.: How to Exchange Secrets by Oblivious Transfer. Unpublished
manuscript (1981)

23. Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems. Communications of the ACM 21(2), 120–126
(1978) Previously released as an MIT “Technical Memo” in April 1977

24. Saraswat, V.A., Rinard, M.C., Panangaden, P.: Semantic Foundations of Concurrent
ConstraintProgramming. In:POPL1991, pp. 333–352.ACMPress, NewYork (1991)

25. Schneider, S.: Security properties and CSP. In: Proc. of the IEEE Symposium on
Security and Privacy (1996)

26. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, MIT, Laboratory for Computer Science (1995)

27. Segala, R., Lynch, N.: Probabilistic Simulations for Probabilistic Processes. Nordic
Journal of Computing 2(2), 250–273 (1995)

28. Victor, B., Moller, F.: The Mobility Workbench - A Tool for the pi-Calculus. In: Dill,
D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 428–440. Springer, Heidelberg (1994)

	Introduction
	Preliminaries
	The Probabilistic Applied Pi--Calculus
	Syntax
	Semantics

	Equivalences
	Static Equivalence
	Observational Congruence
	Labeled Semantics and Weak Bisimulation

	An Application
	A Conservative Extension
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

